
University of Florida

Department of Electrical and Computer Engineering

Intelligent Machine Design Laboratory

EEL 5666 Fall 2012

Fallen Angel

Daniel Z. Frank

Instructors: Drs. Antonio Arroyo and Eric Schwartz

Teaching Assistants: Timothy Martin and Joshua Weaver

 2

Contents

I. Abstract………………………………………………………………………………..3

II. Executive Summary…………………………………………………………………...3

III. Introduction…………………………………………………………………………....3

IV. Integrated System……………………………………………………………………...4

V. Mobile Platform……………………………………………………………………….5

VI. Actuation………………………………………………………………………………7

VII. Sensors………………………………………………………………………………...8

VIII. Behaviors…………………………………………………………………………….10

IX. Experimental Layout and Results……………………………………………………12

X. Future Work………………………………………………………………………….14

XI. Conclusion…………………………………………………………………………...14

XII. Documentation……………………………………………………………………….15

XIII. Appendix...……………………………………………………………………….......16

 3

I. Abstract

 Fallen Angel is an autonomous mobile robot that can act as a personal emergency

response system. Fallen Angel patrols the home avoiding obstacles while searching for someone

who has fallen. Once a person is detected lying on the floor, it calls for help.

II. Executive Summary

 Fallen Angel is designed to detect when someone has fallen on the floor and then call for

help. It navigates the home, searching for someone, while engaging in basic obstacle avoidance

by using an array of infrared proximity sensors and an ultrasonic range finder. The IP camera

mounted on the front of the robot sends its raw video feed to a laptop running OpenCV. The

OpenCV program detects faces in real time by searching for Haar-like features using the Viola-

Jones method [8]. When a face is detected, the laptop sends a message to the robot via Bluetooth

to stop driving and keep the camera fixed on the person.

 Once a person is detected, OpenCV launches a Visual Basic SMTP application that sends

a prewritten message to a predefined list of e-mail accounts. The message is also sent to a

predefined list of phone numbers via a text message. Once the message is sent, an audial

confirmation is given using a text-to-speech algorithm. In the e-mail, a photo of the fallen person

is attached. This allows the recipients to verify the authenticity of the emergency.

III. Introduction

 For the elderly, living by oneself can be a difficult task. As someone becomes older, they

statistically become more prone to falling and injuring themselves. The Center for Disease

Control and Prevention (CDC) states that one out of three adults ages 65 and older fall every

year. [1] Due to this need, many products are now available for these people and their families to

gain some peace of mind. They are known as personal emergency response systems (PERS).

 A personal emergency response system allows someone who is frail, elderly, or has other

disabilities to easily contact emergency services. The PERS consists of a radio transmitter, a

console connected to a landline phone, and an emergency response center to monitor calls. The

transmitter is usually the same shape and size of a small cell phone. It can be worn on a belt,

around the neck, or carried in a pocket. When an emergency occurs, the user holds down the

button on the transmitter which signals the console on the phone to dial one or more emergency

numbers. However, these devices tend to be expensive. The hardware can cost anywhere from

$200 to $1500. Additionally, there is typically a monthly fee between $10 and $30. [2] These

devices are also invasive, in the sense that the user must carry the radio transmitter around with

them at all times while at home.

 Fallen Angel is a mobile autonomous robot that can search a home for a human that is

lying on the ground. Once it locates a person, it can function as a PERS by notifying emergency

services as well as family, neighbors, and anyone else that it was preprogrammed to contact. The

 4

advantage of Fallen Angel to a traditional PERS is that it can be activated when the owner of the

system is unable to call for help. It also does not require the owner to constantly carry around a

transmitter. For even greater safety, Fallen Angel can be used in conjunction with a traditional

PERS in order to ensure the greatest chance for a successful rescue.

IV. Integrated System

 The IP camera directly communicates with a router connected to the laptop computer via

a wireless connection. There, the raw camera feed is sent to an OpenCV program for analysis.

The program checks the image to see if it detects a face by using a Haar-like features training

algorithm. The information being generated from the OpenCV program is sent to the BlueSMiRF

via Bluetooth. The BlueSMiRF has a direct connection to the Epiphany DIY board. The board

has code that can read the information from the laptop and process it. The board is also directly

connected to the ultrasonic range finder and the infrared sensors. The board uses the information

gathered by the sensors and the laptop to appropriately control the various actuators. During the

search mode and obstacle avoidance behavior, the Epiphany DIY uses the proximity sensors to

avoid obstacles while using the IP camera to search for a fallen human. Once a human is spotted,

the laptop acts as a PERS and begins calling for help.

Fig. 1 Functional Block Diagram

 5

V. Mobile Platform

 The mobile platform is a simple yet functional design. It features a two-wheel drive

system actuated by small DC motors. The platform consists of two main levels. The bottom level

rests above the housing for the motors and provides space for the batteries. In addition, a bracket

is attached to the front of the bottom level and serves as the mount for the IP camera. The top

level is where all of the sensors and major electrical components are located. The Sharp IR

sensors are mounted to the front of the top level via brackets. The ultrasonic range finder is

mounted onto the base of the IP camera. The board is attached to the top level as well using

plastic spacers. There is also room on the top level for the BlueSMiRF which will be attached

with Velcro for ease of attachment and removal.

Fig. 2 Photo of the fully assembled robot

 Since the application of the robot only requires a simple mobile platform design and basic

capabilities, the platform is constructed by modifying an Arduino all-wheel-drive chassis. By

modifying a pre-existing frame rather than starting from scratch, it means that less time was

spent working on the frame and more time was spent working on the vision processing and

computer programming.

 6

 As mentioned in the previous paragraph, there were some significant modifications that

had to be made to the purchased chassis. First, new motors had to be ordered since the motors

that came with the chassis were rated for a maximum of 6 volts. This presented a problem since

the output voltage of the motor controllers on the Epiphany DIY can go as high as 12 volts.

Since the new motors were not designed to be used in the chassis, a method of mounting the

motors to the chassis as well as attaching the motors to the wheels had to be designed. Attaching

the motors to the chassis was as simple as drilling some new holes and screwing them together.

 The issue of attaching the motor to the wheels was a much more difficult issue. The

motor’s shaft is D-shaped while the corresponding mate on the wheel is rectangular. To get the

two to mate together, I designed an adapter in SolidWorks and printed a couple of copies out of

ABS plastic on a 3-D printer. The first time I built them I made the mistake of printing them

vertically. I was motivated to build them in this orientation since they would not require any

support material. However, the strength of the rapid-prototyped part is directly related to the

orientation in which it is made. Building the part in the vertical orientation made it susceptible to

shearing. As a result, the part snapped in half while the robot was driving around and I had to

drill out the material in the wheel so that I could replace it with another. The figure below

depicts one of the wheel adapters alongside with one that has sheared in half.

