Formal Report
MODS (Mobile Office Delivery System)

Kevin Hoffman

EEL5666
Dr. Arroyo, Dr. Schwartz

Tim Martin, Ryan Stevens

Table Of Contents

Abstract
Introduction
Executive Summary
Integrated System
Mobile Platform
Actuation

Sensors

Behavior
Experimental Layout
Conclusion

Appendices

10

10

11

Abstract

The world is progressively getting more and fast paced. People have this level of
expectation concerning how quickly they can acquire goods. One of the largest companies, Wal-
Mart, is a business that boomed with a model of having everything one may need under one roof.
Fast food chains are everywhere and show no sign of shrinking. America is a country where
speed is everything. The MODS robot is an autonomous system that will take the load of office
delivery and quickly optimize it by removing the human factor and allow those resources to be
extended elsewhere.

MODS is a system that will be utilized to transport goods between rooms in any building
amongst any floors without fear of obstacles. In the full system there will be two additional
groups that will travel by air and outside land-nav. For the purpose of this project only a single
robot will travel between two rooms on a single floor with little to no obstacle detection. After
pickup and delivery MODS will return back to its point of origin

The robot will be constructed along the lines of a Modular approach where all parts
should work by themselves. Most of the equipment is off the shelf sensors and mechanics with
the exception of a special navigation system. The obstacle avoidance is conducted via four wide
band sonars. Navigation is conducted by a camera where all image processing is handled
onboard.

Introduction

The problem is straight forward. An autonomous delivery system will allow movement of
packages relieving the stress, adding function, and improving efficiency to the current system of
delivery service.

The objective of this project is to create such a system specially designed to operate
within the confines of an office building. The two most important factors concerning this project
are completion of delivery and safety of package while in route. In theory it should be able to
traverse floors and operate without fear of obstacles that might crush the machine. In practice
and prototype only a single floor and limited obstacles is overcome. There is very little in terms
of package handling and protection.

The rest of this document will describe in a how the machine is broken down and how
every system will interact and fit into the overall design of MODS. The navigation is produced
using a single camera with all image processing conducted on board and sent to the Epiphany
DIY for motor control. Obstacle avoidance is produced using four separate sonars in 360 degree
coverage. With these two systems it is possible to complete the design concept for this
application.

Executive Summary

MODS is an interesting creature. She accomplishes her main task and has successfully
picked up and delivered an object. She successfully obstacles avoids in a very close 360
coverage area. At this point she can only go to a single pickup location, which is located inside a
room, and move to a single delivery location which is located in a hallway. After this she can
successfully return to her starting location. The way that she is programmed though she should
be able to just rearrange the course and add and subtract waypoints to go to any point desired.
This has yet to be tested.

MODS turned out to be a much more difficult project than what was first imagined. Since
I had never dealt with image processing it took more time and effort to get that working than any
other part of the entire project. It still isn’t even up to the expectation that I wanted to
accomplish.

Integrated System

MODS (Mobile Office Delivery System)

The office building that each robot is to support will utilize a waypoint system to guide
the robot from point to point. This waypoint system will include all areas of a buildings
including the rooms that they will be delivering into . Colored pieces of paper will be on the
ground in a certain sequence that will guide the robot to its intended destination. Inside the
rooms a continuation of the paper sequence following path will be constructed that will slowly
guide the robot to the rooms station. The paper sequence in the room will be at a shorter interval
to ensure quick motion. For the purpose of this demonstration only a single room and only one
point of pickup and delivery will exist Once the robot reaches its point of pick and point of
delivery it will open its cargo bay door and wait for a package to be put inside. A button on the
rear will be pressed by human interaction to tell the robot to proceed on its way. There will be
limited obstacle avoidance inside the room due to the fact that rooms will most likely have little
room for movement and obstacle avoidance will confuse MODS. Outside the room sonars will
be deployed to detect proximity of the moving obstacles. If a certain threshold is violated the
robot will move off path until threshold is met again.

When all of these systems are working alongside each other the system will be complete
and any building can theoretically be programmed (i.e. if two rooms can operate then any
number of rooms can operate).

