
Wakeup Insurance
EEL4665C

Chris Dobson

Instructors:

A. Antonio Arroyo

Eric M. Schwartz

Teaching Assistants:

Tim Martin

Ryan Stevens

Page 2

Table of Contents
Abstract 3

Executive Summary 3

Introduction 3

Integrated System 4

Mobile Platform 4

Actuation 5

Sensors 5

Behaviors 7

Experimental Layout and Results 7

Conclusion 7

Documentation 8

Appendices 8

Page 3

Abstract

The purpose of Wakeup Insurance is to ensure that its owner wakes up on time. Wakeup

Insurance will perform a variety of actions to wake up its owner, and then return to sleep mode

and charge its battery.

Executive Summary

This project is designed to ensure that the robot's owner wakes up on time. This is done

by waking up its owner with a buzzer and bright LEDS, then forcing them to chase after the

robot. After the owner wakes up and disables the robot, the robot will then return to its base

station to charge for the next day.

The main platform consists of two levels. The bottom level is larger and circular, to

prevent getting caught on unseen obstacles and enable rotating in place. The platform was first

designed in solid works and then cut out by hand. It is made out of .5 in plywood for high

structural integrity. The top level is six inches above the bottom and square to make it easy to

cut. Four threaded steel rods are used to hold the second level up.

Obstacle avoidance uses three different sensors. A single sonar sensor is mounted on the

front of the robot to detect anything in its path. Its wide detection range makes it ideal for this

task. An IR range finder is used on either side of the robot to detect obstacles approaching from

the sides. Finally, bump sensors are used as a last resort in the case of an unseen obstacle.

Bump sensors are mounted on the front, back, right, and left of the robot.

The Special Sensor is a Wii remote, which is used to track the charging station. The Wii

remote can detect an IR LED on the top of the charging station. It then communicates wirelessly

to a laptop using Bluetooth. The laptop then interpreters this data and sends the results to the

robot over XBEE. Using an IR to mark the charging station works well because of the lack of

bright IR light sources in the robots operating range. This provides more reliable results than

other methods such as color tracking which have many false positives in real world scenarios.

Introduction

This projects main goal is to solve the perpetual problem of waking up on time. A simple

alarm clock or two is not enough to ensure that someone wakes up. Wakeup Insurance's goal is

to eliminate this problem. The robot will first wake up the owner using a speaker or buzzer. If

the room is dark, then bright LEDs will begin flashing. It will then randomly roam around the

room, forcing the owner to get up and catch it. After it has been caught, the robot will return to a

station to charge its battery for the next day.

Page 4

Integrated System

The Epiphany DIY board is the base of this robot. It accepts input from the IR range

finders, sonar range finder, and the CDS cell. GPIO pins are used to accept input from the

buttons and Bump sensors. GPIO pins are also used to control the the LEDs, LCD, and buzzer.

The motor driver integrated into the Epiphany board is used to directly power two DC motors.

A Wiimote is used to detect the location of the charging station. The Wiimote uses

Bluetooth to communicate wirelessly with a laptop, which then reports back to the Epiphany

DIY through XBEE.

Mobile Platform
The platform is a two level design. The top level

contains the buttons, LEDs, CDS cell, Wii remote, and

LCD screen. Everything else is mounted on the bottom

platform.

IR

rangefinders

Light

Detection

Bump

Sensors

LEDs

Buzzer

LCD
Xmega

Motor

controllers

Motor 1 Motor 2

Buttons

Laptop

XBEE

Wiimote

XBEE

Sonar

Figure MP.1

Page 5

Figure S.1: Sharp IR Rangefinder

0

1

2

3

4

0 10 20 30

V
o

lt
ag

e
 (

V
)

Distance (inch)

White

Paper

Brown

Cardboard

The base

platform is circular

in shape, with 2

cutouts for wheels.

