
Seek and Destroy

Evan Wall

EEL5666 - IMDL
Instructors: Dr. Arroyo, Dr. Schwartz

TAs: Mike Pridgen, Tim Martin, Ryan Stevens, Devin Hughes,
Thomas Vermeer

1

Table of Contents

I. Abstract

II. Executive Summary

II. Introduction

III. Integrated System

IV. Mobile Platform

V. Actuation

VII. Sensors

VIII. Behaviors

VIII. Experimental Layout and Results

IX. Conclusion

X. Documentation

XI. Appendices

2

Abstract

This robot is a mobile platform that tries to acquire and hit a target with plastic balls while avoiding
obstacles such as walls. It has to identify its target from other objects and determine where to aim in
order to hit the target. The body of the robot is based on a plastic RC tank that has a built in airsoft
gun. The RC tank provides a chassis to hold the contents of the robot, motors to move the robot and
aim the turret, and an airsoft gun to fire plastic balls that can hit a target without causing damage to
anything. The RC tank is modified with an array of sensors to gather different kinds of information
such as the location of obstacles, the location of the target, and the distance to the target and a
microcontroller to process the information and determine how the robot should act.

Executive Summary

Seek and Destroy is a robot created to search for and shoot a target. The body of the robot is based on
an RC tank from Amazon.com. The robot's microcontroller is a Pridgen Vermeer Robotics board that
has a Atmel ATxmega128A1 microprocessor and various ports to interface with the other parts of the
robot. Five motors control the movement of the robot: one motor moves the left tread, one moves the
right, one motor moves the turret up and down, one motor moves the turret left and right, and one
motor fires the airsoft gun. The treads provide traction to move the robot forward and backward and
steer it left and right. The motors that move the treads are controlled by a 2A Dual L298 H-Bridge
motor driver and the motor that fires the airsoft gun is controlled by a NPN transistor and a relay.
There are three types of sensors on the robot: two whisker bump sensors for collision detection, a sonar
sensor for range finding, and a Boebot CMUcam to locate a target. The robot also has a LCD screen
for displaying sensor and debug information.

The robot's goal is to located a red colored target. It will do this by moving around while avoiding
obstacles until the target is located. When the target is located, it will move closer to the target until it
is in range and align the center of the target with the airsoft gun. Finally the robot will fire the airsoft
gun and hit the target then stop operating.

When I started working on the robot I did not know what was a realistic goal for the robot's objective
so I had initially wanted it to be able to track a moving object. However, I did not have enough time to
accomplish this objective because of a series of setbacks. The first problem that I had was that I burned
out the motor driver that I was using right before the object avoidance demonstration. I had to wait
about a week before the one I ordered from SparkFun arrived. The next problem that I had was
communicating with the Boebot CMUcam. I think one of the cables that I was using had a poor
connection because it seemed random whether or not I was able to communicate with the camera. For
a couple weeks I had mixed results sending and receiving information to and from the camera and
checked and double checked the wire connections and software. The problem seems to be resolved, but
I did not change anything in the robot so I do not know what the problem really was. The final
problem that I had was using a transistor and a relay to control the motor for the airsoft gun. The relay
requires 5v to switch on and off so I was using the transistor as a level shifter to connect the 3.3v I/O
pin with the 5v servo power pin. Originally I tried using a IRF510 N-channel MOSFET Transistor
from RadioShack, but this also required more current than the I/O pin provided to switch. I ended up
using a NPN transistor with a 330 Ohm resistor wired to the base pin. Without this resistor, too much
current was pulled through the transistor and it blew.

3

Introduction

The purpose of this robot is to correctly identify a target and to aim and and hit the target. This can be
difficult because the robot must avoid obstacles as it attempts to locate the target, identify the target
from other objects in the environment, and determine where to aim in order to hit the target. The robot
is based on a RC tank that provides movement and aiming, an airsoft gun which is the firing
mechanism, sensors to observe the environment around the robot, and a microcontroller to control the
robot. The microcontroller board, designed by Pridgen Vermeer Robotics, commands the robot by
reading sensor data and controlling motors. This paper discusses each of the components of the robot
more in depth below.

