
 1

Balloon Buster

Justin Lu

EEL 4665C Fall 2010

Instructors: Dr. Antonio Arroyo & Dr. Eric Schwartz

TAs

Thomas Vermeer

Mike Pridgen

Tim Martin

Ryan Stevens

Devin Hughes

 2

2. Table of Contents
• Abstract……………………………………………..3
• Executive Summary………………………………...4
• Introduction…………………………………………5
• Integrated System…………………………………...6
• Mobile Platform…………………………………….7
• Actuation…………………………………………….8
• Sensors………………………………………………9
• Behaviors…………………………………………….12
• Experimental Layout and Results……………………12
• Conclusion……………………………………………13
• Documentation……………………………………….15
• Appendices…………………………………………..15

 3

3. Abstract
The Balloon Buster is an autonomous robot that looks for balloons and pops them.

Pins are attached to the front of the robot so all it has to do is run into them to pop them.
It is composed of two wooden circular layers and moves through two DC motors. IR
sensors are used to avoid obstacles and a CMUCam1 is used to track colored objects. The
entire system is controlled by an Atmel XMega 128 board. 8 NiMH batteries provide
power for the entire system.

 4

4. Executive Summary
The Balloon Buster’s goal, as its name implies, is to locate balloons and pop

them. It will avoid some balloons depending on the user. Which balloons it primarily
targets are red balloons and balloons that have a red “target light” on them. Upon seeing a
balloon it wants to pop, the Balloon Buster will move towards the balloon while
attempting to center itself, then it pops the balloon through several pins located in front of
the robot.

When it doesn’t find a balloon worthy of popping, the Balloon Buster is in
obstacle avoidance mode, where it moves forward it until finds an obstacle, whereupon it
turns left or right, depending on which side of the robot the obstacle is closer.

The Balloon Buster consists of two circular pieces of wood that hold all
functional hardware, which consists of a motor controller, two IR sensors, an LCD for
debugging, a CMUCam for color tracking, and an XMega128 board. It moves through
two DC gearhead motors, which is controlled through PWM signals sent to the motor
controller.

The Balloon Buster uses two IR sensors for obstacle avoidance, and a CMUCam1
that allows for tracking colored blobs.

 5

5. Introduction
Robots have always been an interesting subject for me, but I had no idea how to

get started. Because this is my first foray into the realm of robotics, I decided to go with a
project that didn’t involve a lot of mechanical design, yet was complex enough to suit the
needs of the IMDL class. It also needed to be fairly cheap as there are I have other classes
in the future where I will have to worry about expenditures. After much contemplation, I
decided to go with a search and destroy robot.

The robot would have to be entertaining since I would need to show it to others in
the future. I eventually came up with the idea of popping balloons since everybody likes
balloons and they’re meant to be destroyed, while not causing any harm or monetary
damages.

The fact that balloons come in varying colors presents some interesting
possibilities in terms of color tracking. The idea was to use a camera
for color tracking then proceed to pop the balloon once found. I had
some different ideas about how the robot would pop the balloons,
like using an arm to pick them up then another one to pop them with
a pin, mostly to add some complexity to the project, but in the end
simplicity won, and I ended up attaching several pins to the front of
the robot, which meant that to pop them, it would simply have to run
into them and they would be no more.

 6

6. Integrated System
At the brains of the operation is

the Pridgen-Vermeer Robotics (PVR)
XMega128 board. This board uses an
Atmel XMega 128 microprocessor and
was designed with robotics in mind. It
comes with ports that allow for pulse
width modulation, serial
communication using either TTL or
RS232, A to D conversion, and
interfacing of an LCD.

The IR sensors will be used for
obstacle avoidance and are connected to the ADC ports on the PVR board. They collect
data which is output to an LCD which the robot uses to make decisions.

The Boebot CMUCam1 is used to notify the robot if it sees a color within a range
specified by the user. It is connected to either port F for TTL, or port E for RS232. RS232
allows for the ability to connect to a computer to view the output from the camera to a
terminal or dump a frame to a computer. This data can also be output to an LCD for
viewing when the robot is running.