Fig. 3 On the left is a wheel adapter is still intact and on the right is one that has failed in shear

 The second time I built the parts, I did it in the horizontal orientation. Printing it this way

did require support material, so I had to put it in a tank full of hot sodium-hydroxide. The

solution dissolved the support material while leaving the model material intact. Unfortunately,

the parts were so small that they fell into the drain of the tank. It wasn’t until the tank had to be

drained for maintenance that I was able to retrieve the parts. While these pieces were

significantly stronger than the first batch, they still failed after some usage. The final solution

was to get aluminum set screw hubs to attach the wheels to the motor.

 The next issue I encountered was how to properly mount the DIY Epiphany board and

the IR sensors. The board issue was resolved simply by drilling some new holes. For the IR

sensors, I found a drawing of the sensor online and used the dimensions to rapid prototype a

custom mount. Finally, in order to keep the battery from moving while the robot was in

operation, I took dimensions of the battery using calipers and I made a rapid prototype for a

holder to secure the battery in place. The rapid prototype of the battery holder can be seen in the

figure below.

 7

Fig. 4 Rapid Prototype of the Battery Holder

VI. Actuation

DC Motors

 Two ServoCity DC micro gear motors are used to provide the robot with basic mobility.

They are 12 volt motors with a max speed of 130 rpm. The have a stall torque of 50 oz-in and a

stall current of 1600 mA. The robot is driven by the front two wheels while the back wheels are

free spinning. Steering is achieved using differential drive between the front right and front left

wheels.

Fig. 5 Micro Gear DC Motor

Personal Emergency Response System

 For this robot, the laptop computer will perform the same function as a PERS. The laptop

features 4 gigabytes of RAM and runs a 64-bit version of Windows 7. When the robot discovers

a human, the laptop will be able to connect to the internet and text a preprogrammed emergency

contact number. In an earlier design, using a commercial PERS was considered. The robot would

 8

carry the radio transmitter next to the Epiphany DIY as well as a recordable sound module.

There were a couple reasons for moving away from this type actuation. The first issue with

taking this route is that commercially available PERS are expensive and would require a lot of

additional hardware such as a phone and a PERS console. The second issue is that it would be

hard to test and demonstrate that the PERS works without actually calling emergency services.

VII. Sensors

Ultrasonic Range Finder

 An ultrasonic range finder is mounted in the front of the robot. It is a Maxbotix SEN-

00639 and operates between 2.5 and 5.5 volts. It consumes 2 mA, reads at a rate of 20 Hz, and

features both analog and PWM output. For this project, only the analog output was used and

provides a resolution of 10 mV/in. It has a range of 0 to 255 inches with little to no dead zone. It

is used in conjunction with the infrared proximity sensors for basic obstacle avoidance.

Characterization of the sensor is provided in the graph below. The experiment for how this

characterization graph was derived is discussed in detail in the “Experimental Layout and

Results” section of this report.

Fig. 6 Characterization of Ultrasonic Range Finder

Fig. 7 Ultrasonic Range Finder

2.5

2.7

2.9

3.1

3.3

3.5

3.7

0 20 40 60 80 100

V
o

lt
ag

e
 (

V
)

Distance from Ultrasonic Range Finder (in)

Ultrasonic Range Finder Characterization

 9

Long Range Infrared Proximity Sensor

 Two Sharp long range infrared GP2Y0A02YK0F sensors are mounted on the top level of

the robot platform. One is angled at the front left corner of the robot, while the other is angled at

the front right corner. The sensors have a range of 20 cm to 150 cm, consume 33 mA, and

require an input voltage in the range of 4.5 to 5.5 VDC. The sensors output an analog voltage

that varies between .4 V (150 cm) to 2.8 V (15 cm). They will be utilized along with the

ultrasonic range finder for obstacle avoidance. Characterization of the two sensors is provided in

the graphs below. The experiment for how these characterization graphs were derived is

discussed in detail in the “Experimental Layout and Results” section of this report.

Fig. 8 Characterization of Left and Right IR Sensors

Fig. 9 Sharp Long Range Infrared Proximity Sensor

IP Camera

 The IP Camera used for this robot is a Cisco Wireless N Internet Camera WVC80N IP

camera. It communicates with a laptop computer using a Linksys wireless router. The camera is

used in conjunction with OpenCV to detect if a human has fallen on the floor. The experiments

for how I learned how to use this camera to detect faces is described in detail in the

“Experimental Layout and Results” section of this report.

Fig. 10 Cisco Linksys IP Camera

 10

Battery Monitor

 Whenever using a LiPo battery, it is important to monitor the battery voltage so that it

does not drop too low. This particular battery monitor is designed for a three cell LiPo battery

which is used to power the robot. The characterization of the battery monitor is summarized in

the table below.

Blue light shines Blue light flashes Red light shines Red light flashes and beeps

11V and up 11.1V ~ 10.2V 10.2V ~ 9.9V Below 9.9V
Fig. 11 Battery Monitor Characterization

Fig. 12 3S Battery Monitor

Micro Switch

 A digital micro switch is used to turn the motors off. It is very helpful to have, especially

when troubleshooting a new program. It is much easier to disconnect power from the robot when

you don’t have to worry about it driving away while you pull the battery out. The switch used on

the robot is in the normally closed configuration. The program that I used to test the switch is in

the code labeled, “Limit Switch and Sensor Reading Program” which is located in the “Atmel

Studio 6.0 Code” section of the Appendix. The switch was not used in the final version of the

robot. It was replaced instead with a switch that physically kills power to the robot directly,

rather than turns off the motors in the code. However, since the switch was used heavily in the

experimentally phases of the design, it was included in this report for completeness.

Fig. 13 Micro Switch

VIII. Behaviors

Search Mode and Obstacle Avoidance

 Once the robot is activated, it will begin navigating the home looking for a fallen human.

Until it discovers a human, it will engage in a search behavior. While searching for a human, the

robot will use its infrared and ultrasonic sensors to do basic obstacle avoidance. If the ultrasonic

sensor senses an object directly in front of it, it will back up for a random amount of time and

 11

then turn in a random direction using differential steering. If one of the IR sensors detects an

object is within a certain threshold of the robot, it will reverse the direction of the opposite side’s

motor to cause the robot to veer away from the object. If both IR sensors detect an object is

within a certain threshold, it will back up for a random amount of time and then turn in a random

direction.

Emergency Response

 If the IP camera and the OpenCV program detect a human lying on the floor, the laptop

will send a signal to the robot via a Bluetooth connection. Once the robot receives confirmation

that it has found someone, it will stop moving and activate the personal emergency response

system (PERS). The laptop computer will be able to send a prewritten e-mail with a photo

attachment along with a text message to a family member or neighbor as a means to obtain

assistance. The recipients of the message will be able to view the attached photo to verify

whether the emergency is authentic.

Fig. 14 Behavioral block diagram of the robot’s operation

 12

IX. Experimental Layout and Results

 The two IR sensors were characterized by placing a wall made out of cardboard at a

determined distance from them and reading the ADC value via a USB cable connecting the

Epiphany DIY with the laptop. The software used to display the data coming into the computer

was the X-CTU terminal. The same process was also used to characterize the ultrasonic range

sensor. The results of these experiments can be found in the "Sensors" section of this report. The

program that I used in these experiments is the code labeled, “Limit Switch and Sensor Reading

Program” which is located in the “Atmel Studio 6.0 Code” section of the Appendix.

