University of Florida

EEL 4665C Intelligent Machine Design Laboratory

Final Report

Autonomous Quadcopter Robot
Robot Name: Horus
Student Name: Miles Moody
Instructors: Dr. A. Antonio Arroyo and Dr. Eric Schwartz
TA’s: Mike Pridgen, Ryan Stevens, Tim Martin, Thomas Vermeer, Devin Hughes

Date: 12/7/10

Website: http://randomhacksofboredom.blogspot.com/p/quadcopter-robot-project.html

Table of Contents

Abstract 1
Introduction 1
Integrated System 1

Mobile Platform

Revision 1 2

Revision 2 4

Controller 6
Sensors 6
Behaviors 8
Conclusions and Future Plans 9
References 10
Code 10

Abstract

Horus is a quadcopter robot, meaning it flies in the air using the power of four motor/propeller
combinations. It is able to rotate itself in the three directions pitch, roll, and yaw by differential thrust of
opposing motors. It is also able to hover and translate itself in any direction. The robot is able to fly itself
fully autonomously, but a manual override of the robot is always possible for safety concerns. Horus
stabilizes itself by estimating its orientation using sensor data from its inertial measurement unit. The
robot is able to hold a specified altitude both close to the ground, using a downward facing sonar, and at
higher altitudes using a barometric pressure sensor. It can also navigate and perform patterned flights
through GPS waypoints.

Introduction

Unmanned aerial vehicles (UAVs) are increasingly becoming a substitute for manned aerial systems,
especially when it means keeping a pilot from dealing with overly dangerous or tedious situations.
However, many of today’s UAVs still require an operator at all times and for the most part are large,
fixed wing platforms. The need for small, hover capable aerial robots is becoming evident to perform
tasks their larger fixed wing counterparts are unsuited for. One such type of aerial platform that could
be suitable is the quadcopter. Able to achieve good stability performance with relatively low cost
controllers and sensors, the hovering quadcopter could become an excellent platform for navigation,
mapping, and remote sensing in smaller spaces and closer to the ground than fixed wing UAVs are able
to fly.

Integrated System

Horus was built to be very modular; all parts can be rapidly replaced or upgraded without disrupting
other parts. The robot can be divided into three main parts: the mobile platform, the sensors, and the
controller. A hardware flow diagram of how each part interconnects with one another is shown in figure
1 below.

Radio Radio receiver Motors

Transmitter : \
¥ T

Atmega | —— MUX |— ESCs

Sonar
\

Atmega
Pressure | _~7 1280 ™~ GPS
==t
Accelerometers Gyros Magnetometer

Figure 1 — Hardware Flow Diagram
Mobile Platform
1* revision

The quadcopter’s mobile platform was all hand built from scratch. A majority of components were
simply cut or shaped with nothing more than a drill, Dremel tool, and hacksaw. For this reason, precision
of the frame could have been better. However, the frame stood up to a not insignificant amount of
abuse and in addition to being very low cost, it also was able to be easily built and rebuilt without having
to wait for shipping of parts. Having said that, in the future | would choose to begin with an off-the-shelf

frame and then modify to my requirements.

The frame initially was built by cutting four arms of Home Depot “shower bar stock” to 11” and
sandwiching two 1/8”x5 %”x5 % “ wooden plates over the bars. The bars were then secured by machine
screws, washers, and locking nuts. Holes for motor mounts were drilled into the ends of the arms and

motors were mounted.

The motors chosen for the mobile platform were brushless outrunners made for remote control planes.
They were sized appropriately for the expected thrust needed with a generous factor of safety afforded.
Initially, three bladed 9050x3 propellers were bought because they were readily available, even knowing
that in general three bladed propellers are less efficient than two bladed ones. Propellers were difficult
to find for this project because the blades must be bought in both clockwise and counterclockwise
rotation configurations. Simply turning a propeller upside down does not work. Clockwise (also called
pusher or reverse) props are not made in very many sizes and are difficult to source. Both

counterclockwise and clockwise spinning props are necessary so that the platform can exhibit yaw
control.