The original design included line following for in room navigation. It proved too difficult
to integrate into the board due to how the microcontroller handled it’s pin functions and camera
navigation took its place.

———
_.
a
~
]
o a

Overall design of the System

Mobile Platform

The platform’s inspiration is based on the MSE-6 Repair Droid from the Star Wars
franchise. Completely made of single layer copper plating PCB this robot will be driven with two
powerful motors. A single caster wheel is located at the front center of the robot. A main bay
exist that will hold the package. A single bay door at the front of the robot will open up to load
and unload the package. Above and below the main bay two additional support areas exist to
house the sensors, control boards, and additional daughter boards. In the future these areas will
be covered and put in a housing. The wheels will intrude into the lower bay support rooms so to
lower the center of gravity of the whole robot.

The caster wheel was a real nightmare. Due to all the small designs that were purchased
and the way they were ball bearings on ground they were getting very dirty and I had to use
Swiffer cleaners to keep them from clogging up.

MSE-6 Repair Droid

A is the storage bay door to main bay. B is the lower support bay. C is the upper support bay

Actuation

MODS will be operated by two power 12V motors. These motors are capable of, at the rated
voltage, 200rpms and 180 ounces per inch of torque. Their stall current is S5A. They are geared
50:1 which turned out to be plenty enough to move the robot approx. 14-20 inches per second at
12V. This is all dependent on the final weight. The weight at the final presentation this robot can
accomplish this speed at only ¥ power. Originally there was supposed to be servos controlling
everything including the caster wheel and camera up front. This proved to be a useless design
and even though the servos were mounted they were never used and were removed. The only
problem with the motors were that they were so powerful that they refuse to move at small
speeds and the robot could not do fine tuned movements.

&£

www.pololu.com

Motor and Servo in use

Sensor

MODS are equipped with a wide array of sensors. In the top support bay 4 ultrasonic
sensors (two front, two rear) are positioned to detect obstacles coming within three threshold
values. These sonars have a wide beam angle and a 6” resolution past 15”. The three threshold
values are safe, avoid, and move. Safe is normal operation, avoid is obstacle avoidance to a safe
distance, and move is a detection that if an obstacle is so close to it’s rear that avoidance is not
likely then all movement systems will overdrive and the motors will operate at full power getting
the robot out of the way. These systems worked pretty effectively

In addition to the sonars in the top support bay a 3D compass module will help navigate
the robot. Being able to detect if MODS is on the right bearing will give an extra degree of
precision for an already complex task. The compass is also equipped with a tilt sensor and
accelerometer so in case the robot is kicked over or pushed over it can send out a sound alert.
The compass was mounted but it was never used since camera navigation kept the robot on it’s
path. It was then removed to make way for a flashlight which was also removed.

&1

9%
O\

RN

]

Top bay where circles are Sonars and square is compass

In the lower support bay a blackfin SRV-1 camera is positioned to detect colored paper
for navigation purposes. A sequence will be programmed into the MODS and the SRV-1 will
“blob detect” the color sequence that guides it to the room it needs to be in. Located at the
bottom are three IR sensors that were never removed. These will most likely removed at some
point. They were originally used to line following upon entry into a room but were taken out of
the design and the replaced by camera navigation.

EPIPHANY DIY

Lower Support Bay

All of these sensors are ultimately connected to the Epiphany DIY controller board.

10
Behavior

The behavior of the robot is very erratic. It is a joke amongst my family that you should
never mention the word P-R-O-O-F and hide all cameras when she is running because she never
likes to work when a camera is out. This also is well defined when she decided to corrupt her
camera firmware on pre-demo day and then she fried on her own on actual demo day. It will be
interesting to see what she does before Media Day. Other than these issues she works for the
most part in a well lit environment. She works even better when she has to detect very small
colors as opposed to large pieces of paper. [will admit this is different from what I imagined
what would happen.