The circular shape

prevents the robot

from getting stuck in

case of collisions. It

also provides

maximum

maneuverability,

enabling the robot to

rotate in place. Half

inch thick plywood was the material chosen to for both the

bottom and top level. It provides exceptional strength,

protecting the robot from taking damage in collisions. Threaded steel rods with nuts are used to

hold up the top level. The steel rods provide more than enough structural strength to hold up the

top level while using minimal space and providing some adjustability. The two casters are

slightly shorter than the wheels, to ensure that the driven wheels always make contact with the

ground.

The top level also contains two springs (one above and one below the top level) used to

make electrical contact with the base station. These springs are connected to a CPU controlled

charging circuit to charge the battery.

Actuation
The platform will be driven by two motors attached to wheels near the center of the

robot. The Motors have a torque of 200 oz∙in, a max free run speed of 150 rpm, and a stall

current of 5A. The motors have proven to provide more than enough torque to accelerate the

robot. The top speed is also fast enough to force the owner to pay attention to the catch the robot

and shut it off.

Sensors

There are five different sensors to be used.

Sharp GP2Y0A21YK IR range finding

sensors are used to detect obstacles on the left and

right sides of the robot. They are also part of basic

obstacle avoidance. The IR sensor was placed on

the platform at the height it will be mounted (3.5

inches from the ground). Two objects (a white

piece of paper and a brown piece of cardboard)

were each placed progressively farther from the

sensor in one inch intervals. The voltage was

Figure MP.2

Figure MP.3

Page 6

measured by the Epiphany DIY board and the hex result was printed out to the LCD. The hex

values were then converted to voltages and the results are in figure S.1.

The Maxbotix LV-EZ0 ultrasonic range finder is used to detect obstacles directly in front of the

platform. The ultrasonic range finder has a much greater detection width than the IR sensors,

making it ideal for finding objects over a larger area. The ultrasonic sensor is able to detect even

small objects anywhere in its range that the IR rangefinders were not able to see, making it the

perfect solution.

Bump sensors (figure S.2) are used to report

collisions with objects not detected by the IR

sensors or the ultrasonic range finder. One bump

sensor is mounted on the front and back, and one is

mounted on each side.

An ambient light sensor is used to detect whether the room

is dark enough to use the LEDs to assist waking up the owner.

The light sensor is mounted on the top platform. The circuit for

this sensor is shown in figure S.3.

The Wiimote is used to detect the location of the base station. The base station has two

IR LEDs, one above the other. The distance between these two points on the camera can be used

to provide the distance to the base station. The Wiimote itself be located on the top platform.

The Wiimote is connected to a computer using Bluetooth. A program called GlovePIE is

used to interface with the Wiimote and output the camera information to a virtual joystick, the

only output it supports. An additional program is then used to read the joystick data and send it

to the microprocessor board over XBee

The range of the Wiimote was measured using a single LED as a worst case scenario. The LED

provided a consistent reading up to 10 feet away from the LED. Multiple LED's or brighter

LEDs could be used to further increase the detection range, but are not necessary in this instance.

The Output from the Wiimote was very consistent and clean, with virtually no jitter.

Figure S.2: Bump Sensor

Figure S.3

Page 7

Behaviors

The first behavior is waiting mode. The robot waits and charge its battery until it is time

to ring alarm. The next mode is alarm mode. The alarm will sound, the LED's turn on if it's dark

enough, and obstacle avoidance will begin. This lasts until the owner presses a button on the

robot. The next mode is returning to base, so it can enter waiting mode and recharge.

Experimental Layout and Results

The experiment provided a simulation of the robots intended purpose. The robot and its

charging station were placed in an enclosed space (to simulate a room). The robot was then

programmed to go off at a certain time. At the time, the robot began alarming and obstacle

avoiding. After a minute or so of successfully moving randomly without hitting any obstacles,

the large red button on the top of the robot was hit, causing it to seek its base station.

