

Intelligent Machine Design Lab

EML 5666

Final Report

Luther Lloyd III

Mechanical Engineer

2

 Table of Contents

1. Abstract 3

2. Executive Summary 3

3. Introduction 4

4. Integrated System 5

5. Mobile Platform 6

6. Actuation 7

7. Sensors 8

8. Behaviors 9

9. Experimental Layout and Results 12

10. Conclusion 13

11. Documentation 13

12. Appendices
 A-1: Drive Sub-functions 14
 A-2: Obstacle Avoidance Functions 16
 A-3: Search Function main call 18
 A-4: Acquire Function main 19

3

1. Abstract

 The purpose of the following report is to describe the design challenge of building an
intelligent machine and then testing it to validate the design. The intelligent machine described
below is a search and acquire robot. Relying on random turn sequences the robot will search the
room pausing often to use the vision system to “look” for certain objects and then acquire them
based on the position of the object within the screenshot. Once the robot is in the correct position
to acquire the object a lifting mechanism will place it into the storage container. As an intelligent
machine it will be capable of obstacle avoidance while searching such that it will be able to
preemptively avoid walls in its immediate path and avoid running through objects.

2. Executive Summary

 After spending the semester working on this project I have learned a lot more about
intelligent machines that I thought I was going to. With a greater mechanical knowledge of
machines than electrical, there were many learning opportunities available with a search and
acquire robot. The plan was to create a robot which would be a fun project and something I could
use after it was completed. To get the most out of this project I decided to leverage my
mechanical design and manufacturing skill to allow for a more aggressive electrical control setup
including wireless communication between the robot, camera and image processor. The steep
learning curve with programming the robot and developing the image processing was much
steeper than I had anticipated. This made the project schedule tight; though working diligently I
was able to overcome it while still learning a lot.

 As a teaching assistant for the mechanical engineering student shop I was able to use the
machines to fabricate the single piece chassis and machine all of the mounts. The aluminum
chassis is made from right angle extrusions welded together, providing a sturdy platform with
great form factor and reliability. Sheet metal was utilized to mount the sensors and buttons
because of its ease of manufacturing and simplicity of assembly. The mounts for the gear-motors
were machined from billet to hold the motors and front obstacle avoidance sensors to the chassis.

 The Epiphany DIY control board was simple to program using the Atmel Studio
environment and the interface subroutines written by Tim Martin. The biggest benefit of using
this control board is that it had all of the inputs, outputs, motor and servo drivers built in
reducing the its footprint on the chassis. This all-in-one control board also made it much easier to
debug, allowing me to focus on programming the behaviors. Programming the obstacle
avoidance and acquire subroutines went smoothly. However, when piecing all of the subroutines
together I ran into issues where the robot did not perform as expected. Tweaking of the code and
function continued up till the end of the project to get it working as desired.

4

The image processing work took the most effort to get running, though since it was
completed it has worked stunningly. The difficult aspect of the image processing was deciding
how the robot would “see” the wrench and then what information the robot would need to
proceed. OpenCV had many useful libraries to choose from when determining how to find the
wrench. I went with color detection using an HSV mask; this worked very well with the
wrenches painted orange and having a blue floor. Using the rotated rectangle bounding box
function the position and orientation of the wrench was very easy to calculate. The calculations
had to be sent over a wireless serial connection (Xbee radio) which required converting the
calculated numbers from type double to type char. At first I was worried about the potential loss
of integrity of the data though that turned out to be a non-issue after testing.

Although the class is over and the robot mostly working; I plan to continue developing
this as prototype to make it more reliable. I would like to develop it further and potentially
market the concept to iRobot as a garage cleaning device. This is the end goal which is easily a
few months or more away from being a reality.

3. Introduction

 As a mechanical engineer I enjoy working on my car and motorcycle and I don’t enjoy
having to pick up the wrenches all the time. To avoid this I am creating Wrench Dog, a
mechanic’s best friend. Wrench Dog will search for wrenches on the floor, identify them and
then pick them up. Since there will likely be other items on the floor Wrench Dog will need to be
able to sense these random objects and avoid them while “sniffing” out the wrenches. Wrench
Dog will also need to be durable and robust to be able to consistently pick up wrenches everyday
work is being done to a car or motorcycle. The main goal in conjunction with picking up the
wrenches is to provide a learning environment for vision and electrical controls while building
on my previous mechanical design experience. Gaining experience in dealing with vision and
electrical controls will aid me in my future job as high-speed manufacturing equipment designer.