Experimental Layout

No real experiments were conducted in this project. The majority of all the time went into
calibration of the camera. The only experiment was the threshold values required of the sonars.
This was conducted by taking a sheet of paper and moving it to the range required and reading
off the LCD screen what the ADCs were reading back. These values were then set into the
program and that was concluded. The camera calibration was and still is a nightmare to deal
with. It still isn’t completed at this point in the project. The camera is to detect three different
colors. The camera retrieves images in the YUV spectrum. Thus luminance is a big issue and
lighting in the environments are proving to be a hassle. They cause the robot to not see the colors
required of them. So in every environment I have to test the brightness in the room and major
points of light distribution. Some of these problems were solved with a flashlight and brighter
lights. It is unknown how well they will perform outside in the natural sunlight.

11
Conclusion

MODS is a beast in every sense of the term. She is built like a tank and moves fairly
quickly and fairly loudly. She is programmed to track three different colors decently. She has
absolutely no clue how to differentiate between color noise in the background and even confuses
white and black for the colors that she is tracking. With little to no experience in image
processing one semester proved not enough time to do what she needed in this regard. Nothing
exceeds expectation but she will do as she is suppose to do. She has successfully navigated
between a single room with pickup and delivered to a single point and returned to her point of
origin. Everything can be improved and nothing is what I would consider acceptable. There just
wasn’t enough time in the semester and money in bank for everything to work properly. For
students looking into this work I would strongly avoid using this camera. It is not a bad camera
and works like a charm when she wants to but she is too advance and her company has
absolutely no customer support. The frustration level is off the chart in this respect.

In all honest if I were to start over I would never use a camera because it is just too
frustrating in the limited time that you have. If | had to use the camera then I would start with
making sure the company is there to back you up. I got screwed with my first company (Seattle
Robotics) and I got screwed with my current company (Surveyor Corporation). Make sure you
have support behind you. I’'m still waiting on a board to be delivered and I will be looking for my
money back very soon. Start early and start fast and make sure you are taking not a single other
class because this will definitely ruin your semester.

Appendices

CODE

/** #include ADC3_THRES 244

* \file "RTC.h" #define

* #include RED @

* \brief Empty user application template "picServo.h" #define

* #include BLUE 2

*/ "ADC.h" #define

/* #include PURPLE 3

* Include header files for all drivers "switch.h" //#define GREEN 1

that have been imported from

#include /************************************/
* AVR Software Framework (ASF).
"sonarRX.h" //GLOBAL VARIABLES GO HERE
*/
#define char
#include
DbLedOn() (PORTR.OUTCLR = @x@2) //Turns uartDe_rx[256];
<asf.h> the debug led on. The led is connected
with inverted logic
int
#include
#define
color_center = 0;
<avr/io.h>
DbLedOff() (PORTR.OUTSET = @x@2) //Turns
the debug led off. The led is connected int
#include with inverted logic
spinning_flag = 1;
<ctype.h> #define
int
#include DbLedToggle() (PORTR.OUTTGL = @0x02)
//Toggles the debug led off. The led is
connected with inverted logic x1 = 0;
<stdint.h>
#define int
#include
ADC_COUNTER 100 //Countdown timer till X2 = 9;
<stdio.h> ADC values are read
int
#include //Method only in use because Timer® is

too fast for use
counter = @;
<util/delay.h>
#define
//int color_pattern[2]; //LIST OF ORDER
#include TO FOLLOW
ADCO_THRES 282

"motor.h" int
#define
#include obstacle_detect = @; //Zero = no
ADC1_THRES 70 detection. One = Detection
"lcd.h"
#define int
#include
ADC2_THRES 243 overshoot = @;
"uart.h"

#define int

hold_color = 0;

ctemp = 0;

char

route[11] = {RED,BLUE,RED,PURPLE,RED,BLU
E,RED, BLUE,RED, BLUE,RED};

char

turn_seq[11] = {0,0,0,1,0,1,0,0,0};

route_counter = 1;

turn_counter = 0;

route_counter_size = 11;

pickup = 4;

delivery = 7;

[RFE ARk

void

parse_loc()

I111111111111111117

stdout = &lcd_str;

I111111111111111117

//printf("PARSE");

int loc[3];

int counter = 0;

for(int k = @; k < 128; k++)