The robot then began randomly moving with its lights and buzzer turn off. While moving

randomly, the Wii remote detected the base station. At that point the robot returned to the

station, began charging, and waited for the next alarm time.

Conclusion

The most difficult part of the project was tracking the base station. Initially, the tracking

method was undetermined and several different methods were tried. Several different arrays of

photo detectors were initially experimented with, but a severe lack of precision prevented them

Turn on, set

clock/alarm
Begin Alarming

(obstacle avoidance)

Turn on LEDs

Return to

charging station

Are

lights

on

Button

pressed

Turn off LEDs

Wait for alarm

time

Yes No

Yes

No

Page 8

from being the used. The camera module was then removed from a Wii remote to be interfaced

directly with the main board, but that also resulted in failure. The current solution was then

determined and successfully implemented.

Another unforeseen problem was in obstacle avoidance. Initially, only IR range finders

were to be used. Several crossing patterns and configurations were attempted, but the robot was

too large for any of them to work. A sonar module was then ordered and worked perfectly in

conjunction with the existing IR sensors.

After all the difficulties, the final product is a robot that accurately performs the tasks it

was designed to do. The

Documentation
Epiphany DIY home page: https://sites.google.com/site/epiphanydiy/home

 -Header files are located here

Epiphany DIY Google group: http://groups.google.com/group/epiphany-diy?hl=en

IMDL home page: http://mil.ufl.edu/5666

Code Appendix
ROBOT CODE:

/**
 * \file
 *
 * \brief Empty user application template
 *
 */

/*
 * Include header files for all drivers that have been imported from
 * AVR Software Framework (ASF).
 */
#include <asf.h>
#include <avr/io.h>
#include <ctype.h>
#include <stdint.h>
#include <stdio.h>
#include <util/delay.h>
#include "motor.h"
#include "lcd.h"
#include "uart.h"

#define DbLedOn() (PORTR.OUTCLR = 0x02) //Turns the debug led on.
The led is connected with inverted logic
#define DbLedOff() (PORTR.OUTSET = 0x02) //Turns the debug led off.
The led is connected with inverted logic
#define DbLedToggle() (PORTR.OUTTGL = 0x02) //Toggles the debug led
off. The led is connected with inverted logic
#define speedon 0x300
#define superslow 0x230
#define speedturn 0x250
#define speedturnfast 0x270

Page 9

#define speedoff 0
#define IRTHRESHOLD 70
#define SONARTHRESHOLD 16

void ADC_INTT(void); //this function initializes the ADC for single run mode
void ADC_Start_A3456(void); //this starts a ADC single run (only on ADC A though at the
moment)
unsigned int ADC_Returnn(char ADCLetter, char ChannelNumber, char PinNumber); //this
function returns a result if there is one, and an error code if there is not
void Obstacle_Avoid(Bool* Obstacle_Avoidance_Turning);

int main (void)
{

 PORTF.DIRSET = 0x80; //charging control
 PORTF.OUTCLR = 0x80; //make sure it
starts out off

 PORTC.DIRSET = 0xC3; //configure the
output pins for speaker and LEDS
 PORTC.OUTCLR = 0xC3; //make sure they
start out off

 board_init(); /*This function originates in the file init.c, and is used to
initialize the Epiphany DIY
 motorInit() is declared within because by default you
the user should define what your
 motor setup is to prevent hurting the Epiphany. You
can do this by
 */
 //RTC_DelayInit();//initializes the Real time clock this seems to actually take an
appreciable amount of time
 //servoControlInit();//initializes the servo module ***including enabling global
interrupts*** required for the servo control module
 //uartInit(&USARTC0,57600);//as can be seen in the schematic. This uart is
connected to the USB port. This function initializes this uart
 uartInit(&USARTE1,9600);//this should be the XBEE UART

 //stdout = &USB_str;//This function points stdout to the USB device. So this
means printf will send data out the USB port.
 stdout = &lcd_str;
 //stdout = &Xbee_str;

 motorInit();
 //you should add any further initializations here
 LCDInit();