Brushless electronic speed controllers were also purchased as standard RC parts and a large factor of

safety was also used to determine the max amperage of the speed controllers. Not only did this allow
for manufacturer inaccuracy in specs (as is common with cheaper manufacturers) but also allowed for
possible switching out of motors for larger ones down the road if deemed necessary.

Batteries were known to be a major source of weight in quadcopters. To save cost however, | reused a
11.1V 5000mah lithium polymer(Lipo) pack that | had several of from previous RC projects. After many
frustrating problems including a random motor stopping in mid flight, | found these batteries to either
be incorrectly spec’d or too old to supply the current required current. | replaced them with a new 11.1V
5400mah battery which could theoretically constantly produce 100 amps (my design never needed
more than 40 amps).

Lastly, landing gear was needed. Instead of making my own, | found it easier to adapt a set of skids made
for small RC helicopters to be used on my robot. This required drilling new holes in the landing gear and
adding spacers but resulted in a very firm product.

Additionally, a testing rig was constructed from PVC pipe and some frame extensions. This testing rig can
be seen in figure 2 below. This rig allowed me to tune the pitch and roll axes independently of each
other without having to worry about crashing the quadcopter.

Figure 2 — Pitch and Roll Testing Rig with Revision 1 platform

Revision 2

Later on in the project, when a large variety of props were able to be sourced, | performed some basic
prop thrust tests on five sets of propellers using a simple testing rig. The test rig consisted of a digital
kitchen scale, a Tupperware container filled with ~2lbs of weight, and a spare motor mount. The scale
was zeroed with the tupperware full and the motor and prop mounted. The motor was then turned on
so that it attempted to lift the tupperware container. The amount of static thrust could then be directly
measured from the scale. To measure the current being consumed by the motor during operation, a
“Watt-Meter” was used in between the speed controller and battery. The results of these tests are
shown below in figures 3 and 4. By analyzing this data, the most efficient props were determined to be
the 10x4.7 and 10x3.8 props.

600
—g 500 /
S 400 //‘
= / //K =4—9050*3
é 300) 4 ~_a ~—-8040*3
|—
g 200 1047
(1]
& 100 ——1038

0 T T T T T 1 838

0 0.2 0.4 0.6 0.8 1 1.2

Percent Throttle

Figure 3 — Thrust versus Throttle Position for Various Propeller Types

16

14
c 12
2 10 // ad —4—9050*3
[a]
é 2 V% ~#—8040*3

1047

< , '

’ —-1038

0 T T T T T ! =838

0 02 04 06 08 1 1.2
Percent Throttle

Figure 4 — Current Drawn versus Throttle Position for Various Propeller Types

A major revision was needed to be done on the frame once the number of sensors increased beyond the
space that was available on the first platform. To add more space, a second level was constructed from
thin wooden sheets and wooden dowel rods. In addition, as testing became more intense and more
autonomy was given to the robot, my concerns rose for the safety of the electronics housed on the
frame. To keep the electronics safe in the event of a crash upside down, a durable removable locking
tupperware container was added to the frame design. Holes were cut in the top of the container to
allow an unobstructed gps view of the sky, the side of the container to allow the Xbee radio antenna to
extend outside of the robot, and slots were cut to allow wires to go in and out. A hot knife greatly
facilitated this cutting. The current frame design can be seen below in fig 5.

Figure 5 — Revision 2 of Airframe

Controller

The controller chosen for this project is the Atmega1280 based Ardupilot Mega (APM) board. This
controller was chosen for several reasons. The first reason was due to my own experience dealing with
the arduino development environment, to which the APM is based around. In addition, the APM board
is specifically designed for autopilot functions, and was developed with the use of a mating inertial
measurement board in mind.