 Once the sensors were characterized, I began testing my obstacle avoidance code. The

code takes readings from the IR and ultrasonic sensors, and uses the data to avoid bumping into

obstacles. To start my obstacle avoidance experiments, I tried only using two IR sensors. One

faced the front-left corner of the robot, while the other faced the front right corner. When the left

sensor detected an object close to it, the robot would turn to the right. If the right sensor detected

an object nearby, it would turn the other way. For the most part this seemed to work well, but

there were two issues that had to be addressed. First, when both sensors detected an object close

to it, it would begin to wiggle back and forth and get stuck. This problem was fixed by adding a

conditional statement for when both sensors detect a nearby object. If this case was true, then the

robot was programmed to back up for a random amount of time and turn in a random direction.

The second issue was caused by the IR sensors not facing directly the front of the robot, creating

a blind spot. If the robot encountered a narrow obstacle (like a pole) directly in front of it, it

would not be able to detect it and would ultimately crash into it. This was corrected by utilizing

the ultrasonic sensor and mounting it directly in front of the robot. A calibration process for the

IR sensors was added to the final version of the obstacle avoidance program and can be found in

the “Atmel Studio 6.0 Code” section of the Appendix under the label of “Fallen Angel V_0.”

 The next experiment I ran was on characterizing the IP camera, which is the special

sensor in this project. Since controlling an e-mail account with a camera is not a trivial task, I

broke the problem into smaller parts. With each success I added to the complexity of the code.

For example, the first test experiment I ran was getting the laptop’s web camera to communicate

with OpenCV. The next experiment involved getting the web camera to detect a face using

OpenCV. Since I was new to face detection using Haar-like features, I started out with sample

code that I found on the internet. [6] The sample code took some adjusting to get it to function

properly on my laptop, but eventually it worked.

Fig. 15 Sample frame from the face detection OpenCV program

 13

 The next two issues I faced with the code were that it wouldn’t run in real time nor was it

able to get information from the IP camera. The sample code simply loaded an image, searched

for faces, and then outputted another image with the faces highlighted if it found any. I then

expanded on the code and ran an experiment to test whether it could load images in a loop,

simulating real time usage. Once I had accomplished this, I learned how to save frames from a

web camera into image files. Now I was able to load the frame that I had saved from my web

camera and have the program detect faces in real time. The next step was transferring from the

web camera as the image source to the IP camera. It turns out that this was as simple as changing

one line of code in my program.

 The last major issue I encountered while working on the face detection program was its

sensitivity to the orientation of the face. The program would only be able to find a face if it was

oriented in the upright position. In order to compensate for this, I rotated the raw feed from the

camera both 90 degrees clockwise and counterclockwise. I then ran these images through the

face detection program. This allows the program to find faces in three orientations, upright and

rotated 90 degrees clockwise and counterclockwise. The last two are particularly useful since

when someone falls on the ground they are more likely to have their head oriented in one of

those positions rather than being upright.

Fig. 16 Sample frame from the face detection OpenCV program

 When using the IP camera, there seems to be a minute delay between when I start the

program to when it is able to run properly. Otherwise it does exactly what it needs to do, detect

faces from the IP camera in real time. The code that I used for these experiments is labeled “Face

Detector v3.0” and is located in the “OpenCV Code” section of the Appendix.

 Once I could detect faces reliably with the IP camera, the next step was getting the

OpenCV code to call for help by sending e-mails and text messages. I did a lot of research in the

subject and learned the basics of short message transfer protocol (SMTP). I found a video that

demonstrated how easy it was to construct a Visual Basic application that could send prewritten

e-mail messages with attachments automatically. [5] Once I had this working, I did some more

research on how I could extend this program to also send text messages. I learned that each

phone number has an e-mail address associated with it. When an e-mail is sent to this address,

the phone treats it as a text message. Once I learned how to find the associated e-mail address for

a given phone number, it was trivial to rewrite the program so that it could send text messages as

well. As a bonus feature, I also learned how to add text-to-speech to application from another

 14

video online. [4] It provides an audial cue to the victim when a call for help has been sent.

 Now that the Visual Basic application was able to send e-mails and text messages, I still

had the problem of how OpenCV was going to call that application when it found a face. By

doing some research, I learned about the CMD in Windows and how system functions work in

C++. This provided me with the tools to write a code that will run the Visual Basic application

whenever a face is detected.

X. Future Work

 In the “Experimental Layout and Results” section of the paper, I discuss how one of the

disadvantages of using face detection as a means for the robot to detect a fallen human is that it

is sensitive to the orientation of the person’s face. What happens if the individual falls and lands

on their back? There would be no way for the robot to detect that they have fallen. One way to

resolve this issue is to have the robot instead detect for body profiles of people who have fallen

and are lying on the ground. The reason that this was not implemented during this semester was

due to time constraints. Building such a library is a very time consuming process. Creating a new

library for people lying on the floor would require thousands of images, with a wide variety of

camera angles, clothing variation, lighting conditions, body positions, etc. Then once the photos

are taken, thousands of more photos would have to be taken that do not include the object.

Ultimately, to make this project the best it can be, such a library would have to be created.

 When things in the household are normal and there is no emergency, there is no reason

for the robot to be active. However, how does the robot know when to start searching the house

for someone who has fallen? One way to do this is to use a loud sound as a trigger to activate the

robot. This is possible by using a microphone to monitor the sound level in the home. However,

doing this leads to another problem. How can the robot differentiate between thunder and

someone yelling and falling down on the floor? Another possible solution is to just have the

robot make periodic searches of the house. Or perhaps an even better solution would be to

integrate the Fallen Angel to a vacuum cleaning robot, so it clean the house as it searched for

fallen humans. It would be worthwhile in the future to investigate which method of activation is

best.

 One final improvement that could be made to the robot is the ability to view the feed

from the robot’s IP camera remotely. A link could be provided in the preprogrammed e-mail so

that the user could view the victim in real time to get a better grasp of the situation. This is

possible by obtaining a DNS host, but it would slightly increase the overall cost of the robot.

XI. Conclusion

 In conclusion, the Fallen Angel presents a novel solution to a very difficult problem. The

Fallen Angel provides several advantages to currently available commercial personal emergency

response systems. The first advantage is that it does not require the user to carry around a radio

transmitter which can be invasive and uncomfortable. Commercial PERS also require that the

user is capable of pressing the button on the transmitter. However, what if the user is suffering

 15

from a condition that makes them unable to press the button, such as experiencing a seizure,

heart attack, stroke, etc.? This leads to the second advantage of the Fallen Angel over

commercial PERS. It can detect if someone has fallen, even if they are no longer conscious. The

third advantage is that the user can decide who they want to receive the emergency texts and e-

mails. This is a nice added feature since the user can add their neighbors to the robot’s contact

list, allowing for a potentially faster response time. A comparison table of typical response times

of the Fallen Angel with commercial PERS can be found in the appendix. The final advantage of

the Fallen Angel is that it has the potential to be more cost effective than the other commercial

PERS. While the initial hardware investment is greater for the Fallen Angel, the lack of a

monthly fee makes it one of the cheapest PERS alternatives within just one year of ownership. A

lifetime cost comparison of the Fallen Angel compared to other commercial PERS can be found

in the Appendix. Producing these robots in large scale would only further drive down the cost.