Finally, based on the input from the camera and IR sensors, the PVR board
outputs PWM signals that are sent to a motor controller, which uses them to control two
DC motors. These motors provide the necessary actuation to keep the robot moving.

 7

7. Mobile Platform
For simplicity’s sake, I chose to do a dual circular platform. Two layers were

chosen to make enough room for all the components. One layer is a 9 inch diameter circle
and the other is 7 inch diameter circle. Both are constructed from balsa wood. Several
holes were drilled into both platforms to allow wires to go through The two circular
components were connected using several standoffs and epoxied to prevent them from
separating. Finally, a rectangular 4 x 1.05 inch piece was used to mount two IR sensors,
and was attached to the front of the bottom layer. Pins will also be glued to the front of
the robot using epoxy.

The platform is spray painted orange and blue to show support for the university.
This was done very late in the semester, and I managed to get some paint onto the motor
controller in the process. Fortunately, it has not had any negative effects on the
performance of Balloon Buster.

 8

The final product

8. Actuation
The robot moves through two wheels each driven by a

DC gearhead motor. A motor controller is used to control both
motors through PWM. Two additional caster wheels were
added to support the robot since it had trouble maintaining
balance without them.

The motors have a 3.6 kg cm torque rating and 200rpm
and have a gear ratio of 30:1. They operate at a good range of
speeds which allows for some flexibility when deciding an
appropriate speed. They also run smoothly and do not produce
much noise when running.

The motor controller used is the Motor Mind C. It was
chosen because it was made by the same people whom I got the
wheel and motor set from, so I figured it would be the best
choice for controlling the motors. The Motor Mind C has 3
different modes of operation. R/C mode was chosen because it

 9

uses PWM to control the motors, which is easy to do.

Setup for R/C mode for motor controller and motors. Channel 1 and 2 correspond to the
PWM pins on the PVR board.

9. Sensors
• IR sensors

Two short range Sharp GP2Y0A21YK IR sensors are
used to detect obstacles in the robot’s path.

These sensors are rated for 5V so to get an accurate
reading Vcc must go to 5V (on the PWM part of the PVR board),
GND goes to GND, and Vo can go to any of the ADC ports. A
jumper wire connector will also need to be purchased in order to attach the sensor
to the PVR board. From testing two of them they appear to be able to detect
objects from up to 20 inches.

 10

• CMUCam 1

The CMUCam1 will be used to track a color. Due to the main source of
CMUcams discontinuing the product’s sale, I resorted to ordering a Boebot
CMUCam from parallax.com, which had a setup made specifically to tailor to one
of their products. In order to make it usable, some other parts had to be ordered to
match the diagram below, the main part being the MAX232 chip that allows the
camera to communicate with the processor through RS-232. Getting a MAX232
chip is not necessary to get the camera working, since the TTL configuration for
the camera works fine on the PVR board, but if you wish to dump frames to a
computer to see what the camera sees, then a MAX232
chip is needed.

The TTL configuration just needs the SX-Key
Port (for power) and the TTL Serial port (port F) on
the PVR board. This is recommended if one does not
wish to do any extra soldering or setup to connect to a
computer.

In order to get the camera working through RS-
232, a few parts need to be added. Several capacitors
will need to be soldered on the camera board (See
below figure, some parts may already be on there).
Secondly, a connection will need to be made between
some pins in the power switch and voltage regulator ports. For the power switch a
jumper will work, while for the regulator soldering a jumper wire will do. Finally,
the DIP switch on the PVR board will need to be turned on, depending on which
RX/TX connection is used on Port E, that corresponding switch will need to be
turned on, as well as the OE and /SHDN switches on the PVR board. Once all that
is done, the hardware configuration portion of the camera is complete.