{
if(uartDO_rx[k] == '-') //k is now the
position of the '-' in memory

for(int j = 1; j < 10; j++)

if(uartDe_rx[k+j] == ' ') //blank space

loc[counter] = k+j;

counter++;

//printf("CALCX2X1");

//_delay_ms(3000);

if((loc[2] -

loc[1] == 4)){x2 = ((uartDe_rx[(loc[1]+
1l -

48)*100) + ((uartDe_rx[(loc[1]+2)] -
48)*10) + ((uartDo_rx[(loc[1]+3)] -
48)*1);

printf("Px2: %c%ckhc
",uartDO_rx[(loc[1]+1)],uartDO_rx[(loc[1
1+2)],uartDo_rx[(loc[1]+3)]);

if((loc[2] -

loc[1] == 3)){x2 = ((uartDe_rx[(loc[1]+
1l -

48)*10) + ((uartDo_rx[(loc[1]+2)] -
48)*1);

printf("Px2: %c%c
",uartDO_rx[(loc[1]+1)],uartDe_rx[(loc[1
1+2)1);

if((loc[2] -
loc[1] == 2)){x2 = ((uartDe_rx[(loc[1]+
1)] - 48)*1);

printf("Px2: %c
",uartDO_rx[(loc[1]+1)]);

if((loc[1] -

loc[@] == 4)){x1 = ((uartDe_rx[(loc[@]+
1l -

48)*100) + ((uartDe_rx[(loc[0]+2)] -
48)*10) + ((uartDe_rx[(loc[@]+3)] -
48)*1);

printf("Px1: %c%c%hc
",uartDO_rx[(loc[0]+1)],uartDo_rx[(loc[0
]+2)],uartDo_rx[(loc[0]+3)]);

if((loc[1] -

loc[@] == 3)){x1 = ((uartDe_rx[(loc[@]+
1] -

48)*10) + ((uartDe_rx[(loc[@]+2)] -
48)*1);

printf("Px1: %c%c
",uartDO_rx[(loc[0]+1)],uartDo_rx[(loc[0
1+2)1);

if((loc[1] -
loc[@] == 2)){x1 = ((uartDe_rx[(loc[@]+
1)] - 48)*1);

printf("Px1: %c
",uartDO_rx[(loc[0]+1)]);

[IT11771107771771717717111111117117
LCDCommand (LCD_CLEAR) ;
_delay_ms(100);
[IT11771101171771711717111111117117

break;

void

zero_uartDe()

uintlé_t n = @;

while(n < 256) //zero out the array

uartbDe_rx[n] = 0;

n++;

calibrate_cbins()

stdout = &SRV1_str; //set resolution to
320x240

printf("b");

_delay_ms(1000);

stdout = &SRV1_str;
printf("vce000200000140165255"); //Red @
_delay_ms(1000);

stdout = &SRV1_str;

printf("vc2000130150255000110"); //Blue
2

_delay_ms(1000);
stdout = &SRV1_str;

printf("vc3000160130255140255");
//Purple 3

_delay_ms(1000);
stdout = &SRV1_str;

printf("vc1000150000145000125"); //Green
4

_delay_ms(1000);
stdout = &lcd_str;
LCDCommand (LCD_CLEAR) ;

_delay_ms(1000);

poll_calc_red()

zero_uartDe();

stdout = &SRV1_str;
counter = 0;
printf("vbe");

_delay _ms(50);
I111111117711111111117
stdout = &lcd_str;
LCDCommand (LCD_CLEAR) ;
_delay _ms(25);
I111111117711111111117

parse_loc();

color_center = ((x2 - x1) / 2) + x1;

[1111777717711111111171117

stdout = &lcd_str;

printf("x1: %d x2: %d rc:
%d", x1, x2, color_center);

_delay _ms(50);

LCDCommand (LCD_CLEAR) ;

_delay _ms(25);

[1111177717111111111171117

poll_calc_blue()

zero_uartDe();

stdout = &SRV1_str;

counter = 0;

printf("vb2");

_delay _ms(50);

I171117111711111111111111

stdout = &lcd_str;

LCDCommand (LCD_CLEAR) ;