Due to above reasons, I believe that the Fallen Angel would be a competitive alternative in the

personal emergency response system market. Even better, it can be used in conjunction with a

traditional PERS in order to ensure the greatest chance for a successful rescue.

XII. Documentation
[1] Centers for Disease Control and Prevention Accessed on 12 September 2012.

 http://www.cdc.gov/homeandrecreationalsafety/falls/adultfalls.html

[2] ENDependence Center of Northern Virginia, Inc. December 2009. Accessed on 12

 September 2012. http://www.ecnv.org/FAQs/pers.html

[3] USLegal.com. Accessed on 12 September 2012.

 http://definitions.uslegal.com/p/personal-emergency-response-system/

[4] Amant, Timmy. "Tutorial 1: Microsoft Visual Studio 2010 - text to speech." 24 September 2010.

 Online video clip. YouTube. Accessed on 29 September 2012.

 http://www.youtube.com/watch?v=wxBjWbvbfoc

[5] TeamNiBiCnet. " Visual basic 2008/2010 Tutorial - Email Sender using Smtp" 28 August 2010.

 Online video clip. YouTube. Accessed on 23 September 2012.

 http://www.youtube.com/watch?v=9VBO5A-dNmo

[6] OpenCVWiki. SSteve. 25 August 2011. Accessed on 16 September 2012.

 http://opencv.willowgarage.com/wiki/FaceDetection

[7] Federal Trade Commission. Accessed on 12 September 2012.

 http://www.ftc.gov/bcp/edu/microsites/whocares/emergency.shtm

[8] Paul Viola & Michael Jones. "Robust Real-time Object Detection." International Journal of

 Computer Vision. Vancouver, Canada, JULY 13, 2001: pages 0 - 25.

[9] Medical Alert Advice. Accessed on 28 November 2012.

 http://www.medicalalertadvice.com/review-summary.php

http://www.cdc.gov/homeandrecreationalsafety/falls/adultfalls.html
http://definitions.uslegal.com/p/personal-emergency-response-system/
http://www.youtube.com/watch?v=wxBjWbvbfoc
http://www.youtube.com/user/TeamNiBiCnet
http://www.youtube.com/watch?v=9VBO5A-dNmo
http://opencv.willowgarage.com/wiki/FaceDetection
http://www.ftc.gov/bcp/edu/microsites/whocares/emergency.shtm

 16

XIII. Appendix

CAD Model Images

Fig. 17 Isometric view of the CAD model of the fully assembled robot

Fig. 18 Front view of the CAD model of the fully assembled robot

 17

Fig. 19 Side view of the CAD model of the fully assembled robot

Fig. 20 Top view of the CAD model of the fully assembled robot

 18

Average Response Time Comparison

Response time is defined as the time between when the user signals for help and when

someone on the outside world is made aware of the user’s call. For the commercial PERS, it is

the amount of time between pressing the button on the transmitter and when someone answers

the call at a monitoring station. In the Fallen Angel’s case, it typically takes 5 to 10 seconds after

when a face is detected before the predetermined contacts receive their e-mails and text

messages. This assumes that emergency contact checks their phone or e-mail immediately after it

is sent. Since there is no guarantee of this, I state that there is a potential for a faster response

time.

PERS Provider Average Response Time

Life Alert 30-50 seconds

Phillips Lifeline 20-30 seconds

ADT Companion 45 seconds

Fallen Angel 5 -10 seconds

Fig. 21Average Response Time Comparison

Cost Breakdown

Item Cost

Epiphany Board $115.00

Servo + $40.00

Motor Driver Duo $30.00

Sensors $36.88

Ultra Sonic Sensor $0.00

IP Camera $111.64

Chassis $70.00

Motors $36.97

Wheel Hubs $20.97

Blue SMiRF $43.59

LiPo Battery $13.82

Battery Monitor $3.99

Total: $522.86
Fig. 22Cost Breakdown of the Fallen Angel

 19

Lifetime Cost Comparison

Fig. 23 Lifetime Cost Comparison of PERS

$0.00

$500.00

$1,000.00

$1,500.00

$2,000.00

$2,500.00

$3,000.00

$3,500.00

$4,000.00

0 1 2 3 4 5

Li
fe

ti
m

e
 C

o
st

 o
f

P
ER

S
O

w
n

e
rs

h
ip

Years

Lifetime Cost Comparison of PERS

Fallen Angel

Life Alert (Cheapest Case)

Life Alert (Most Expensive Case)

Phillips Lifeline

ADT Companion

 20

Visual Basic Code

/***

 * Personal Emergency Response System

 * Created: 09/23/2012 7:33 PM

 * Author: Daniel Frank

 *

 * Description: This program sends a prewritten message to my g-mail account

 * as well as send a text to my cell phone. It also uses text-to-

 * speech to give an audio cue that help has been sent for

 ***/

Imports System.Net.Mail

Namespace My

 Partial Friend Class MyApplication

 Dim message As New MailMessage

 Dim smtp As New SmtpClient intialize SMTP

 Dim SAPI ‘initializes text-to-speech

Private Sub MyApplication_Startup(ByVal sender As Object, ByVal e As

Microsoft.VisualBasic.ApplicationServices.StartupEventArgs) Handles Me.Startup

 message.From = New MailAddress("dzf209@gmail.com") ‘define sender address

message.To.Add("dzf209@gmail.com") ‘address to send e-mail to

message.To.Add("9085284218@txt.att.net") ‘phone number to send text to

 message.Body = "This is a test of an emergency notification system" ‘message text

 message.Subject = "This is only a test" ‘message subject
 message.Attachments.Add(New Attachment("face_found.jpg")) ‘attach a photo of the fallen person

 message.Priority = MailPriority.Normal ‘priority of the message

'SMTP Client Settings'

 smtp.EnableSsl = True

 smtp.Port = "587"

 smtp.Host = "smtp.gmail.com"

 smtp.Credentials = New Net.NetworkCredential("dzf209@gmail.com", "*****")

 smtp.Send(message)

 SAPI = CreateObject("sapi.spvoice")

 'Text is read aloud to notify the victim that help is on its way

 SAPI.Speak("Emergency services were notified. Help is on the way")

 MsgBox("Message was sent!") ‘visual cue that message was sent

 End Sub

Private Sub MyApplication_StartupNextInstance(ByVal sender As Object, ByVal e As

Microsoft.VisualBasic.ApplicationServices.StartupNextInstanceEventArgs) Handles Me.StartupNextInstance

End Sub

End Class

End Namespace

 21

Atmel Studio 6.0 Code

/***

 * Analog Sensor Read

 * Created: 10/05/2012 9:53 AM

 * Author: Daniel Frank

 *

 * Description: This program will read an analog sensor attached to pin 0 in

 * Port A and display it on the X-CTU terminal

 ***/

#include <avr/io.h>

#include <util/delay.h>

#include <math.h>

#include "clock.h"