Connections for power switch and regulator port that need to be made (required
pins to be connected in light blue)

 11

Setup for CMUCam1. This figure shows the capacitor values necessary for RS232

 12

For the software portion, I looked at previous semesters of people who used a
CMUCam and found that most people had similar, if not the same code for initializing
the camera and the USART, so I used that code and it worked for an RS232 connection.
The same code works for TTL but any references to port E will need to be changed to
port F. (i.e. PORTE.DIRSET becomes PORTF.DIRSET, USARTE0_STATUS becomes
USARTF0_STATUS, etc)

The main command used for the camera is the TC (Trackcolor) command. By
specifying a range of colors in RGB 24 bit format, the camera will track a color in that
range. Once it detects such a color, the green tracking LED will light up as a notification.
A packet of data will also be outputted, and can be written to an LCD to view. From this
packet, the number of interest is MX, which outputs an integer between 1 and 80. If MX
is around 80, then the color is to the left, otherwise it is to the right. This is useful because
it tells the robot where the color is in relation to the camera, and so necessary adjustments
can be made.

10. Behaviors
Using sewing needles attached to the front, the robot will pop balloons by running

into them. There are at least two pins on 3 different heights, so popping a balloon should
not be an issue.

A red light will be shone onto a balloon, as it is one of the easier colors for the
camera to pick up. Depending on the lighting conditions, the camera can pick up a red
balloon without any extra help.

The robot will move forward until it either sees red, or it runs into an obstacle. If
it sees red, it will attempt to center onto it (using the MX data to calibrate itself) then
move forward until the red disappears (meaning the balloon has popped). If it runs into an
obstacle, the robot will turn left or right until the object is out of sight. Whether it turns
left or right depends on the proximity of the object, and is determined by comparing the
two IR sensors and seeing which one holds a bigger value.

11. Experimental Layout and Results
When testing the IR sensors, I had to determine what readings were appropriate

for the robot to start turning and obstacle avoiding. The values varied depending on what
speed the robot was running at. In the end after running the robot and looking at the IR
readings I decided that with the speed I was using, an average reading of 2000 on both
sensors, which is about 7 inches away from the sensor, would suffice for seeing an
obstacle.

The first thing to do with the CMUCam before using it is focus it. I managed to
do this through the help of a fellow classmate who was able to dump frames to their
computer. I later ended up readjusting the camera to see of I could get better readings.

 13

Since I didn’t have the cable needed to dump frames to a computer, I used the TC
command to send output to an LCD while having a colored object in front of the camera
and adjusted it based on the readings on the LCD.

The CMUCam’s performance relies heavily on the
surrounding lighting conditions. At first I wanted the camera to
find balloons without any help. I tested it with the primary
colors in the lab room during the day, where white light is
everywhere, and found the camera responded best to red. At
nighttime the camera could not track colors at all unless they
were really bright like LEDs, so I went to Walmart and bought
a Coleman Multi-color LED headlamp to use for testing during the night. This device
shines white light of varying intensities, and can also emit red and blue light. The camera
responded well when white light was shone on a red balloon, and the same can be said for
other colors. Since most of the demos were during the day I decided to test the headlamp
during the day. Shining red light onto a non-red balloon caused the camera to pick it up,
depending on the proximity of the lamp, which is about 4-5 inches away from a balloon.
This allows the robot to pop balloons that are not red provided a red light is shone on
them at an appropriate distance and angle.

12. Conclusion
By media day, I was able to get the robot to dodge obstacles without injuring

anybody and have it popping balloons that I specified without me touching the robot
except to turn it on and off. I had different colored balloons each representing a different
college and was able to get the robot to pop all of them save for the one representing UF.
Overall, I felt this project was a success.

The robot still needs some assistance in order to pop colors that are not in a
specific color range, which limits its effectiveness. Getting the robot to rotate in place
also proved troublesome since one of the motors would move at full speed when the other
one was moving slowly, even though the PWM arguments did not indicate the motor
would move as such, which meant I had to improvise the behaviors to get it to do
acceptable obstacle avoidance.

