M. Shahalam

Sid the Spider

Final Report
December 7, 2010

EEL 4665 - Intelligence Machine Design Laboratory

TAs : Mike Pridgen
Ryan Stevens
Thomas Vermeer
Tim Martin
Devin Hughes

Instructors: Dr. A. Antonio Arroyo
Dr. Eric M. Schwartz

Table of Contents

Abstract

Executive Summary
Introduction
Integrated System
Mobile Platform
Actuation

Sensors

Behaviors
Experimental Layout and Results
Conclusion
Documentation
Appendices

0 0 OO 00 00 OO0 W A~ WWW

Abstract

The purpose of this project was to create an autonomous six-legged hexapod robot that would
respond to voice commands. The robot was to be able to roam about avoiding obstacles and stop
when voice commands were recognized. Since voice recognition circuits or modules were
complicated, the voice recognition and analysis was done on a computer. The robot and
computer were able to communicate with each other using the Xbee modules, where one
received information (the robot received which commands to execute and proceeded to the
corresponding state) and the other sent information (the computer sent commands after analyzing
the microphone input from the microphone connected to it). Many problems were encountered
along the process of designing, making, and tweaking this robot. There were issues with the
design and some were compensated with more complex behaviors. For obstacle avoidance, the
robot used one sonar sensor. Bump switches were tried, but with the given design was not
practical. The sonar sensor was able to "spin" by the robot twisting, as it was not mounted on its
own dedicated servo.

The process of creating this robot started with the formulation of the idea, followed by designing
the model, creating the robot from the model, and fixing the actual robot to handle the problems
that arose (legs would fall apart, servos wouldn't work, etc). At the end of the project there were
many lessons learned on how to make a good (better) robot. Designing, programming,
debugging, and tweaking were the major tasks of this project.

Executive Summary

The robot has four parts: the processing boards for control, the servos for actuation, a sonar for
information from the outside world, and a Xbee module to communicate wirelessly with another
Xbee module (connected to a laptop).

The basic idea of the robot is to have a proximity sensor scanning ahead of the robot for
obstacles sending the information back to the microprocessor, which then determines if the robot
is able (and should) walk forward. Then the microprocessor tells a servo controller to which 18
servos are connected to execute a predetermined sequence of servo movements. The robot then
moves forward. Each of the legs had three servos, and thus three degrees of freedom. The gait
used for walking was the tripod sequence. Each alternate leg was part of the same tripod (three
legs per tripod). While one tripod lifted and moved forward, the other stayed on the ground and
rotated backward, moving the robot forward. A similar tripod-like sequence was used to turn the
robot left and right, in place. One tripod lifted and rotated while the other stayed on the ground
and rotated the other way.

The sonar sensor scanned ahead continuously and sent the data back to the microprocessor from
its analog pin. The microprocessor had a threshold for the sonar value, determined by trial and
error, that was ideal for determining if there was an obstacle ahead. Upon reaching the threshold,
if the robot was to keep moving forward into the obstacle, the microprocessor tells the robot to

stop, scan left, then scan right. The scanning is done by the robot twisting its body. Then, it
determines which direction has the most space (largest value from sonar sensor) and turns in that
direction and starts walking. If the values are the same, it turns in an arbitrary direction.

The robot has many states it can be in, for example a walking state, a standing still state, a
dancing state, a turning state, obstacle avoidance state, etc. Some states lead to other states while
information from the outside world can change the robot's state as well. The sonar sensor can
change the state as well as the Xbee module. When the computer sends certain bytes to the robot,
those bytes that correspond to a state will change the robot's state.

The computer determines if a voice command was spoken with a C# program written for this
project. The program uses the Microsoft Speech Recognition Framework to determine if the
input from the connected microphone is a command added to its dictionary. Then, it opens a
serial port of the Xbee module connected to the computer and sends the byte associated with the
robot state desired.

Introduction

I have always wanted to make a hexapod robot and IMDL was the perfect opportunity to make
one. The objective of this project is to build an autonomous hexapod robot that has 3 degrees of
freedom for each leg and responds to voice commands such as "dance", "roam", and "move
<direction>". I also want to try some kind of mapping with the robot, although I have been told it

might not be possible, so I will leave it for the end if I have time. This is my first robot.