#include "uart.h"

#include "adc.h"

#include <stdio.h>

int main(void)

{

 //Initialize phase

 clockInit();

 motorInit();

 adcInit(&ADCA);

 usartInit(&USARTC0,115200);

 sei();

while(1)

 {

 fprintf(&USB_str,"%d \r\n", analogRead(&ADCA, 0)); //prints sensor reading to X-CTU

 //Terminal

 _delay_ms(100); //delay makes it easier to read the sensor data in real-time

 }

}

 22

/***

 * Motor Test

 * Created: 10/05/2012 5:14 PM

 * Author: Daniel Frank

 *

 * Description: This program will test if the motors are working

 ***/

#include <avr/io.h>

#include <util/delay.h>

#include <math.h>

#include "clock.h"

#include "uart.h"

#include "motor.h"

#include "adc.h"

#include <stdio.h>

int main(void)

{

 //Initialize phase

 clockInit();

 motorInit();

 adcInit(&ADCA);

 usartInit(&USARTC0,115200);

 sei();

while(1)

 {

 setMotorEffort(1,800, MOTOR_DIR_FORWARD); //Drive Left Motor Forward

 setMotorEffort(2,800, MOTOR_DIR_FORWARD); //Drive Right Motor Forward

 }

}

 23

/***

 * Motor and Sensor Test

 * Created: 10/05/2012 6:40 PM

 * Author: Daniel Frank

 *

 * Description: This program will test if the motors are able to be controlled by

 * an IR sensor. Sensor readings will displayed on the X-CTU

 * terminal

 ***/

#include <avr/io.h>

#include <util/delay.h>

#include <math.h>

#include "clock.h"

#include "ATtinyServo.h"

#include "uart.h"

#include "adc.h"

#include "motor.h"

#include <stdio.h>

int main(void)

{

 //Initialize phase

 clockInit();

 motorInit();

 adcInit(&ADCA);

 ATtinyServoInit();

 usartInit(&USARTC0,115200);

 sei();

 while(1)

 {

 //Display sensor data to the X-CTU terminal

 fprintf(&USB_str,"%d \t\t", analogRead(&ADCA, 0)); //Left IR Sensor

 fprintf(&USB_str,"%d \r\n", analogRead(&ADCA, 2)); // Right IR Sensor

 if (analogRead(&ADCA, 2) < 2000){

setMotorEffort(1,800, MOTOR_DIR_FORWARD); // Drive Left Motor Forward

 setMotorEffort(2,800, MOTOR_DIR_FORWARD); //Drive Right Motor Forward

 }

 else {

 setMotorEffort(1,0, MOTOR_DIR_FORWARD); //Stop Left Motor

 setMotorEffort(2,0, MOTOR_DIR_BACKWARD); //Stop Right Motor

 }

 _delay_ms(100);

 }

}

 24

/***

 * Obstacle Avoidance 1

 * Created: 10/05/2012 7:12 PM

 * Author: Daniel Frank

 *

 * Description: This is an obstacle avoidance program. When one

 * of the IR sensors reads a value within a

 * predefined threshold value, it will reverse the

 * motor direction while keeping the same speed

 ***/

#include <avr/io.h>

#include <util/delay.h>

#include <math.h>

#include "clock.h"

#include "ATtinyServo.h"

#include "uart.h"

#include "adc.h"

#include "motor.h"

#include <stdio.h>

int main(void){

 //Initialize phase

 clockInit();

 motorInit();

 adcInit(&ADCA);

 ATtinyServoInit();

 usartInit(&USARTC0,115200);

 sei();

 int IR_Left, IR_Right; //define IR sensor variables

 while(1)

 {

 IR_Left = analogRead(&ADCA, 0); //Read Left IR sensor

 IR_Right = analogRead(&ADCA, 2); //Read Right IR sensor

 if(IR_Right < 2000){

 setMotorEffort(1,800, MOTOR_DIR_FORWARD); // Drive Left Motor Forward

 }

 else{

 setMotorEffort(1,800, MOTOR_DIR_BACKWARD); // Drive Left Motor Backward

 }

 if(IR_Left < 2000){

 setMotorEffort(2,800, MOTOR_DIR_FORWARD); // Drive Right Motor Forward

 }

 else{

 setMotorEffort(2,800, MOTOR_DIR_BACKWARD); // Drive Right Motor Backward

 }

 _delay_ms(100);

 }

}

 25

/***

 * Obstacle Avoidance 2

 * Created: 10/05/2012 7:57 PM

 * Author: Daniel Frank

 *

 * Description: This is an obstacle avoidance program. The

 * motors are kept in the forward position and the

 * the magnitude of their speed is a function of IR

 * sensor readings

 ***/

#include <avr/io.h>

#include <util/delay.h>

#include <math.h>

#include "clock.h"

#include "ATtinyServo.h"

#include "uart.h"

#include "adc.h"

#include "motor.h"

#include <stdio.h>

int main(void)

{

 //Initialize phase

 clockInit();

 motorInit();

 adcInit(&ADCA);

 ATtinyServoInit();

 usartInit(&USARTC0,115200);

 sei();

 //define variables

 int IR_Left_Min, IR_Right_Min, IR_Left, IR_Right, Motor_Left, Motor_Right;

 //Sensor parameters gathered from characterization experiment

 IR_Left_Min = 220;

 IR_Right_Min = 560;

 while(1)

 {

 IR_Left = analogRead(&ADCA, 0); //read Left IR sensor

 Motor_Left = 600 + (IR_Left - IR_Left_Min)/10; //generate left motor signal from

 //sensor feedback

 IR_Right = analogRead(&ADCA, 2); //read Right IR sensor

 Motor_Right = 600 + (IR_Right - IR_Right_Min)/10; //generate right motor signal

 //from sensor feedback

 if(Motor_Left > 1000){

 Motor_Left = 1000; //saturates left motor signal

 }

 if(Motor_Right > 1000){

 26

 Motor_Right = 1000; //saturates right motor signal

 }

 Display sensor data to the X-CTU terminal

 fprintf(&USB_str,"%d \t\t", Motor_Left); //displays Left Motor Signal

 fprintf(&USB_str,"%d \r\n", Motor_Right); //displays Right Motor Signal

_delay_ms(100);

 }

}

 27

/***

 * Limit Switch and Sensor Reading Program

 * Created: 10/10/2012 8:31 PM

 * Author: Daniel Frank

 *

 * Description: This program will test will output both IR

 * sensors, the ultrasonic sensor, and PortD which

 * is connected to a limit switch.