If I were to start over, I would have planned for several weeks before buying all
the parts I needed. Several times during the semester I realized I needed to get part x or
part y too many times which cost me too many trips to Radioshack, Walmart or Lowes
than was necessary. I must have done this about 15 times for just this semester alone,
which could easily have been reduced to 2 or 3 with careful planning. Switching to
hacked servos would be a cheaper alternative because while the DC motors have their
advantages, the job could be done just as well as if I had used hacked servos. Some
possible enhancements could include adding a nerf gun on the robot and be able to
control it, and having it target other things besides balloons. Maybe a better sensor with a
better detection range than the CMUCam could be used to find objects. Finally, making
more use of Solidworks’ extra functions could have saved me some trouble in figuring

 14

out what kind of caster wheels I needed or even how the wheels could be positioned so
that I wouldn’t need caster wheels at all.

Overall, this was a satisfying experience. I would definitely recommend this class
to people who aren’t fond of sitting in a classroom and listening to professors lecture, and
are looking for an interesting engineering endeavor. It provides first hand experience and
insight into starting a real engineering project, and shows how important planning in
advance really is and the time it can save you.

Finally, some advice to future students

- Plan ahead. Figure out what your robot will do as early as possible, look at past
semester projects to determine what you’ll need to order, be it sensors, motors, servos, or
other circuits, and order them as soon as possible. You will want to order extra
components in case something fails, which saves you from having to order another set of
parts and getting delayed another week, not to mention those shipping costs can add up
quickly!

-Familiarize yourself with the tools commonly used. You may want to buy these and
work on your robot at home instead of working only in lab. Some useful tools/things to
buy include a crimper, wire stripper, screwdriver, soldering iron, rechargeable batteries, a
battery charger, epoxy/tape/other adhesives, nuts and bolts, and an extra battery pack.
You may not use them all, but you may in the future, and it never hurts to have them in
advance.

-Everyone else is going to tell you this, but don’t procrastinate. Get the basis of your
robot done weeks ahead of time, so you can spend the days before demo day just
polishing things up. The end of the semester gets really stressful especially for engineers,
when every other class is giving projects that are due the last few weeks of the semester.

-If you choose to cut parts out through T-tech, make sure you know the dimensions of the
wood that you are allotted, or you will have to redo your design. The biggest wood piece
was around 10 by 14 inches. It may change in the future, so check to make sure your
designs are within the dimensions of the biggest piece of wood allotted.

-When handling epoxy or other adhesives, use gloves. It takes a while to get rid of that
epoxy smell if you get it on you.

-Talking to people helps. Chances are they are having similar problems as you, and
putting together more heads can help overcome it.

-If your program does not run after programming your board, sometimes resetting the
robot will fix it.

-Try to have all your connections have a common ground. Some components may not
work otherwise.

 15

-Sometimes, the simplest solution is the best.

13. Documentation
http://www.sparkfun.com/ - IR sensors and LCD

http://www.solutions-cubed.com/Solutions%20Cubed/index.htm - Motors and
motor controller

http://sites.google.com/site/projectcrawlbot/design - source for USART code
(usart.c, global.c, global.h, and usart.h)

http://www.digikey.com/?curr=USD – MAX232 chip

http://www.parallax.com/StoreSearchResults/tabid/768/txtSearch/cmucam/List/0/So
rtField/4/ProductID/29/Default.aspx - Boebot CMUCam

14. Appendices

Code
#include <avr/io.h>
#include "PVR.h"
#include "usart.h"
void main(void)
{
 xmegaInit(); //setup XMega
 delayInit(); //setup delay
functions
 ServoCInit(); //setup PORTC
Servos
 ServoDInit(); //setup PORTD
Servos
 ADCAInit(); //setup
PORTA analong readings

 lcdInit(); //setup LCD
on PORTK
 lcdString("Balloon Demo"); //display "Board Demo" on
second line
 delay_ms(5000);
 int sensorsum, avg, count;
 count=0;
 sensorsum=0;
 avg=0;

 16

 int time=0;
 USARTInit();
 while(1)
 {
 //ADC0 is left IR sensor, ADC2 is right
 /*//IR sensor test
 while(1)
 {
 lcdInit();
 lcdInt(ADCA2());
 lcdString(" ");
 lcdInt(ADCA0());
 }
 */
 /*//Timer test code, used to determine values of loop in relation to real
time
 while(1)
 {
 lcdInit();
 time=time+1;
 lcdInt(time);
 }
 */