Integrated System

The hexapod's microcontroller is an ATMEGA328 on an Arduino Duemilanove board. It was an
ATMEGA 644P on a Sanguino board with the Arduino bootloader taken off the chip but I
decided it would be simpler to use the Arduino interface and code in something very close to
C++. It is serially connected to the SSC-32 Servo Controller from Lynxmotion, which handles
the 18 servos for the 6 legs. It will also be connected to an XBee module to allow for
communication with a laptop. The laptop will send commands to the hexapod based on voice
commands received by a Bluetooth microphone on the robot, which will be processed on the
laptop using Windows Speech SDK. (See Figure 1.)

Sonar Sensor ‘

T
] Bump Sensors
| /

A 4

Microcontroller

i' Bluetooth microphone

Servo Controller

\
7 ‘ XBee I‘-.I

All servos ‘ ~ \

Figure 1: Flow control of the system. Arrows show direction of information flow. Dashed lines show
Bluetooth communication.

Mobile Platform

The platform and the legs of the hexapod will be made from the wood provided in class. I
designed the robot in SolidWorks and had the wood cut out on the T-Tech. Basically, it is an
octagon shaped platform with the legs attached on the sides and the microcontroller board, servo
controller, batteries, and XBee module at the center (See Figure 2). The legs will be 2 pieces of
wood connected to 3 servos. There will be bump switches on the front, back, and possibly
bottom of the robot. There is a sonar sensor in the center front. Each leg will have 1 servo
attached to the platform, with another servo on top of that, with the first wood part connected to
the 2nd servo. At the end of the wood, another servo would be attached to the wood, and will
also connect the 2nd piece of wood. (See Figure 3.)

Also below is a screenshot of a SolidWorks rendering of the robot (See Figure 4) and a picture
of the actual robot, as it is currently (See Figure 5).

Figure 2: Preliminary design of the octagon platform with legs attached (top view). The rectangular box
outlines where the boards will be, or they may go on the bottom of the platform.

Figure 3: Preliminary design of a hexapod leg (side view), consisting of 3 servos (dark grey) and 2 pieces
of wood (light grey).

Figure 4: SolidWorks rendering of the robot, before it was T-teched.

Figure 5: Actual robot.

Actuation

Actuation will be accomplished by lifting a leg, rotating it forward, and then rotating it back on
the ground. After the legs have each moved forward, the servos mounted directly on the main
platform will rotate, causing the robot to move forward. The legs might need some kind of
rubber or other high-friction material at the bottom, so they do not slip on the floor and not move
the robot.

Currently, the hexapod is using a tripod gait walking sequence to walk. It uses a similar gait to
turn in place. The servo controller has the sequences necessary, and some servos are controlled
individually by the microcontroller (for example, for the leg wave and twisting).

Sensors

A sonar sensor (MaxSonar-EZ2) is mounted near the center-front of the hexapod to allow the
robot to avoid obstacles. Bump sensors will be mounted on the front and back, and possibly
bottom as well for more input from the environment. A wireless Bluetooth microphone or
headset will be used to send sounds received to a laptop, where it will be determined if someone
spoke a command to the robot using the Microsoft Speech SDK, and the laptop will send via an
Xbee module connected by a USB dongle to the robot's Xbee, which will tell the microcontroller
what command to execute.

Behaviors

The hexapod roams around freely, avoiding obstacles, and responding to preprogrammed voice
commands. The robot will walk forward from its starting position, and upon finding an obstacle,
rotates in place to where there is the most space, and keep walking, repeating this algorithm. This
is done by twisting the body and comparing sensor readings. The robot will listen for voice
commands and upon detecting one, stop walking, and respond appropriately. Some commands

currently implemented are "dance", "roam", "spin", and "move <direction>", "stop", "leg wave",
and "twist".