Page 10

 ADCA.CTRLA = 0b00000001; //bit 0 enables the ADC, 5-2 will later be used
to start a single conversion
 ADCA.CTRLB = 0b00000100; //bits 1-2 set the resolution , and 10 is 8 bit.
(its easier to use for now) (table 25-2 p 303)
 ADCA.REFCTRL = 0b00010000; //bits 4-5 control the ADC reference (01 is
internal Vcc/1.6, table 25-3 p304), bits 1 and 0 enable bandgap and temp inputs (off for
now)
 ADCA.PRESCALER = 0b00000011; //bits 0-2 control the prescaler, set it to 011
for now (32), because opamps are limited at 1MHz (table 25-7 p 306)

 Bool Obstacle_Avoidance_Turning = 0;
 char Behavior = 2; //0 = alarming, 1 = finding base station, 2 =
charging/waiting for action
 Bool first = true;
 int LEDTIMER = 0;

 Bool random_turning = 0;
 int random_turning_timer = 0;
 int random_turning_alarm = 50;

 setMotorDuty(1,speedoff, MOTOR_DIR_NEUTRAL_gc);
 setMotorDuty(3,speedoff, MOTOR_DIR_NEUTRAL_gc);

 TCC0.PER = 3125; //set the timer period to 1 second (default count up mode)
 TCC0.CTRLA = 7; //set the timer prescaler to 1024 (this starts the
timer automatically)
 ADC_Start_A3456();

 while (1)
 {
 while (Behavior == 0)
 {
 if (TCC0.INTFLAGS & 0x01)
 {
 TCC0.INTFLAGS = 0x01;
 PORTC.OUTSET = 0x01;
 if (first)
 {
 LCDCommand(1);
 printf("Catch ME");
 first = false;
 setMotorDuty(1,speedon, MOTOR_DIR_BACKWARD_gc);
 setMotorDuty(3,speedon, MOTOR_DIR_BACKWARD_gc);
 _delay_ms(500);
 }
 if((LEDTIMER / 3) % 2)
 PORTC.OUTSET = 0x02;
 else
 PORTC.OUTCLR = 0x02;

 if((LEDTIMER / 4) % 2)

Page 11

 PORTC.OUTSET = 0x40;
 else
 PORTC.OUTCLR = 0x40;

 if((LEDTIMER / 5) % 2)
 PORTC.OUTSET = 0x80;
 else
 PORTC.OUTCLR = 0x80;

 LEDTIMER++;

 Obstacle_Avoid(&Obstacle_Avoidance_Turning);
 if((PORTE.IN & 0x01) != 0)
 {
 Behavior = 1;
 first = true;
 PORTC.OUTCLR = 0xC3;
 setMotorDuty(1,speedoff, MOTOR_DIR_NEUTRAL_gc);
 setMotorDuty(3,speedoff, MOTOR_DIR_NEUTRAL_gc);
 }
 DbLedToggle();

 }
 }

 while (Behavior == 1)
 {
 if (TCC0.INTFLAGS & 0x01)
 {
 TCC0.INTFLAGS = 0x01;

 if (first && USARTE1.DATA != 0)
 {
 LCDCommand(1);
 printf("Looking for home");
 first = false;
 }

 if (USARTE1.DATA == 0)
 {
 LCDCommand(1);
 printf ("WAIT FOR PC");
 setMotorDuty(1,speedon, MOTOR_DIR_NEUTRAL_gc);
 setMotorDuty(3,speedon, MOTOR_DIR_NEUTRAL_gc);
 }
 else if(USARTE1.DATA == 0x30)
 {
 random_turning_timer++;

 if (random_turning_timer >= random_turning_alarm)
 {
 if (random_turning == 0)
 {
 random_turning = 1;
 random_turning_timer = 0;
 random_turning_alarm = rand() % 41 + 30;
 if (random_turning_alarm % 2 == 0)
 {