 /*/Wheel/Motor test code, check direction wheels turn and at what speed
 while(1)
 {
 for(int d=700; d<800; d++)
 {
 lcdInit();
 lcdInt(d);
 ServoC0(-15);//Left wheel
 ServoD0(d);//Right wheel
 delay_ms(400);
 }
 }
 */

 //debugging code, test all useful functions
 /*
 while(1)
 {
 RotateLeft();
 delay_ms(200);//about 180 degrees
 stop();

 17

 delay_ms(5000);
 TurnRight();
 delay_ms(1000);
 TurnLeft();
 delay_ms(1000);
 Movebackward();
 delay_ms(2000);
 Moveforward();
 delay_ms(1000);
 stop();
 delay_ms(2000);
 }
 */
 //end debugging code

 Colortrack();

 //find color
 while(buffer[2]>=1 && buffer[2]<80)
 {

 Colortrack();
 delay_ms(100);
 if(buffer[2]>=36&&buffer[2]<=46)
 {Moveforward();
 delay_ms(800);}
 else if(buffer[2]>=1&&buffer[2]<36)
 {TurnRightS();
 delay_ms(100);}
 else if(buffer[2]>46&&buffer[2]<80)
 {TurnLeftS();
 delay_ms(100);}

 }
 //Obstacle avoidance
 while(buffer[2]<1) //don't see target color
 {
 int r=random();
 Colortrack();
 Moveforward();
 lcdString(" ");
 lcdInt(r);

 18

 while(ADCA2()+ADCA0()>4000) //obstacle found
 {
 delay_ms(100);
 if(ADCA2()<ADCA0())//object is closer to the left
 {TurnRightS();
 delay_ms(2000);
 }
 else //on the left
 {TurnLeft();
 delay_ms(2000);
 }
 time=0;
 }

 sensorsum=0;

 }

 }
}

void Moveforward()
{
 ServoD0(700);
 ServoC0(-20);
}

void Movebackward()
{
 ServoD0(850);
 ServoC0(40);

}

void RotateLeft()
{

 ServoD0(1000);
 delay_ms(100);
 ServoC0(90);
 delay_ms(100);

 19

}

void RotateRight()
{

 ServoD0(400);
 delay_ms(100);
 ServoC0(-100);
 delay_ms(100);

}
void Slowrotate()
{

 ServoD0(0);
 ServoC0(15);

}
void TurnRight()
{ServoC0(-20);
ServoD0(0);
}
void TurnLeft()
{

 ServoD0(700);
 ServoC0(0);
 ;
}
void TurnRightS()
{ServoC0(-15);
ServoD0(0);
}
void TurnLeftS()
{

 ServoD0(715);
 ServoC0(0);

}
void stop()
{
ServoD0(0);
delay_ms(100);

 20

 ServoC0(0);
 delay_ms(100);
}

void Colortrack()
{
 lcdInit();
 TrackColor("TC 100 255 0 31 0 31\r"); //track red
 //TrackColor("TC 0 31 80 255 200 255\r"); //track green
 //TrackColor("TC 0 31 130 255 130 255\r"); //track yellow
 lcdInt(buffer[2]);
 lcdString(" ");
 lcdInt(ADCA2());
 lcdString(" ");
 lcdInt(ADCA0());
 lcdString(" ");
 int g=ADCA2()+ADCA0();
 lcdGoto(1,0);
 lcdInt(buffer[6]);
 lcdString(" ");
 lcdInt(buffer[7]);
 lcdString(" ");
 lcdInt(buffer[8]);
 lcdString(" ");
 lcdInt(buffer[9]);
 lcdString(" ");
}

//PVR.c, PVR.h, global.h, global.c, usart.c, and usart.h will be left out as they are other people’s
//code and can be found in Seon Kim’s website linked in the documentation section. I did not
make any edits to these header files except change one function in PVR.c to

//void ServoD0(int value)
//{
// TCD0_CCA = (value); //Generate PWM.
//}

//This was to test one of the motors and I saw no need to change it back