Experimental Layout and Results

Conclusion

I have gotten the robot built working according to my own goals and specifications. It's not the
prettiest robot but it does what it was supposed to do. If I had to start over, I would design this
robot better, making it two-tiered and having everything done in SolidWorks in detail. I would
also like to have used a PCB to fit all the boards and sensor on. However, I am very pleased with
my robot and have learned much about the process of making and tweaking robots. I hope to
make other robots in the future now that I have my feet wet.

Documentation

Appendices
(code)

#define INIT_STATE
#define START_WALKING
#define KEEP_WALKING
#define TURN_RIGHT
#define TURN_LEFT
#define DO_NOTHING

g WP o

#define AVOID OBSTACLELl 6
#define AVOID OBSTACLE2 7
#define WALK_BACKWARD 8
#define TWIST 9
#define LEG_WAVE 0
#define DANCE 1

#include <LiquidCrystal.h>

// initialize the library with the numbers of the interface pins
LiquidCrystal lcd(2, 3, 4, 5, 6, 7);

int state;
//int state = DO _NOTHING;

int roam = 1; // roam means no computer control

int sonarSensorPowerPin = 12;
int sonarAnalogPin = AO;

int sonarValue = 100;
int SONAR THRESHOLD = 18;

int left = 0, mid = 0, right = 0;

void setup () {
Serial.begin(9600);

/*

for (int 1=0; i<1000; i++) {
startingPosition() ;

}

*/

// +5V power supply for sonar sensor
pinMode (sonarSensorPowerPin, OUTPUT);
digitalWrite (sonarSensorPowerPin, HIGH);

delay (1000) ;

lcd.begin(16,2);
//lcd.print ("hello, world!");

//startingPosition () ;
//delay(300);

//state = START WALKING;
//state = DO_NOTHING;
LILTLID7 777777 0070777777777
state = INIT STATE;
// state = TWIST;
//initWalking () ;

}

void initWalking () {
//Serial.println("LH2000 LM1500 LL1000 RH1000 RM1500 RL2000 VvS3000");
Serial.println("LH2000 LM1750 LL1500 RH1000 RM1250 RL1500 VvS3000");

//Serial.println("LF1700 LR1300 RF1300 RR1700 HT1500");
Serial.println("LF1600 LR1400 RF1400 RR1700 HT200"™); // vs = 750, ht = 750

Serial.println("XL100 XR100 XS100");
}
void loop () {

// get serial data from uP Rx

if (Serial.available() > 0) {
// read the incoming byte

char incomingByte = Serial.read();
roam = 0;
// echo

Serial.print(Received byte: ");
Serial.println(incomingByte);

"

switch (incomingByte) {
case 'a': // walk, walk forward
if (state != KEEP WALKING) {

state = START WALKING;

}
break;

case 'f': // stop, deactivate
state = DO_NOTHING;
Serial.println("XSTOP");
break;

case 'c': // turn left
state = TURN_LEFT;
break;

case 'd': // turn right

case 'e': // turn, spin, spin around
state = TURN_RIGHT;
break;

case 'g': // roam
if (state != KEEP WALKING) {

state = START WALKING;
}

roam = 1;
break;
case 'h': // initial position
state = INIT STATE;
break;

case 'b': // walk backward
state = WALK BACKWARD;

break;
case 'i': // twist
state = TWIST;
break;
case 'j': // dance
state = DANCE;
break;
case 'k': // leg wave
state = LEG_WAVE;
break;
default:
break;
}
}
//return;
keepLowerLegsStill () ;
sonarValue = analogRead(sonarAnalogPin
switch (state) {

case INIT STATE:

10

lcd.clear ()

lcd.print ("initial state");
startingPosition() ;
break;

case START_WALKING:
lcd.clear();
lcd.print ("starting to walk");

initWalking() ;
state = KEEP_WALKING;
break;

case KEEP WALKING:
lcd.clear();
lcd.print ("walking");
//lowerLegsStayStill () ;
break;

case TURN_RIGHT:
lcd.clear();
lcd.print ("turning right");
turnRight () ;
break;

case TURN_LEFT:
lcd.clear();
lcd.print ("turning left");
turnLeft () ;
break;

case DO_NOTHING:
lcd.clear();
lcd.print ("stopping");
state = INIT STATE;
break;

case AVOID OBSTACLEL:
lcd.clear();
lcd.print ("avoiding obstacle");
turnRight () ;
break;

case AVOID_OBSTACLEZ:
lcd.clear();
lcd.print ("avoiding obstacle");
turnLeft () ;
break;

case WALK BACKWARD:
lcd.clear();
lcd.print ("walking backwards");
walkBackward() ;
break;

case TWIST:
twist () ;
break;

case LEG_WAVE:
legWave () ;
break;

case DANCE:
dance () ;
break;

default:
state = START WALKING;

if (sonarValue <= SONAR THRESHOLD) {

if (state == START WALKING || state == KEEP _WALKING) {
/*1f (sonarValue % 5) {
state = AVOIDioBSTACLE2;
} else {
state = AVOID OBSTACLEL;
yx/

int dir = twistTest();
switch (dir) |
case 0: state = AVOID OBSTACLEZ2;
break;
case 1l: state = START_WALKING;
return;
break;
case 2: state = AVOID OBSTACLEL;
break;
default: break;

}
}
else {
if (state == AVOIDioBSTACLEl || state == AVOIDioBSTACLE2) |
// stop turning right, time to walk straight again
Serial.println ("XL100 XR100 XS100");
state = KEEP_WALKING;

}
//startingPosition () ;

//Serial.println (" SONAR VALUE: ");
//Serial.println(sonarValue);

}
void twist () |
startingPosition () ;

delay(100);

Serial.println("#1 P1600 #3 P1600 #5 P1600 #17 P1600 #19 P1600 #21 P1600"
delay(100);

Serial.println("#1 P1400 #3 P1400 #5 P1400 #17 P1400 #19 P1400 #21 P1400"
delay(100);

state = INIT STATE;
}
int twistTest () {
startingPosition();
delay(100);
lcd.clear();

mid = analogRead(sonarAnalogPin);
lcd.print (sonarValue);

Serial.println("#1 P1600 #3 P1600 #5 P1600 #17 P1600 #19 P1600 #21 P1600"
delay(100);

lcd.clear ()
left = analogRead(sonarAnalogPin);
lcd.print (sonarValue);

Serial.println("#1 P1400 #3 P1400 #5 P1400 #17 P1400 #19 P1400 #21 P1400"
delay(100);

)i

)

)

)

12

}

lcd.clear();
right = analogRead(sonarAnalogPin);
lcd.print (sonarValue);

if (mid >= left && mid >= right) return 1;
else if (left >= mid && left >= right) return 0;
else return 2;

void legWave () {

}

Serial.println(" XSTOP ");
startingPosition() ;
// raise each leg, lower each leg.

//Serial.println("#0 P1500 #2 P1500 #4 P1500 #16 P1500 #18 P1500 #20
Serial.println("#0 P1000");

delay(50);

Serial.println("#0 P1500");

Serial.println("#2 P1000");
delay(50);
Serial.println("#2 P1500");

Serial.println("#4 P1000");
delay(50);
Serial.println("#4 P1500");

Serial.println("#16 P2000");
delay(50);
Serial.println("#16 P1500");

Serial.println("#18 P2000");
delay(50);
Serial.println("#18 P1500");

Serial.println("#20 P2000");
delay(50);
Serial.println("#20 P1500");

state = INIT STATE;

void dance() {
twist () ;
twist () ;
legWave () ;
twist () ;
legWave () ;
twist () ;

}

state = INIT STATE;

void turnRight () {

}

initWalking() ;
Serial.println("XL-100 XR100 XS100"™);

void turnLeft () {

}

initWalking () ;
Serial.println("XL100 XR-100 XS100"™);

void walkBackward() {

initWalking () ;
Serial.println("XL-100 XR-100 XS100");

P1500"

)i

13

}

void startingPosition() {
Serial.println("XSTOP");

// horizontal legs all starting position
Serial.println("#1 P1500 #3 P1500 #5 P1500 #17 P1500 #19 P1500 #21 P1500");