The board contains several pieces of hardware, the Atmega1280 which is the main processor. This is the
processor upon which all of my code was written and stored. In addition, there is an Atmega328
processor which serves as a slave whose function is to decode signals received from the radio receiver,
encode signals to pulse width modulation (PWM) values, and in fixed wing autopilots, provide failsafe
control. There also exists a multiplexer chip which also provides failsafe functions for fixed wing
autopilots allowing the user to manually override the autopilot in case of autopilot failure. These failsafe
functions were not used in this project because they do not apply to rotary aircrafts.

Sensors

The sensor suite for Horus is quite extensive. First and foremost is the Inertial Measurement Unit (IMU).
The IMU selected is the codenamed “Oilpan” made by DIYdrones.com. This IMU was made to fit
physically and electrically to the APM board. It contains the a 3 axis accelerometer (ADXL335), a 2 axis
gyro (IDG500), another single axis gyro (ISZ500),and a barometer (SCP-1000). In addition, the Qilpan
board contains an ftdi usb to serial chip, a 16Mb dataflash memory chip, a 12-bit ADC, a relay, and
several switches and LEDs. All of these parts are contained on one self contained board which snaps
directly over (or under) the APM board.

Figure 6 — APM board (Red) and Qilpan board (Blue)

6

In addition to the Qilpan board, several otehr sensors were used on the robot. A three axis
magnetometer (HMC5843) was added as a compass sensor of sorts. This gave the robot an absolute yaw
reference to compensate for the yaw gyro’s drift. A downward facing sonar (Maxbotix EZ-1) was
installed on the robot for altitude hold and an obstacle avoidance mechanism. The sonar sensor was
tested to determine experimentally a correlation between the analog value outputted and the actual
distance to a planar object (the ground). This was necessary because the documentation included was
meant for small, non planar objects, and its validity had been called into question by several colleagues.
The results for the testing can be seen below in figure 7. The data determined from the tests shows the
sensor to be very linear within the testing range, but the sensitivity taken from the linear fit did not
match the datasheet value. It is probably wise to determine a calibration value through experimental
methods rather than use the value in the datasheet.

160
y=1.8381x +6.1333 y=0.7237x + 6.1333

140
120

100

*
80 inches

B cm
60

— Linear(inches)
40

— Linear(cm)
20

ADC Value Reported (#/1024*5V)

0
0 50 100 150 200

Actual Distance to Floor

Figure 7 — Experimental Characterization of Sonar Sensor

A small GPS module(MT3329) was installed onto the robot to allow for absolute position determination
as long as an accurate GPS signal could be obtained. This model had no problems getting a 3D lock even
under clouds or partial tree cover (sometimes inside too) but when using either the included software or
the premade GPS parsing library, a constant GPS offset was seen when compared to latitude/longitude
taken from google maps.

Several other sensors were purchased but as of yet have not been installed. These include four more
sonar sensors meant to provide obstacle information for indoor flight and outdoor flight with
obstructions. Additionally, force sensing resistors were meant to be installed into the landing gear in
support of automatic takeoff. These are still ongoing goals.

Lastly, though not technically a sensor, Xbee modules provided a wireless communications link between
the robot and a computer. This was critical for debugging purposes.

Behaviors

Behaviors for the robot were slowly added in a sequential fashion. First, the robot needed to be able to
respond to inputs given from the remote control transmitter. Next, the robot needed to send the
correct signals to the speed controllers to tell the motors what velocity to spin at. To accomplish these
tasks, a supplied library made for the APM board was used. Because of the slave processor on the APM
board, very little computational overhead was used on the main processor. This behavior was fairly
trivial to implement.