_delay _ms(25);

I171117111711111111111111

parse_loc();

color_center = ((x2 - x1) / 2) + x1;

[11111717771111111111177

stdout = &lcd_str;

printf("x1: %d x2: %d rc:
%d", x1, x2, color_center);

_delay _ms(50);

LCDCommand (LCD_CLEAR) ;

_delay _ms(25);

I11111117171111111111177

poll_calc_purple()

zero_uartDe();

stdout = &SRV1_str;

counter = 0;

printf("vb3");

_delay _ms(50);

[111111117711111111117

stdout = &lcd_str;

LCDCommand (LCD_CLEAR) ;

_delay _ms(25);

I11171177771111111111177

parse_loc();

color_center = ((x2 - x1) / 2) + x1;

[11111177171111111111177

stdout = &lcd_str;

printf("x1: %d x2: %d rc:
%d", x1, x2, color_center);

_delay _ms(50);

LCDCommand (LCD_CLEAR) ;

_delay _ms(25);

[111117171711111111111171

/*poll_calc_green()

zero_uartDe();

stdout = &SRV1_str;

counter = 0;

printf("vb1");

_delay _ms(50);

stdout = &lcd_str;

LCDCommand (LCD_CLEAR) ; void {

_delay_ms(25); poll_color(int bin_num) temp++;
parse_loc(); { }
color_center = ((x2 - x1) / 2) + x1; //Zero out all values for calculations focuser++;
stdout = &lcd_str; color_center = 0; }
printf("x1: %d x2: %d rc: %d", x1, x2, x1 = 0; if(temp < 2)
color_center);

x2 = 0; {
_delay _ms(50);

uint8_t focuser = 0; color_center = 0;
//LCDCommand (LCD_CLEAR) ;

uint8_t temp = 0; }
_delay _ms(25);

if(bin_num == @) //bin @ is red bin }
I/

{ else if(bin_num == 3)

while(focuser < 2) {
void

{ while(focuser < 2)
open_door()

poll_calc_red(); {
{

if(color_center > 0) poll_calc_purple();
for(int i = 140; i > 4@; i--)

{ if(color_center > 0)
{

temp++; {
setServoAngle(i,1);

} temp++;
_delay _ms(10);

focuser++; }
}

} focuser++;
_delay_ms(1000);

if(temp < 2) }
}

{ if(temp < 2)
void

color_center = 0; {
close_door()

} color_center = 0;
{

} }
for(int 1 = 40; i < 140; i++)

else if(bin_num == 2) //bin 2 is blue }
{ bin

[I110771777777171777711777771111111711177

setServoAngle(i,1); { 111111117
_delay_ms(10); while(focuser < 2) if((x2 <= 80) || (x1 >= 240))
} { {
_delay_ms(1000); poll_calc_blue(); color_center = 0;

} if(color_center > 0) }

if(color_center > 0)

hold_color = 0;

if(spinning_flag == 1)

if(color_center < 100 || color_center >
220)

color_center = 0;

//Set conditional for changing looking
for other colors

/*if(spinning_flag == @)

stdout = &lcd_str;

printf("SPINNING FLAG");

_delay_ms(100);

if(color_center == 0)

stdout = &lcd_str;

printf("COLOR FLAG");

_delay_ms(100);

¥*/

if((spinning_flag == ©) && (color_center
== @) && (hold_color == 9))

overshoot = 1;

//stdout = &lcd_str;

//printf("CHANGE");

//_delay_ms(100);

if((route_counter == pickup) || (route_c
ounter == delivery))
{

setMotorDuty(2,256,MOTOR_DIR_FORWARD_gc)

K

setMotorDuty (4, 256,MOTOR_DIR_FORWARD_gc)

H
_delay_ms(1000);

stdout = &lcd_str;
printf("PICKUPDELIVERY");
_delay_ms(2000);

open_door();
flipHTSstatus(0);
switch_init();
_delay_ms(200);
while(!returnHTSstatus()){}
flipHTSstatus(0);
switch_unit();

cli();

motorInit();