***/

#include <avr/io.h>

#include <util/delay.h>

#include <math.h>

#include "clock.h"

#include "ATtinyServo.h"

#include "uart.h"

#include "adc.h"

#include "motor.h"

#include <stdio.h>

int main(void)

{

 //Initialize phase

 clockInit();

 motorInit();

 adcInit(&ADCA);

 ATtinyServoInit();

 usartInit(&USARTC0,115200);

 sei();

 PORTD.DIRCLR = 0xFF; //set all of pins of port D to inputs

 PORTD.PIN1CTRL = 0x18; //set pin 1 to pull up

 while(1)

 {

 //Display sensor data to the X-CTU terminal

 fprintf(&USB_str,"%d \t\t", analogRead(&ADCA, 0)); //Left IR Sensor

 fprintf(&USB_str,"%d \t\t", analogRead(&ADCA, 2)); //Right IR Sensor

 fprintf(&USB_str,"%d \t\t", analogRead(&ADCA, 4)); // Ultra Sonic Sensor

 fprintf(&USB_str,"%d \r\n", PORTD.IN); // Port D

 _delay_ms(100);

 }

}

 28

/***

 * OFF Switch

 * Created: 10/10/2012 8:53PM

 * Author: Daniel Frank

 *

 * Description: This program will use the digital switch in port

 * D to turn off the motors

***/

#include <avr/io.h>

#include <util/delay.h>

#include <math.h>

#include "clock.h"

#include "ATtinyServo.h"

#include "uart.h"

#include "adc.h"

#include "motor.h"

#include <stdio.h>

int main(void)

{

 //Initialize phase

 clockInit();

 motorInit();

 adcInit(&ADCA);

 ATtinyServoInit();

 usartInit(&USARTC0,115200);

 sei();

 PORTD.DIRCLR = 0xFF; //set all of pins of port D to inputs

 PORTD.PIN1CTRL = 0x18; //set pin 1 to pull up

 while(1){

 setMotorEffort(1,800, MOTOR_DIR_FORWARD); // Drive Left Motor Forward

 setMotorEffort(2,800, MOTOR_DIR_FORWARD); //Drive Right Motor Forward

 if(PORTD.IN & 0xFF){

 while(1){

 setMotorEffort(1,0, MOTOR_DIR_FORWARD); // Stop Left Motor Forward

 setMotorEffort(2,0, MOTOR_DIR_FORWARD); // Stop Right Motor Forward

 }

 }

 _delay_ms(100);

 }

}

 29

/***

 * Obstacle Avoidance 4

 * Created: 10/31/2012 9:12 PM

 * Author: Daniel Frank, adapted from code by Joshua Weaver

 *

 * Description: This is an obstacle avoidance program. When one

 * of the IR sensors reads a value within a

 * predefined threshold value, it will reverse the

 * motor direction while keeping the same speed,

 * also avoids getting stuck in corners

 * The BlueSMiRF sections of the code were adapted

 * from code provided by Joshua Weaver

 ***/

#include <avr/io.h>

#include <util/delay.h>

#include <math.h>

#include "clock.h"

#include "ATtinyServo.h"

#include "uart.h"

#include "adc.h"

#include "motor.h"

#include <stdio.h>

// Defines

#define Blue_str usartD0_str

int main(void)

{

 // Initialization

 clockInit();

 adcInit(&ADCA);

 motorInit();

 ATtinyServoInit();

 usartInit(&USARTC0,115200); // Initialize USB_str port and interrupts

 usartInit(&USARTD0,115200); // Initialize blueSMiRF port and interrupts, pin2 RX, pin3 TX

 //PORTB.DIRCLR = 0xFF; //set all of pins of port B to inputs

 //PORTB.PIN1CTRL = 0x18; //set pin 1 to pull up

 // Setup ADC Mux Channels

 adcChannelMux(&ADCA,0,0);

 adcChannelMux(&ADCA,1,2);

 // Setup Port pin directions

 PORTC.DIRSET = 0x08; // Set TX bit to output for USB_str

 PORTD.DIRSET = 0x08; // Set TX bit to output for usartD0_str (blueSMiRF)

 PORTR.DIRSET = 0x02; // Debug LED

 // Enable global interrupts.

 30

 sei();

 // 5 Second Startup hold.

 for (int i = 5; i >= 1; i--) {

 fprintf(&USB_str, "Starting in %d...\r\n", i);

 PORTR.DIRTGL = 0x02; // BLINK LED

 _delay_ms(500);

 PORTR.DIRTGL = 0x02; // BLINK LED

 _delay_ms(500);

 }

 // Send message to connected devices as a checkup

 fprintf(&Blue_str, "BlueTooth Checkup.\r\n");

 // STARTING MAIN LOOP

 fprintf(&USB_str, "Starting main loop.\r\n");

 int IR_Left, IR_Right, Ultra_Sonic, random_delay; //define IR sensor variables

 while(1)

 {

 // Repeat character entered from blueSMiRF to itself.

 // Note that this only received a single character at a time.

 // A While loop looking for an ending character can be used to

 // receive a string.

 if (dataInBufD0()) {

 char test[10];

 fscanf(&Blue_str,"%c",&test);

 // Here we check to see if a key has been pressed (1,2)

 if (strcmp(test, "1") == 0) {

 while(1){

 fprintf(&Blue_str, "Face was found.\r\n");

 setMotorEffort(1,0, MOTOR_DIR_FORWARD);

 setMotorEffort(2,0, MOTOR_DIR_FORWARD);

 }

 }

 }

 IR_Left = analogRead(&ADCA, 0); //Read Left IR sensor

 IR_Right = analogRead(&ADCA, 2); //Read Right IR sensor

 Ultra_Sonic = analogRead(&ADCA, 1); //Read Ultra Sonic sensor

 fprintf(&USB_str,"%d \t\t", analogRead(&ADCA, 0)); //Left IR Sensor

 fprintf(&USB_str,"%d \t\t", analogRead(&ADCA, 2)); //Right IR Sensor

 fprintf(&USB_str,"%d \r\n", analogRead(&ADCA, 4)); // Ultra Sonic Sensor

 31

 if(IR_Right <1800){

 setMotorEffort(1,800, MOTOR_DIR_FORWARD); // Drive Left Motor Forward

 }

 else{

 setMotorEffort(1,800, MOTOR_DIR_BACKWARD); // Drive Left Motor Backward

 }

 if(IR_Left < 1800){

 setMotorEffort(2,800, MOTOR_DIR_FORWARD); // Drive Right Motor Forward

 }

 else{

 setMotorEffort(2,800, MOTOR_DIR_BACKWARD); // Drive Right Motor Backward

 }

 if(IR_Right > 1800 && IR_Left > 1800){

 setMotorEffort(1,800, MOTOR_DIR_BACKWARD);

 setMotorEffort(2,800, MOTOR_DIR_BACKWARD);

 _delay_ms(1000);

 if(Ultra_Sonic % 2 == 1){

 setMotorEffort(1,800, MOTOR_DIR_FORWARD);

 setMotorEffort(2,800, MOTOR_DIR_BACKWARD);

 _delay_ms(1000);

 }

 else{

 setMotorEffort(1,800, MOTOR_DIR_BACKWARD);

 setMotorEffort(2,800, MOTOR_DIR_FORWARD);

 _delay_ms(1000);

 }

 }

 PORTR.DIRTGL = 0x02; // HEARTBEAT LED

 _delay_ms(100); // 100 ms loop

 }

}

 32

/**

 * Fallen Angel V_0

 * Created: 11/18/2012 1:54 PM

 * Author: Daniel Frank, sections of the code was adapted from code by Joshua Weaver