Integrated System

The robot is controlled by a Pridgen Vermeer Robotics board based on the Atmel ATxmega128A1.
This board connects to a motor driver to control the motors of the RC tank which will have its own
power source. The microcontroller sends signals to the motor driver through digital I/O pins to turn the
microcontroller on and off and determine the direction of the motors. Also, the microcontroller sends
PWM signals to the motor driver to control the speed of the motors. The motor driver is connected
directly to the battery and drives the motors because the microcontroller board does not supply enough
current to drive the motors. The airsoft gun is connected to the microcontroller and battery through a
relay. This allows the microcontroller to turn the gun on and off. There are three types of sensors that
the microcontroller controls: whisker bump sensors through digital I/O pins, a sonar sensor through
digital I/O pins and an A/D input, and a Boebot CMUcam through two I/O pins using TTL serial
communication. Because the robot is not connected to any external devices, a LCD screen is used for
displaying debug and sensor output.

I chose to use the PVR board because I have little experience with microcontrollers and this board is
supported by the TAs and designed by them for use in a project like this. This ended up being a good
choice because I had a lot of questions
about how to use different parts of the
board even after reading the manual. The
features that I found useful in this board are
the PWM signal pins for controlling the
motors; the A/D input pins for receiving
information from the sonar sensor; the I/O
pins for communicating with the Boebot
CMUcam, the whisker bump sensors, and
controlling the airsoft gun; and the LCD
header for connecting to the 4-bit LCD
screen.

4

PVR board

Mobile Platform

The body of the robot is based on an RC tank with a built in airsoft gun. There are separate treads on
each side of the tank that are in contact with the ground. Each tread is connected to its own motor and
can be controlled separately. This allows the treads to move the tank forward/backward when the
treads are moving in the same direction and left/right when the treads are moving in opposite
directions. The treads provide good traction on many surfaces both indoors and outdoors and even in
short grass. The turret allows the airsoft gun to be aimed separately from the chassis of the tank. It can
rotate 320 degrees horizontally and 40 degrees vertically. The airsoft gun is a good choice for shooting
projectiles because it is lightweight, has good range and accuracy, and the balls do not arc much over
short distances. Most importantly, the plastic balls will not cause damage if they do not hit their
intended target or if they ricochet off of it.

With some modifications, all of the components ended up fitting inside or on top of the mobile
platform. The PVR board and motor driver fit inside of the tank's chassis. The whisker bump sensors
fit on the front between the top and bottom pieces of the platform. The sonar and CMUcam are
attached to a piece of wood that is fitted to the barrel of the airsoft gun so that they are always pointed
in the same direction as the gun.

Actuation

Because an RC tank is being used with motors that draw too much current for the PVR board, a motor
driver is used to control the tank's motors and gun. The tank is capable of moving forwards and
backwards and turning in each direction. Originally the tank used the 1A dual TB6612FNG motor

5

driver from the lab, but that burned out during the obstacle avoidance demonstration. It supported up
to 1.2 amps per motor, but when the motors first start they use over 3 amps for a short period of time.
Now the tank uses 2A Dual L298 H-Bridge motor driver from SparkFun. Although this motor driver's
circuits should not burn out because it supports more current and has a heatsink, it is also much larger
and required the body of the tank to be modified to allow it to fit. The motors are capable of operating
at around 9.6v, but they do not run at full speed while the robot is moving because it is harder to locate
an object and the treads can come off if the robot turns too quickly.

Separate from the movement of the tank, the robot's turret is able to rotate left and right and aim up and
down. This is useful for acquiring and hitting a target that is not directly in front of the tank. However,
for safety reasons, the robot will not try to aim up so that it does not fire into someone's eye.

Another motor also pulls back a spring in the airsoft gun that allows the gun to fire plastic balls. This
motor is controlled with a 5 pin relay and a NPN transistor. The relay requires 5v to switch, but the I/O
pin only provides 3.3v. Therefore, a
transistor controls the 5v required to
switch the relay via an I/O pin
connected to a 330 Ohm resistor. The
resistor prevents the transistor from
drawing more current than it can
handle. The motor and the transistor
both get 5v from a servo port on the
PVR board, but the motor cannot be
connected directly to the transistor
because it draws too much current for
the transistor.