// verticle legs all starting position
Serial.println("#0 P1500 #2 P1500 #4 P1500 #16 P1500 #18 P1500 #20 P1500");

// lower legs all starting position
Serial.println("#9 P1500 #10 P1500 #11 P1500 #25 P1500 #26 P1500 #27 P1500");

}

void keepLowerLegsStill () {
// lower legs all starting position
Serial.println("#9 P1500 #10 P1500 #11 P1500 #25 P1500 #26 P1500 #27 P1500");

}

using System;

using System.Collections.Generic;
using System.ComponentModel;
using System.Data;

using System.Drawing;

using System.Linq;

using System.Text;

using System.Windows.Forms;
using System.Speech.Recognition;
using System.Speech.Synthesis;
using System.IO.Ports;

namespace SpeechRecognition

{
public partial class Forml : Form
{
SpeechRecognizer rec = new SpeechRecognizer();
SpeechSynthesizer speak = new SpeechSynthesizer();

SerialPort serialPort; // = new SerialPort();

public Forml()

{

InitializeComponent();

rec.SpeechRecognized += rec_SpeechRecognized;

serialPort = new SerialPort("COM8", 9600);

serialPort.Open();

if (!serialPort.IsOpen) MessageBox.Show("Error: Serial Port was not opened");
}

void rec_SpeechRecognized(object sender, SpeechRecognizedEventArgs e)

//MessageBox.Show("Speech recognized! " + e.Result.Text);
lblLetter.Text = e.Result.Text;

executeCommand(e.Result.Text);

}

private void executeCommand(string command)

{

speak.Speak(command) ;

switch (command)

{

case "walk":

case "walk forward":
case "activate":
case "forward":
send('a');
break;
case "walk backward":
case "backward":

send('b");
break;
case "turn left":
case "left":
send('c');
break;

case "turn right":

case "right":
send('d");
break;

case "turn":

case "spin":

case "spin around":
send('e");
break;

case "stop":

case "deactivate":
send('f');
break;

case "roam":

case "roam free":
send('g");
break;

case "initial position":
send('h");
break;

case "twist":
send('i");
break;

case "dance":
send('j");
break;

case "leg wave":
send('k");
break;

default: // part of dictionary, but not implemented yet
send('x");
break;

private void send(char message)

{

}

if (serialPort.IsOpen)

{
¥

serialPort.Write(message.ToString());

void Forml_Load(object sender, EventArgs e)

{

var ¢ = new Choices();

N NN 0000 nn

.Add("spin");
.Add("walk");
.Add("walk forward");
.Add("walk backward");
.Add("turn around");
.Add("spin around");
.Add("turn");
.Add("turn left");

15

c.Add("turn right");
c.Add("stop");
//c.Add("start");
c.Add("activate");
.Add("deactivate");
.Add("help");
.Add("dance");
.Add("roam");

.Add("roam free");
.Add("initial position");

N N0 NN nn

LAdd("left");
.Add("right");
.Add("forward");
.Add("backward");

Nn N0 nn

c.Add("twist");
c.Add("dance");
c.Add("leg wave");

var gb = new GrammarBuilder(c);
var g = new Grammar(gb);
rec.LoadGrammar(g);

rec.Enabled = true;

}

private void 1lblLetter_Click(object sender, EventArgs e)

{
3

private void button6_Click(object sender,

{
3

executeCommand("initial position");

private void buttonl_Click(object sender,

{
3

executeCommand("walk forward");

private void button2_Click(object sender,

{
3

executeCommand("walk backward");

private void button5_Click(object sender,

{
3

executeCommand("stop");

private void button3_Click(object sender,

{
3

executeCommand("turn left");

private void button4_Click(object sender,

{
3

executeCommand("turn right");

private void button7_Click(object sender,

{
3

executeCommand("twist");

private void button8_Click(object sender,

{

executeCommand("dance");

EventArgs

EventArgs

EventArgs

EventArgs

EventArgs

EventArgs

EventArgs

EventArgs

e)

e)

e)

e)

16

}

private void button9_Click(object sender, EventArgs e)

{
3

executeCommand("leg wave");

17