_delay_ms(5000);
close_door();
_delay_ms(3000);

cli();

PMIC.CTRL |= PMIC_LOLVLEN_bm;

sei();

if(route_counter <= route_counter_size)

ctemp = route[route_counter];

route_counter++;

if(route_counter > route_counter_size)

setMotorDuty(2,0,MOTOR_DIR_NEUTRAL_gc);

setMotorDuty(4,0,MOTOR_DIR_NEUTRAL_gc);

stdout = &lcd_str;

printf("COMPLETE SEQUENCE");

while(1){;}

void

move_to_target() //MOTOR 4 is on Robot
Right. MOTOR 2 is on Robot Left.

if((spinning_flag == 1) && (color_center
> @)) //that the robot is currently in
spinning phase and color is detected

//stdout = &lcd_str;

//printf("SPIN TO RUN");

//_delay_ms(100);

spinning_flag = @; //Reset flag

setMotorDuty(2,0,MOTOR_DIR_NEUTRAL_gc);

setMotorDuty(4,0,MOTOR_DIR_NEUTRAL_gc);

_delay _ms(50);

if((color_center >= 1) & (color_center
< 80)) //target is on far left. move
quick left to get to target

setMotorDuty(2,786,MOTOR_DIR_FORWARD_gc)
5 //LEFT

setMotorDuty(4,820,MOTOR_DIR_FORWARD_gc)
5 //RIGHT

else if((color_center >= 80) && (color_c
enter < 150)) //target is on the left.
move shallow left to get to target

setMotorDuty(2,771,MOTOR_DIR_FORWARD_gc)
5 //LEFT

setMotorDuty(4,755,MOTOR_DIR_FORWARD_gc)
5 //RIGHT

else if((color_center >= 150) && (color_

center < 170)) //target is in the
center. pr‘oceed on course

setMotorDuty(2,786,MOTOR_DIR_FORWARD_gc)
5 //LEFT

setMotorDuty(4,730,MOTOR_DIR_FORWARD_gc)
5 //RIGHT

else if((color_center >= 170) && (color_

center < 24@)) //target is on the right.
move shallow right to get to target

setMotorDuty(2,796,MOTOR_DIR_FORWARD_gc)
5 //LEFT

setMotorDuty(4,720,MOTOR_DIR_FORWARD_gc)
5 //RIGHT

else if(color_center >= 240) //target is
on the far right. move quick right to
get to target

setMotorDuty(2,786,MOTOR_DIR_FORWARD_gc)
5 //LEFT

setMotorDuty(4,76@,MOTOR_DIR_FORWARD_gc)
5 //RIGHT

else

cli();

//stdout = &lcd_str;

//printf("SPINNING");

//_delay_ms(3000);

spinning_flag = 1;

if(overshoot == 1)

setMotorDuty(2,176,MOTOR_DIR_FORWARD_gc)

K

setMotorDuty (4,128, MOTOR_DIR_FORWARD_gc)

H
_delay_ms(250);

setMotorDuty(2,32,MOTOR_DIR_BACKWARD_gc)

K

setMotorDuty(4,32,MOTOR_DIR_BACKWARD_gc)

H
_delay_ms(200);

overshoot = 0;

else

if(turn_seq[route_counter-1] == @)

setMotorDuty(2,512,MOTOR_DIR_FORWARD_gc)
5 //LEFT

setMotorDuty(4,512,MOTOR_DIR_BACKWARD_gc
)5 //RIGHT

_delay _ms(70);

setMotorDuty(2,128,MOTOR_DIR_FORWARD_gc)
5 //LEFT

setMotorDuty (4,128, MOTOR_DIR_BACKWARD_gc
)5 //RIGHT

_delay_ms(200);

else

setMotorDuty(4,512,MOTOR_DIR_FORWARD_gc)
5 //LEFT

setMotorDuty(2,512,MOTOR_DIR_BACKWARD_gc
)5 //RIGHT

_delay _ms(70);

setMotorDuty (4,128, MOTOR_DIR_FORWARD_gc)
5 //LEFT

setMotorDuty(2,128,MOTOR_DIR_BACKWARD_gc
)5 //RIGHT

_delay_ms(200);

sei();

x1

1
®
e

X2 = 9;

color_center = 0;

void

run_ob_avoid()

uint16_t ADCA@_val = @;

uint16_t ADCA1_val = @;

uint16_t ADCA2_val = @;

uint16_t ADCA3_val = @;