Page 12

 setMotorDuty(1,speedturnfast,
MOTOR_DIR_FORWARD_gc);
 setMotorDuty(3,speedturnfast,
MOTOR_DIR_BACKWARD_gc);
 }
 if (random_turning_alarm % 2 != 0)
 {
 setMotorDuty(1,speedturnfast,
MOTOR_DIR_BACKWARD_gc);
 setMotorDuty(3,speedturnfast,
MOTOR_DIR_FORWARD_gc);
 }

 }
 else if (random_turning != 0)
 {
 random_turning = 0;
 random_turning_timer = 0;
 random_turning_alarm = rand() % 26 + 25;
 }
 }

 if (random_turning == 0)
 Obstacle_Avoid(&Obstacle_Avoidance_Turning);

 }
 else if(USARTE1.DATA == 0x31)
 {
 random_turning = 0;
 setMotorDuty(1,superslow, MOTOR_DIR_FORWARD_gc);
 setMotorDuty(3,superslow, MOTOR_DIR_BACKWARD_gc);
 }
 else if(USARTE1.DATA == 0x32)
 {
 random_turning = 0;
 setMotorDuty(1,superslow, MOTOR_DIR_BACKWARD_gc);
 setMotorDuty(3,superslow, MOTOR_DIR_FORWARD_gc);
 }
 else if(USARTE1.DATA == 0x33 && ADCA.CH2.RESL > SONARTHRESHOLD
&& !(PORTD.IN & 1))
 {
 random_turning = 0;
 setMotorDuty(1,speedturn, MOTOR_DIR_FORWARD_gc);
 setMotorDuty(3,speedturn, MOTOR_DIR_FORWARD_gc);
 }
 else if(USARTE1.DATA == 0x33 && ADCA.CH2.RESL <=
SONARTHRESHOLD && !(PORTD.IN & 1))
 {
 random_turning = 0;
 setMotorDuty(1,superslow, MOTOR_DIR_FORWARD_gc);
 setMotorDuty(3,superslow, MOTOR_DIR_FORWARD_gc);
 }
 else if(USARTE1.DATA == 0x33 && PORTD.IN & 1)
 {
 random_turning = 0;
 setMotorDuty(1,speedoff, MOTOR_DIR_NEUTRAL_gc);

Page 13

 setMotorDuty(3,speedoff, MOTOR_DIR_NEUTRAL_gc);
 Behavior = 2;
 first = true;
 }
 DbLedToggle();
 }
 }

 while (Behavior == 2)
 {
 if (TCC0.INTFLAGS & 0x01)
 {
 if (first)
 {
 LCDCommand(1);
 printf("Charging");
 first = false;
 PORTF.OUTSET = 0x80;
 }

 TCC0.INTFLAGS = 0x01;
 if (USARTE1.DATA == 0x34 || PORTE.IN & 0x01 != 0)
 {
 Behavior = 0;
 PORTF.OUTCLR = 0x80;
 first = true;
 }
 }
 }
 }
}

void ADC_Start_A3456(void) //this starts a ADC single run (only on ADC A though at the
moment)
{

 ADCA.CH0.INTFLAGS = 1;
 //setting a 1 clears the int flag (which is bit 1)
 ADCA.CH0.MUXCTRL = 3<<3; //
bits 0-1 control input mode (set to 01 for single ended positive input signal)
 ADCA.CH0.CTRL = 0b10000001; //set bit 7
to start conversion on the channel,bits 3-6 control the input source (0-7 = pin 0-7); it
is different in internal input mode

 ADCA.CH1.INTFLAGS = 1;
 //setting a 1 clears the int flag (which is bit 1)
 ADCA.CH1.MUXCTRL = 4<<3; //
bits 0-1 control input mode (set to 01 for single ended positive input signal)
 ADCA.CH1.CTRL = 0b10000001; //set bit 7
to start conversion on the channel,bits 3-6 control the input source (0-7 = pin 0-7); it
is different in internal input mode