Sensors

There are two whisker bump sensors on the body of the robot: one in each front corner. These provide
collision detection with the environment for when the tank is searching for its target. The bump
sensors are made out of the spring from a mechanical pencil with a paperclip held inside the spring
with hot glue. One wire is connected to the paper clip and an I/O pin configured to use an internal pull-

6

2A Dual L298 H-Bridge1A dual TB6612FNG

Gun motor wiring diagram

up resistor and another wire is connected to the spring and a ground. When the spring bends enough,
the paperclip comes into contact with the spring and the circuit is completed which is read by the I/O
pin. The mechanical pencil spring was chosen as a whisker because it conducts electricity, it bends
easily, and it returns to its original shape after being bent.

A sonar sensor is used to detect objects in front of the tanks gun to see if a
target is in range. After the robot locates a target with the Boebot
CMUcam, it moves forward towards the target as it polls the sonar sensor
to determine how close it is to the target and stops when it is within range.
The sonar that I chose was the LV-MaxSonar-EZ2 from SparkFun. I

chose this sonar because it had an input voltage of
2.5-5.5v and a current draw of <3 mA so I could use
either an I/O pin or a servo pin to power it (I chose to
use the 5v servo pins because they provided better
range as shown in the diagram to the right); a narrow
beam so that it would only pick up objects directly in
front of the robot; and a range of between 9-10 feet so
that it can detect objects that are far away. The sonar
outputs data as RS232 serial, analog voltage, and
pulse width. I chose to use analog voltage because it

is the simplest way to interface with the sonar as only one additional wire
is required and the data can be read via a built in function in the PVR
software.

A Boebot CMUcam camera is used to perform color recognition and determine where the target is
relative to the airsoft gun. The CMUcam is connected to Port F of the PVR board. The PVR board
communicates with the CMUcam using TTL serial. This is
done with the help of the Xmega USART driver. This driver
simplifies transferring data serially by creating functions for
sending and getting characters. To initialize the CMUcam the
following commands are sent: “L1 2\r” to enable the tracking
LED, “MM 1\r” to enable middle mass mode (this sends the
coordinates of the middle of the color mass), and “PM 1\r” to
enable poll mode (this makes it so the camera only responds
when it is polled instead of continuously). During polling, a
range of RGB color values is sent to the camera and the camera
responds with the coordinates of the largest blob of that color.
This allows the robot to determine where the target is located.
The camera was more difficult to communicate with than I
anticipated because the documentation for the camera and USART driver documentation were not
always easy to understand and the Boebot CMUcam is slightly different from the CMUcam1.

7

LV-MaxSonar-EZ2

Boebot CMUcam

Behaviors

The tank initially starts out searching for the target. It moves forward while checking for the target for
a certain amount of time then rotates around while looking for the target until it either finds the target
or hits an obstacle. If the robot hits an obstacle, it backs up and turns then continues to search as
described above. If the robot finds the target, it rotates left or right slightly as necessary until the target
is centered with the gun. After the target is centered, the robot moves forward until the target is within
range. The robot then checks to make sure that the target is still centered. After it centers the target
again, it fires at the target and is finished. The status of the robot's behavior is displayed on the LCD
screen for visual and debugging purposes.

Experimental Layouts and Results

The placement of the bump sensors required some adjusting. I tried different angles from 0 to 90
degrees to the direction the robot faces to determine what angles worked best when the robot is moving
forward into something and when the robot is rotating into something. Originally I thought that I might
need 4 bump sensors to detect both kinds of collisions, but when the bump sensors are angled at about
45 degrees to the direction the robot is facing, they work for both.

Conclusion

Seek and Destroy accomplishes its goal which is to find a colored target and shoot it. However it does
not do it as well as I thought it would. This is mostly due to the CMUcam not performing as well as I
expected. Much of the camera's performance is based on the lighting of the room that the robot is in. It
does not always identify a target as I would expect it to and therefore can miss a target if the range of
colors is set too low in poor lighting or have false positives if the range of colors is too high in a well lit
area. Another problem that I had was with the delay between when the camera is polled for
information and when the robot is able to react to the camera's response. I expected the delay to be
shorter and in order to compensate, the speed of the robot had to be reduced.