Next, the robot needed to process the IMU data to obtain an idea of its current orientation in 3d space.
There are many ways this could have been done. One method commonly used is to employ a kalman
filter to fuse, interpret, and filter the accelerometer, gyro, and magnetometer data to obtain
orientation. This method is very resource intensive on an 8-bit 16mhz microcontroller so another
method was used. This method is called the Direction Cosine Matrix (DCM) algorithm, developed by
Robert Mahony specifically for use in small aerial vehicles. The DCM algorithm is much less
computationally intensive and relative to the kalman method, much easier to understand. Once an
estimate of orientation has been developed, the quadcopter can begin stabilization.

Stabilization is achieved simply enough through a set of independent proportional integral (PID)
controllers. Each axis is stabilized independently by a PID loop, each tuned to that specific axis. Due to
symmetry, the roll and pitch axes have (almost) identical PID constants. The yaw dynamics are very
different however. Motor calibration constants were also used to account for the slight but noticeable
differences in motor power at the same control signal. Stabilization was the most difficult behavior to
achieve; constant tuning and retuning was necessary. Every shift of weight or crash created need for
either retuning of the PID constants or of separate motor calibration constants.

After satisfactory stabilization had been established, the next step was altitude hold. In a way, altitude
hold was considered an obstacle avoidance behavior where the obstacle is simply the ground. In
practice it worked very similar to a wall following routine flipped on its side. At first, only a barometer
was used to calculate differences in absolute pressure and from that, altitude. This worked to some
degree but was not an ideal solution. Using the downward facing sonar, a more accurate measurement
of distance from the ground was received as long as the robot was within about 8 feet of the ground. To
actually control the altitude, another independent PID loop was created and tuned. This loop was found
to be particularly sensitive to integral gain, so after the loop was tuned it is very close to a PD controller
instead. To account for using two different sensors for altitude measurement, the sonar is used if the
altitude is less than 90% of its max range and beyond that, the barometer is used until the robot is
brought lower.

The last behavior added up to this point is waypoint pattern flight. Using a copy of the fixed wing
navigation software, which is what the APM was initially built for, it was fairly easy to develop a scheme
to navigate from one waypoint to another. The challenge was that because the GPS module had an
offset, and the fact that | would be demoing the robot in multiple unknown locations, it would be

difficult to preload in absolute waypoints. To get around both of these problems, | decided to make the
preprogrammed waypoints relative to the starting position of the robot. This allowed me to program in
more of a “pattern” than a set list of waypoints.

= |

Tracks:
-GPS data >

. . b:
! ’)

Figure 8 - GPS Path Followed During Initial Testing of Waypoint Navigation — Square Pattern
Conclusions and Future Plans

| am very happy with the way this robot turned out. It has accomplished my main goals and some of my
“reach” goals. In the future, | would like to continue to develop this platform as well as apply the
knowledge and experience gained to other platforms. | feel a small lightweight quadcopter suitable for
indoor flight would be a good followup to this project. Additionally, | would like to modify the current
software for use in small model helicopters. The standard helicopter would be able to achieve much
better runtime and efficiency but admittedly would be harder to control.

Some improvements for the current project include the following of a land based object. This would be
accomplished by having a beacon consisting of another GPS module attached to an Xbee, which
transmits the beacon’s location to the robot. The robot can then follow the object carrying the beacon
from overhead by using the beacon’s location as a sort of moving waypoint. Additionally, | would like to
increase the autonomity of the robot by allowing it to perform automatic takeoff and landing.

References

APM board http://www.sparkfun.com/products/9710

Oilpan Sensor Board http://store.diydrones.com/product p/br-0013-01.htm

Sonar information http://www.maxbotix.com/MB1010 LV-MaxSonar-EZ1.html

GPS Module http://store.diydrones.com/MediaTek MT3329 GPS 10Hz Adapter Basic p/mt3329-
02.htm

DCM algorithm http://diydrones.com/profiles/blogs/dcm-imu-theory-first-draft?xg source=activity

Code

The final code, including libraries, used at the end of this class can be downloaded in zip format from my

website.

Additionally, my ongoing development code can found in my branch of the subversion repository for the
Ardupirates project here: http://code.google.com/p/ardupirates/

10