 *

 * Description: This is an obstacle avoidance and calibration

 * program. When one of the IR or ultrasonic sensors

 * reads a value within a threshold value defined by

 * the calibration process, it will reverse the

 * motor direction, it also avoids getting stuck in

 * corners. The bluesmirf sections of the code were

 * adapted from code provided by Joshua Weaver

 **/

#include <avr/io.h>

#include <util/delay.h>

#include <math.h>

#include "clock.h"

#include "ATtinyServo.h"

#include "uart.h"

#include "adc.h"

#include "motor.h"

#include <stdio.h>

// Defines

#define Blue_str usartD0_str

int main(void)

{

 // Initialization

 clockInit();

 adcInit(&ADCA);

 adcInit(&ADCB);

 motorInit();

 ATtinyServoInit();

 usartInit(&USARTC0,115200); // Initialize USB_str port and interrupts

 usartInit(&USARTD0,115200); // Initialize blueSMiRF port and interrupts, pin2 RX,

 //pin3 TX

 // Setup ADC Mux Channels

 adcChannelMux(&ADCA,0,0);

 adcChannelMux(&ADCA,1,2);

 // Setup Port pin directions

 PORTC.DIRSET = 0x08; // Set TX bit to output for USB_str

 PORTD.DIRSET = 0x08; // Set TX bit to output for usartD0_str (blueSMiRF)

 PORTR.DIRSET = 0x02; // Debug LED

 33

 // Enable global interrupts.

 sei();

 int IR_Left, IR_Right, Ultra_Sonic, IR_Left_Threshold, IR_Right_Threshold,

 Ultra_Sonic_Threshold; //define IR sensor variables

 // 5 Second Startup hold.

 for (int i = 3; i >= 1; i--) {

 fprintf(&USB_str, "Starting in %d...\r\n", i);

 PORTR.DIRTGL = 0x02; // BLINK LED

 _delay_ms(500);

 PORTR.DIRTGL = 0x02; // BLINK LED

 _delay_ms(500);

 }

 IR_Left_Threshold = analogRead(&ADCA, 0); //Read Left IR sensor

 IR_Right_Threshold = analogRead(&ADCA, 2); //Read Right IR sensor

 Ultra_Sonic_Threshold = 250; //Read Ultra Sonic sensor

 // Send message to connected devices as a checkup

 fprintf(&Blue_str, "BlueTooth Checkup.\r\n");

 // STARTING MAIN LOOP

 fprintf(&USB_str, "Starting main loop.\r\n");

 while(1)

 {

 // Repeat character entered from blueSMiRF to itself.

 // Note that this only received a single character at a time.

 // A While loop looking for an ending character can be used to

 // receive a string.

 if (dataInBufD0()) {

 char test[10];

 fscanf(&Blue_str,"%c",&test);

 // Here we check to see if a key has been pressed (1,2)

 if (strcmp(test, "1") == 0) {

 while(1){

 fprintf(&Blue_str, "Face was found.\r\n");

 setMotorEffort(1,0, MOTOR_DIR_FORWARD);

 setMotorEffort(2,0, MOTOR_DIR_FORWARD);

 }

 }

 34

 }

 IR_Left = analogRead(&ADCA, 0); //Read Left IR sensor

 IR_Right = analogRead(&ADCA, 2); //Read Right IR sensor

 Ultra_Sonic = analogRead(&ADCB, 0); //Read Ultra Sonic sensor

 fprintf(&USB_str,"%d \t\t", analogRead(&ADCA, 0)); //Left IR Sensor

 fprintf(&USB_str,"%d \t\t", analogRead(&ADCA, 2)); //Right IR Sensor

 fprintf(&USB_str,"%d \r\n", analogRead(&ADCB, 0)); // Ultra Sonic Sensor

 if(IR_Right <IR_Right_Threshold){

 setMotorEffort(1,700, MOTOR_DIR_FORWARD); // Drive Left Motor Forward

 }

 else{

 setMotorEffort(1,1000, MOTOR_DIR_BACKWARD); // Drive Left Motor

 //Backward

 }

 if(IR_Left < IR_Left_Threshold){

 setMotorEffort(2,700, MOTOR_DIR_FORWARD); // Drive Right Motor

 //Forward

 }

 else{

 setMotorEffort(2,1000, MOTOR_DIR_BACKWARD); // Drive Right Motor

 //Backward

 }

 if(IR_Right > IR_Right_Threshold && IR_Left > IR_Left_Threshold ||

 Ultra_Sonic <Ultra_Sonic_Threshold){

 setMotorEffort(1,700, MOTOR_DIR_BACKWARD);

 setMotorEffort(2,700, MOTOR_DIR_BACKWARD);

 _delay_ms(1000);

 if(Ultra_Sonic % 2 == 1){

 setMotorEffort(1,1000, MOTOR_DIR_FORWARD);

 setMotorEffort(2,1000, MOTOR_DIR_BACKWARD);

 _delay_ms(1000);

 }

 else{

 setMotorEffort(1,1000, MOTOR_DIR_BACKWARD);

 setMotorEffort(2,1000, MOTOR_DIR_FORWARD);

 _delay_ms(1000);

 }

 }

 PORTR.DIRTGL = 0x02; // HEARTBEAT LED

 _delay_ms(100); // 100 ms loop

 }

}

 35

/**
* Face Detector v3.0
* Created: 11/025/2012 12:27 PM
* Author: Daniel Frank
*
* Description: This program will uses Haar-like features to detect faces using
* the IP camera, once a face is detected it signals to the robot
* that it has found a face and activates the PERS
***/

#include <cxcore.h>
#include <highgui.h>
#include <cv.h>
#include <ml.h>
#include <iostream>
#include "stdafx.h"
#include "stdafx.cpp"
#include "targetver.h"
#include <Windows.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include <math.h>
#include <float.h>
#include <limits.h>
#include <time.h>
#include <ctype.h>

using namespace std;
int count_now = 0, count_1 = 0, count_2 = 0, countr_now = 0, countr_1 = 0, countr_2 = 0,
countl_now = 0, countl_1 = 0, countl_2 = 0, found=0;

// Create memory for calculations
static CvMemStorage* storage = 0;

// Create a new Haar classifier
static CvHaarClassifierCascade* cascade = 0;

// Create a string that contains the exact cascade name
const char* cascade_name = "C:/opencV/data/haarcascades/haarcascade_frontalface_alt.xml";

// Function prototype for detecting and drawing an object from an image
void detect_and_draw(IplImage* image);

// Main function, defines the entry point for the program.
int _tmain(int argc, _TCHAR* argv[])
{
 //CvCapture* capture = cvCreateCameraCapture(1);
 CvCapture* capture = cvCreateFileCapture("http://192.168.1.101/img/video.mjpeg");