If I were able to start this project over again, I would want to do it with a larger budget. I think that the
robot would be able to better identify and possibly track a moving object if it had a webcam that was
wirelessly interfaced to a laptop to offload the image processing. I think that this would allow a better
camera to be used with a higher resolution without slowing the robot down as much. Knowing what I
do now about motors I would have probably bought my own and designed my own robot chassis to
better accommodate the components that I put inside. It is difficult to determine how quickly the
motors will move the robot based on the power provided to them because of the weight of the robot and
the friction that the treads can have on different surfaces. For example, the robot is able to move
around on a carpet if more power is provided, but the same amount of power makes the robot move too
quickly on a tile floor.

A lot of the time I spent on this project was on interfacing the different pieces of hardware together so I
did not have as much time to work on the software. I had trouble making stable wire connections and
had a few pieces of hardware fail. Despite the problems that I encountered, the robot successfully
accomplishes its task.

8

Appendices

Wiring diagram:

9

Robot code written in C:

#include <avr/io.h>
#include "PVR.h"
#include "usart_driver.h"

//define port f as usart port
#define USART USARTF0

//motor directions
#define MOTOR_FOR (0b0101)
#define MOTOR_BACK (0b1010)
#define MOTOR_LEFT (0b0110)
#define MOTOR_RIGHT (0b1001)
#define MOTOR_STOP (0b1111)

//motor speeds
#define SPEED_FULL (10000)
#define SPEED_COARSE (5000)
#define SPEED_FINE (4500)

//color tracking packet
#define TC_PACK ("TC 120 255 0 40 0 40\r")

//color tracking information
int x1 = 0, x2 = 0, confidence = 0;

//send characters to the serial port
void sendChars(char *string)
{

while(*string) {
/* Send one char. */
do{
/* Wait until it is possible to put data into TX data register.
 * NOTE: If TXDataRegister never becomes empty this will be a DEADLOCK.

*/
}while(!USART_IsTXDataRegisterEmpty(&USART));

USART_PutChar(&USART, *string++);
}

}

//get characters from the serial port
void getChars(char *rec, int len, bool debug)
{

int i = 0;
while(i < len) {

uint16_t timeout = 65535;
do {

timeout--;
} while(!USART_IsRXComplete(&USART) && timeout != 0);

rec[i] = USART_GetChar(&USART);

i++;

10

}

if(debug) {
lcdGoto(1, 0);
for(int j = 0; j < 16; j++) {

lcdChar(rec[j]);
}

}
}

//initialize port f for TTL serial communications with the CMUcam
void serialInit(void)
{

/* This PORT setting is only valid to USARTC0 if other USARTs is used a
 * different PORT and/or pins is used. */
/* PIN3 (TXD0) as output. */
PORTF.DIRSET = PIN3_bm;

/* PC2 (RXD0) as input. */
PORTF.DIRCLR = PIN2_bm;

/* USARTC0, 8 Data bits, No Parity, 1 Stop bit. */
USART_Format_Set(&USART, USART_CHSIZE_8BIT_gc, USART_PMODE_DISABLED_gc,

false);

/* Set Baudrate to 9600 bps:
 * Use the default I/O clock fequency that is 32 MHz.
 * Do not use the baudrate scale factor
 *
 * Baudrate select = ((I/O clock frequency)/(baudrate * 16)) - 1
 */
USART_Baudrate_Set(&USART, 207, 0);

/* Enable both RX and TX. */
USART_Rx_Enable(&USART);
USART_Tx_Enable(&USART);

}

void cameraInit(void)
{

sendChars("L1 2\r"); //turn on tracking light
sendChars("PM 1\r"); //turn on poll mode
sendChars("MM 1\r"); //turn on middle mass

}

void motorInit(void)
{

PORTH_DIR = 0b00000011; //set on/off port direction
PORTH_OUT = 0b00000011;