 ADCA.CH2.INTFLAGS = 1;
 //setting a 1 clears the int flag (which is bit 1)
 ADCA.CH2.MUXCTRL = 5<<3; //
bits 0-1 control input mode (set to 01 for single ended positive input signal)

Page 14

 ADCA.CH2.CTRL = 0b10000001; //set bit 7
to start conversion on the channel,bits 3-6 control the input source (0-7 = pin 0-7); it
is different in internal input mode

 ADCA.CH3.INTFLAGS = 1;
 //setting a 1 clears the int flag (which is bit 1)
 ADCA.CH3.MUXCTRL = 6<<3; //
bits 0-1 control input mode (set to 01 for single ended positive input signal)
 ADCA.CH3.CTRL = 0b10000001; //set bit 7
to start conversion on the channel,bits 3-6 control the input source (0-7 = pin 0-7); it
is different in internal input mode
}

unsigned int ADC_Returnn(char ADCLetter, char ChannelNumber, char PinNumber) //this
function returns a result if there is one, and an error code if there is not
{
 if (ADCA.INTFLAGS == 1)
 {
 ADCA.INTFLAGS = 1;
 return ADCA.CH0.RESL;
 }
 else { return 0xffff;}
}

void Obstacle_Avoid(Bool* Obstacle_Avoidance_Turning)
{
 //LCDCommand(1);
 //printf ("%X - %X - %X\n%X - %X - %X", ADCA.CH1.RESL, ADCA.CH0.RESL,
USARTE1.DATA, ADCA.CH2.RESL, PORTD.IN, ADCA.CH3.RESL);
 if(ADCA.CH1.RESL <= IRTHRESHOLD && ADCA.CH0.RESL <= IRTHRESHOLD && ADCA.CH2.RESL >
SONARTHRESHOLD)
 {
 *Obstacle_Avoidance_Turning = false;
 setMotorDuty(1,speedon, MOTOR_DIR_FORWARD_gc);
 setMotorDuty(3,speedon, MOTOR_DIR_FORWARD_gc);
 }
 else if((ADCA.CH1.RESL > IRTHRESHOLD && ADCA.CH0.RESL > IRTHRESHOLD) ||
ADCA.CH2.RESL <= SONARTHRESHOLD)
 {
 *Obstacle_Avoidance_Turning = true;
 if(ADCA.CH1.RESL > ADCA.CH0.RESL)
 {
 setMotorDuty(1,speedturn, MOTOR_DIR_BACKWARD_gc);
 setMotorDuty(3,speedturn, MOTOR_DIR_FORWARD_gc);
 }
 else
 {
 setMotorDuty(1,speedturn, MOTOR_DIR_FORWARD_gc);
 setMotorDuty(3,speedturn, MOTOR_DIR_BACKWARD_gc);
 }
 }
 else if(ADCA.CH1.RESL <= IRTHRESHOLD && ADCA.CH0.RESL > IRTHRESHOLD &&
*Obstacle_Avoidance_Turning == false)
 {
 *Obstacle_Avoidance_Turning = true;
 setMotorDuty(1,speedturn, MOTOR_DIR_FORWARD_gc);
 setMotorDuty(3,speedturn, MOTOR_DIR_BACKWARD_gc);
 }

Page 15

 else if(ADCA.CH1.RESL > IRTHRESHOLD && ADCA.CH0.RESL <= IRTHRESHOLD &&
*Obstacle_Avoidance_Turning == false)
 {
 *Obstacle_Avoidance_Turning = true;
 setMotorDuty(1,speedturn, MOTOR_DIR_BACKWARD_gc);
 setMotorDuty(3,speedturn, MOTOR_DIR_FORWARD_gc);
 }
 ADC_Start_A3456();
}