 IplImage* frame = NULL;

 while (found == 0)
 {
 // Get one frame

 36

 IplImage* frame = cvQueryFrame(capture);

 if (!frame)
 {
 fprintf(stderr, "ERROR: frame is null...\n");
 }

 detect_and_draw(frame);
 if ((cvWaitKey(10) & 255) == 27) break;
 }
 // Release the capture device housekeeping
 cvReleaseCapture(&capture);

 if (found != 0) {
 return 0; //to indicate successfull execution of the program
 }
}
void detect_and_draw(IplImage* img)
{
 // Create memory for calculations
 static CvMemStorage* storage = 0;
 // Create a new Haar classifier
 static CvHaarClassifierCascade* cascade = 0;

 int scale = 1, face_detect1=0, face_detect2=0, face_detect3=0;
 // Create a new image based on the input image
 IplImage* temp = cvCreateImage(cvSize(img->width/scale,img->height/scale), 8, 3);

 IplImage *transposeImage1 = cvCreateImage(cvSize(img->height/scale, img-
>width/scale), 8, 3);
 IplImage *transposeImage2 = cvCreateImage(cvSize(img->height/scale, img-
>width/scale), 8, 3);

 cvTranspose (img, transposeImage1);
 cvFlip(transposeImage1,transposeImage2,0);

 // Create two points to represent the face locations
 CvPoint pt1, pt2;
 int i;
 // Load the HaarClassifierCascade
 cascade = (CvHaarClassifierCascade*)cvLoad(cascade_name, 0, 0, 0);

 // Check whether the cascade has loaded successfully. Else report and error and quit
 if(!cascade)
 {
 fprintf(stderr, "ERROR: Could not load classifier cascade\n");
 return;
 }
 // Allocate the memory storage
 storage = cvCreateMemStorage(0);
 // Create a new named window with title: result
 cvNamedWindow("Fallen Angel", 1);
 //cvNamedWindow("resulttranspose1", 1);
 //cvNamedWindow("resulttranspose2", 1);

 // Clear the memory storage which was used before
 cvClearMemStorage(storage);
 // Find whether the cascade is loaded, to find the faces. If yes, then:

 37

 if(cascade)
 {
 //There can be more than one face in an image. So create a growable sequence of faces.
 // Detect the objects and store them in the sequence

 CvSeq* faces1 = cvHaarDetectObjects(img, cascade, storage,
 1.1, 3, CV_HAAR_DO_CANNY_PRUNING,
 cvSize(40, 40));

 face_detect1 = (faces1 ? faces1->total : 0);

 // Loop the number of faces found.
 for(i = 0; i < (faces1 ? faces1->total : 0); i++)
 { // Create a new rectangle for drawing the face
 CvRect* r = (CvRect*)cvGetSeqElem(faces1, i);
 // Find the dimensions of the face,and scale it if necessary
 pt1.x =r->x*scale;
 pt2.x =(r->x+r->width)*scale;
 pt1.y = r->y*scale;
 pt2.y = (r->y+r->height)*scale;
 // Draw the rectangle in the input image
 cvRectangle(img, pt1, pt2, CV_RGB(255,0,0), 3, 8, 0);
 }
 CvSeq* faces2 = cvHaarDetectObjects(transposeImage1, cascade, storage,
 1.1, 3, CV_HAAR_DO_CANNY_PRUNING,
 cvSize(40, 40));

 face_detect2 = (faces2 ? faces2->total : 0);

 // Loop the number of faces found.
 for(i = 0; i < (faces2 ? faces2->total : 0); i++)
 { // Create a new rectangle for drawing the face
 CvRect* r = (CvRect*)cvGetSeqElem(faces2, i);
 // Find the dimensions of the face,and scale it if necessary
 pt1.x = (r->y*scale);
 pt2.x = ((r->y+r->width)*scale);
 pt1.y = r->x*scale;
 pt2.y = (r->x+r->height)*scale;
 // Draw the rectangle in the input image
 cvRectangle(img, pt1, pt2, CV_RGB(255,0,0), 3, 8, 0);
 }
 CvSeq* faces3 = cvHaarDetectObjects(transposeImage2, cascade, storage,
 1.1, 3, CV_HAAR_DO_CANNY_PRUNING,
 cvSize(40, 40));

 face_detect3 = (faces3 ? faces3->total : 0);

 // Loop the number of faces found.
 for(i = 0; i < (faces3 ? faces3->total : 0); i++)
 { // Create a new rectangle for drawing the face
 CvRect* r = (CvRect*)cvGetSeqElem(faces3, i);
 // Find the dimensions of the face,and scale it if necessary
 pt1.x =320 - (r->y*scale);
 pt2.x =320 - ((r->y+r->width)*scale);
 pt1.y = r->x*scale;
 pt2.y = (r->x+r->height)*scale;
 // Draw the rectangle in the input image
 cvRectangle(img, pt2, pt1, CV_RGB(255,0,0), 3, 8, 0);

 38

 }
 }
 // }
 // Show the image in the window named "Fallen Angel"
 cvShowImage("Fallen Angel", img);

 count_2 = count_1;
 count_1 = count_now;
 count_now = 0;

 countr_2 = countr_1;
 countl_1 = countl_now;
 countl_now = 0;

 countr_2 = countr_1;
 countr_1 = countr_now;
 countr_now = 0;

 cout<<face_detect1<<" "<<face_detect2<<" "<<face_detect3<<endl;

 if (face_detect1 !=0) {
 count_now = 1;

 if (count_now == 1 && count_1 == 1 /*&& count_2 == 1*/){
 cvSaveImage("face_found.jpg",img);
 system("BlueSmirf_v2.exe");
 system("Email_Sender_V3.exe");
 found=1;
 }
 }

 else if (face_detect2 !=0) {
 countl_now = 1;

 if (countl_now == 1 && countl_1 == 1 /* && countl_2 == 1*/){
 cvSaveImage("face_found.jpg",img);
 system("BlueSmirf_v2.exe");
 system("Email_Sender_V3.exe");
 found=1;
 }
 }

 else if (face_detect3 !=0) {
 countr_now = 1;

 if (countr_now == 1 && countr_1 == 1 /*&& countr_2 == 1*/){
 cvSaveImage("face_found.jpg",img);
 system("BlueSmirf_v2.exe");
 system("Email_Sender_V3.exe");
 found=1;
 }
 }
 cvReleaseHaarClassifierCascade(&cascade);
 cvReleaseMemStorage(&storage);
 // Release the temp image created.
 cvReleaseImage(&temp);
}

 39

/***

 * BlueSMiRF Code

 * Created: 10/31/2012 8:37 PM

 * Author: Daniel Frank

 *

 * Description: This program opens the port to the BlueSMiRF and sends a

* signal to the robot that it has found a face

***/

#using <System.dll>

#include "stdafx.h"

using namespace System;

using namespace System::IO::Ports;

using namespace System::Threading;

int main()

{

 for(int i = 0; i < 3; i++){//sends message to stop three times

 SerialPort^ serialPort = gcnew SerialPort(L"COM7",115200,Parity::None,8,StopBits::One);

 serialPort->Open();//opens bluesmirf port

 serialPort->WriteLine("1");//signal for the robot to stop its motors

 serialPort->Close();//closes bluesmirf port

 }

 return 0;

}