}

//initialize I/O pins for the gun
void gunInit()
{

PORTQ_DIR = 0b0001;
}

11

//initialize I/O pins for bump sensors
void bumpInit()
{

PORTB_PIN0CTRL = 0b10011000;
PORTB_DIR = 0;
PORTJ_PIN7CTRL = 0b10011000;
PORTJ_DIR = 0;

}

//read the left bump sensor
bool readLeft() {

return !(PORTB_IN & 0b00000001);
}

//read the right bump sensor
bool readRight() {

return !(PORTJ_IN & 0b10000000);
}

//read the sonar sensor
int readSonar() {

return ADCA7() / 52; //sonar distance in inches
}

void setMotor(int dir, long speed)
{

TCD0_CCA = (dir & 0b000001) ? speed : 0;
TCD0_CCB = (dir & 0b000010) ? speed : 0;
TCD0_CCC = (dir & 0b000100) ? speed : 0;
TCD0_CCD = (dir & 0b001000) ? speed : 0;

}

//return an integer from a string starting at the index specified by 'start'
int getInt(char *string, int start, int *end) {

int retVal = 0;
while(true) {

if(48 <= string[start] && string[start] <= 57) {
retVal = retVal * 10 + string[start] - 48;

}
else {

break;
}

start++;
}

*end = start;

return retVal;
}

//parse the response from the GM command
void parseGM(char *rec, int len, int *r, int *g, int *b)
{

for(int i = 0; i < len; i++) {
if(rec[i] == 'S') {

12

int end;
*r = getInt(rec, i + 2, &end);
end++;
*g = getInt(rec, end, &end);
end++;
*b = getInt(rec, end, &end);
break;

}
}

}

//parse the response from the TC command
void parseTC(char *rec, int len, int *mx, int *my, int *x1, int *y1, int *x2, int
*y2, int *pixels, int *confidence)
{

for(int i = 0; i < len; i++) {
if(rec[i] == 'M') {

int end;
*mx = getInt(rec, i + 2, &end);
end++;
*my = getInt(rec, end, &end);
end++;

*x1 = getInt(rec, end, &end);
end++;
*y1 = getInt(rec, end, &end);
end++;
*x2 = getInt(rec, end, &end);
end++;
*y2 = getInt(rec, end, &end);
end++;

*pixels = getInt(rec, end, &end);
end++;
*confidence = getInt(rec, end, &end);
break;

}
}

}

//check the camera for coordinates of target
void checkCamera()
{

int len = 80;
char rec[len];
x1 = 0;
x2 = 0;
confidence = 0;
int mx = 0, my = 0, y1 = 0, y2 = 0, pixels = 0;
sendChars(TC_PACK);
getChars(rec, len, false);
parseTC(rec, len, &mx, &my, &x1, &y1, &x2, &y2, &pixels, &confidence);

if(x1 == 0 && x2 == 0) {
sendChars(TC_PACK);
getChars(rec, len, false);
parseTC(rec, len, &mx, &my, &x1, &y1, &x2, &y2, &pixels, &confidence);

13

}

/*lcdGoto(0, 0);
lcdString("x1: ");
lcdInt(x1);
lcdString(" x2: ");
lcdInt(x2);
lcdGoto(1, 0);
lcdString("px: ");
lcdInt(pixels);
lcdString(" cf: ");
lcdInt(confidence);*/

}

//display output from TC command
void testTC()
{

//while(true) {
int len = 50;
char rec[len];
sendChars(TC_PACK);
getChars(rec, len, false);

int mx = 0, my = 0, x1, y1, x2, y2, pixels, confidence;
parseTC(rec, len, &mx, &my, &x1, &y1, &x2, &y2, &pixels, &confidence);
lcdGoto(1, 0);
lcdString(" ");
lcdGoto(1, 0);
lcdInt(mx);
lcdChar(' ');
lcdInt(my);
delay_ms(500);