ADCA_request(@,1); //FRONT LEFT

if(ADCA_CH@_ConvComplete)

//stdout = &lcd_str;

ADCA@_val = ADCA_getVal(®);

//printf("ADCO: %u", ADCA@_val);

if(ADCA@_val <= ADCO_THRES) //threshold
value approximately 18 inches to 2 feet
from sonar

obstacle_detect = 1;

hold_color = 1;

//printf("Obstacle Detected");

setMotorDuty(2,866,MOTOR_DIR_FORWARD_gc)
5 //LEFT

setMotorDuty(4,660,MOTOR_DIR_FORWARD_gc)
5 //RIGHT

_delay _ms(25);

ADCA_request(1,0); //FRONT RIGHT

if(ADCA_CH1_ConvComplete)

//stdout = &lcd_str;

ADCA1_val = ADCA_getVal(1);

//printf("ADC1: %u", ADCAl_val);

if(ADCA1_val <= ADC1_THRES) //threshold
value approximately 18 inches to 2 feet
from sonar

obstacle_detect = 1;

hold_color = 1;

//printf("Obstacle Detected");

setMotorDuty(2,660,MOTOR_DIR_FORWARD_gc)
5 //LEFT

setMotorDuty(4,880,MOTOR_DIR_FORWARD_gc)
5 //RIGHT

_delay _ms(25);

ADCA_request(2,3); //BACK LEFT

if(ADCA_CH2_ConvComplete)

//stdout = &lcd_str;

ADCA2_val = ADCA_getVal(2);

//printf("ADC2: %u", ADCA2_val);

if(ADCA2_val <= ADC2_THRES) //threshold
value approximately 18 inches to 2 feet
from sonar

obstacle_detect = 1;

hold_color = 1;
//printf("Obstacle Detected");

setMotorDuty(2,826,MOTOR_DIR_FORWARD_gc)
5 //LEFT

setMotorDuty(4,740,MOTOR_DIR_FORWARD_gc)
5 //RIGHT

_delay _ms(25);
ADCA_request(3,2); //BACK RIGHT

if(ADCA_CH3_ConvComplete)

//stdout = &lcd_str;
ADCA3_val = ADCA_getVal(3);
//printf("ADC3: %u", ADCA3_val);

if(ADCA3_val <= ADC3_THRES) //threshold
value approximately 18 inches to 2 feet
from sonar

obstacle_detect = 1;
hold_color = 1;
//printf("Obstacle Detected");

setMotorDuty(2,826,MOTOR_DIR_FORWARD_gc)
5 //LEFT

setMotorDuty(4,840,MOTOR_DIR_FORWARD_gc)
5 //RIGHT

_delay _ms(25);
//LCDCommand (LCD_CLEAR) ;
//_delay_ms(100);

if(((ADCA@_val > ADCO_THRES && ADCA1_val
> ADC1_THRES) && ADCA2_val > ADC2_THRES
) && ADCA3_val > ADC3_THRES)

setMotorDuty(2,256,MOTOR_DIR_FORWARD_gc)

K

setMotorDuty(4,256,MOTOR_DIR_FORWARD_gc)

K

//printf("NO DETECT");
obstacle_detect = 0;
//spinning_flag = 1;
LCDCommand (LCD_CLEAR) ;
_delay_ms(100);
printf("%d", ctemp);

_delay_ms(500);

IITT10T107110010717171771771117711111777
IITTIIT1I110T10717171771777117711111777
[I1T11777777171107171111117711117117117

int

main (void)

[REE Ak

[REE Ak

//All initializers methods located here
cli();

board_init(); /*This function originates
in the file init.c, and is used to
initialize the Epiphany DIY

motorInit() is declared within because
by default you the user should define
what your

motor setup is to prevent hurting the
Epiphany. You can do this by

*/
cli();
//Suspended bootloader LED

DbLedOn(); //I like to do this by
default to show the board is no longer
suspended in the bootloader.