//}
}

//display output from GM command
void testGM()
{

int len = 50;
char rec[len];
sendChars("GM\r");
getChars(rec, len, false);
int r = -1, g = -1, b = -1;
parseGM(rec, len, &r, &g, &b);
lcdGoto(1, 0);
lcdString(" ");
lcdGoto(1, 0);
lcdInt(r);
lcdChar(' ');
lcdInt(g);
lcdChar(' ');
lcdInt(b);
delay_ms(500);

}

//turn on motor to fire gun then wait until it fires then turn it off
void fire()

14

{
PORTQ_OUT = 0b0001;
delay_ms(2400);
PORTQ_OUT = 0b0000;

}

//center robot on target
void center() {

lcdInit();
lcdString("Centering");
while(true) {

setMotor(MOTOR_STOP, 0);
checkCamera();
if(x2 <= 40) {

lcdGoto(1, 0);
lcdString("Target to right");
setMotor(MOTOR_RIGHT, SPEED_FINE);
delay_ms(100);

}
else if(x1 > 40) {

lcdGoto(1, 0);
lcdString("Target to left");
setMotor(MOTOR_LEFT, SPEED_FINE);
delay_ms(100);

}
else {

setMotor(MOTOR_STOP, 0);
break;

}
}

}

int main(void)
{

xmegaInit(); //setup XMega
delayInit(); //setup delay functions
ServoCInit(); //setup PORTC Servos
ServoDInit(); //setup PORTD Servos
ADCAInit(); //setup PORTA analong

readings
lcdInit(); //setup LCD on PORTK
serialInit(); //setup serial

connection with cmucam
cameraInit(); //setup camera as polled
motorInit(); //setup motor driver I/O

pins
gunInit(); //setup gun I/O pin
bumpInit(); //setup bump sensor I/O

pins

//touch right bump sensor
lcdInit();
lcdString("touch right");
while(!readRight()) {

testGM();
}

15

//touch left bump sensor
lcdInit();
lcdString("touch left ");
while(!readLeft()) {

testTC();
}

//locate target
lcdInit();
lcdString("Seeking");
bool found = false;
while(!found) {

//rotate
for(int i = 0; i < 4; i++) {

setMotor(MOTOR_STOP, 0);
checkCamera();
if(x1 == 0 && x2 == 0) {

setMotor(MOTOR_RIGHT, SPEED_COARSE);
for(int j = 0; j < 5; j++) {

if(readRight()) {
setMotor(MOTOR_LEFT, SPEED_COARSE);
delay_ms(100);
setMotor(MOTOR_BACK, SPEED_COARSE);
delay_ms(500);

}
delay_ms(100);

}
}
else if(confidence > 40) {

found = true;
break;

}
}

//move forward
for(int i = 0; i < 3 && !found; i++) {

for(int j = 0; j < 20; j++) {
if(readLeft()) {

setMotor(MOTOR_BACK, SPEED_COARSE);
delay_ms(500);
setMotor(MOTOR_RIGHT, SPEED_COARSE);
delay_ms(750);
setMotor(MOTOR_STOP, 0);

}
else if(readRight()) {

setMotor(MOTOR_BACK, SPEED_COARSE);
delay_ms(500);
setMotor(MOTOR_LEFT, SPEED_COARSE);
delay_ms(750);
setMotor(MOTOR_STOP, 0);

}

setMotor(MOTOR_FOR, SPEED_COARSE);
delay_ms(100);

}
setMotor(MOTOR_STOP, 0);
checkCamera();

16

if(confidence > 40) {
found = true;
break;

}
}

}

//center robot
center();

//move in range
lcdInit();
lcdString("Out of range");
int limit = 30;
int sonar = limit + 1;
while((sonar = readSonar()) > limit) {

setMotor(MOTOR_FOR, SPEED_COARSE);
lcdGoto(1, 0);
lcdString(" ");
lcdGoto(1, 0);
lcdString("Sonar: [");
lcdInt(sonar);
lcdChar('/');
lcdInt(limit);
lcdChar(']');

}

//center again
center();

//fire
setMotor(MOTOR_STOP, 0);
lcdInit();
lcdString("Firing Once");
fire();
lcdInit();
lcdString("Firing Twice");
fire();
lcdInit();
lcdString("Finished");

}

17