//uartInit(&USARTCO,57600); /*as can be
seen in the schematic. This uart is
connected to the USB port.

// This function initializes this uart*/

uartInit(&USARTDG,115200); //UART
initialization for the SRV-1 on port D@
at 115200 baud

motorInit(); //Initializes the motors

cli();

servoControlInit(); //Initializes the
Servos

cli();

ADCsInits(); //this function initializes
the ADCs inside the Xmega

cli();

LCDInit(); //Initializes the LCD Screen

cli();

//sonarRX_init(); //Initializes the
sonarRX

cli();

DbLedOff(); //Light Sequence to indicate
Initialization finished

_delay_ms(1000);

stdout = &lcd_str;

printf("Execution Ready\n");

DbLedOn();

_delay_ms(500);

DbLedOff();

_delay_ms(500);

printf(“3..");

DbLedOn();

_delay_ms(500);

DbLedOff();

_delay_ms(500);

printf(“2..");

DbLedOn();

_delay_ms(500);

printf("1..");

DbLedOn();

_delay_ms(500);

DbLedOff();

_delay_ms(500);

printf("G0");

for(uint8_t k = @; k < 10; k++)

DbLedOn();

_delay_ms(100);

DbLedOff();

_delay_ms(100);

LCDCommand (LCD_CLEAR) ;

//END ALL INITIALIZING METHODS

[R EE Ak

//ZERO OUT UART STORAGE ARRAY

zero_uartDe();

[R FE Ak

// Enable low interrupt level in PMIC
and enable global interrupts. Begin all
Interrupts

PMIC.CTRL |= PMIC_LOLVLEN_bm;

sei();

R Rk K R K K K K R K K KR K KKK K KKK K K

//MAIN WHILE LOOP - PERMANENT EXECUTION

//CURRENT EXECUTION LIST

/*

//- Board, UART, Motor, Servo, ADC,
Switch, LCD, SonarRx - ALL INITIALIZED
IN THIS ORDER

*/

_delay_ms(4000);

calibrate_cbins();

close_door();

stdout = &lcd_str;

sei();

uintl6e_t i,j ;

while(1)

//setServoAngle(140,1);

//run_ob_avoid();

//if(obstacle_detect == @)

/1

//poll_color(ctemp);

//move_to_target();

/1}

[k ok Rk ok K K K K K K R K K K K K K K R K K K K K K K K K K K
sk s ok ok ok sk sk sk s s sk ok ok ok sk sk sk sk sk o ok ok ok ok ok

//Test code for camera calibration

//NOTE: To get proper reading then put
directly in front of camera

[k kK ok ok K K K K K K K K K K R K K K R K K K K K K K K K K K
sk s ok ok ok sk sk sk s s sk ok ok ok sk sk sk sk sk s ok ok ok ok ok

stdout = &SRV1_str;

printf("vpe1600120");

_delay_ms(1000);

stdout = &lcd_str;

LCDCommand (LCD_CLEAR) ;

_delay_ms(1000);

//END OF MAIN STATEMENT

[R EE Ak

[R EE Ak

//Additional functions go here

[R FE Ak

//Interrupt Subroutines located here

//IMPORTANT NOTE: cli() at beginning of
ISR and sei() at end of ISR

ISR(USARTD@_RXC_vect)

cli();

stdout = &lcd_str;

while(USARTD@.STATUS & USART_RXCIF_bm)

if(USARTD@.STATUS & USART_BUFOVF_bm)

//printf("BUFFER OVERFLOW");

char temp = USARTD®O.DATA;

break;

uartD@_rx[counter] = USARTDO.DATA;

if(uartDe_rx[counter] == '\r')

uartDe_rx[counter] = 0;

if(uartDe_rx[counter] == '\n')

uartDe_rx[counter] = 0;

printf("%c",uartDe_rx[counter]);

counter++;

sei();

ISR(BADISR_vect)

//END ALL INTERRUPT SUBROUTINES