5

4. Integrated System

 The intelligent machine ‘Wrench Dog’ utilizes the Epiphany DIY board for
“intelligence” and functional control. Sensors used for object avoidance, IR range and
bump/feeler switches are fed directly to the Epiphany DIY for quick reaction in adjusting the
robots direction. An IP camera will be integrated to the control board by first having the raw
video transmitted from the camera to a laptop over WiFi for processing and then sending the
resultant command signals to the Epiphany DIY control board via RF with XBee radios. The
video processing is done on an external laptop due to the processing power required for color
detection and potentially pattern recognition. The choice to use an external video processor
instead of using a more advanced processor for control board was due to my insufficient
experience in dealing with such hardware/software interactions. Utilizing the Epiphany DIY
board allows simpler programming for motion control allowing more focus to be spent learning
the vision system controls. The Epiphany DIY board is an integrated system by itself
incorporating motor and servo drivers along with XBee communications port and a large I/O
selection making it a simple package that nestles nicely within the robot frame. There are three
major components to the function of the robot: Search, Acquire and Avoid. The Search and
Acquire functions are interconnected through the drive functions. The drive functions control the
motion of the robot while checking the four bump sensors. If a bump sensor is hit the drive
function is ended and Avoid function determines the avoidance maneuver required and then calls
on the appropriate drive function. Once the avoidance maneuver is over the Search function
regains control of the drive functions. While in Search the robot will pause between drive
commands to analyze the image taken by the IP camera. If a wrench is in the image the Acquire
function takes over using the IP camera images and drive functions to move the robot to the
wrench so the magnet can grab it and it can then be dropped into the storage bin.

Figure 4.1 Block diagram of controls integration between inputs, controllers and outputs.

XBee

WiFi

Epiphany DIY
(control board)

IR Range

(2)

Bump

Switch

(4)

IP Camera

Drive

Motor

(2)

Servo

Motor

(2)

Laptop

6

5. Mobile Platform

 The mobile platform is used to hold all of the sensors, actuators, motors and controller in
an appropriate size to allow the full functionality of the design. The base of the mobile platform
is manufactured from various pieces of aluminum angle extrusions due to their strength to weight
ratio and ease of machining and welding. The main piece is a 2”x2”x3/16” aluminum angle
which will be the bottom of the storage bin, mounting point of the drive motors, front bump and
IR sensors, high torque servo and lifting arm. The purpose of mounting all of these components
to the angle is to reduce the weight by using a single piece for multiple tasks. Light weight is
goal because the robot is battery operated; the less power needed to move the robot around the
longer the robot can go between charges. The control board and rear caster will be held by
smaller pieces of angle since less strength is needed for that part of the frame. The platform will
be driven via a 25mm diameter 75:1 gearmotors with 56mm rubber wheels directly mounted the
output shaft via custom machined hubs. This allows for differential steering which has the
advantage of being able to turn the robot within its footprint. To avoid shorting the control board
it will be electrically isolated via plastic mounting and covers. The single piece construction
protects the important electronics and allows many mounting points to be made in the frame.

Figure 5.1 Picture of Wrench Dog, Highlighting aluminum extrusion as chassis and multiple
task mounting brackets. All screws are easily accessible allowing for quick serviceability.

7

6. Actuation

 Wrenches weigh around 0.25 lbs so a high torque servo (1501MG) was selected to allow
for a 2.75” long lifting arm. The large factor of safety in lifting force allows for adjustments to
the arm and mechanism without needing the change the servo. The gearmotors are small though
provide plenty of torque through the 75:1 gear reduction. With these motors mounted to the
56mm tires the robot will be capable of a speed of around 8 in/sec. After testing it was found that
this speed was much greater than desired causing jerky and inconsistent motions. Choosing a
motor that would produce a maximum speed of around 1 in/sec would have been a better choice.
Because the motors are too fast for what I need I have to run them at the lowest PWM signal that
still moves the robot limiting the speed tuning that can be done. A magnet is utilized on the end
of the lifting arm to “grab” the wrench. The high torque servo then rotates the arm upward to the
release position. Once in the release position the secondary servo pulls a string connected to the
magnet to reduce the magnet field at the tip of the arm enough to drop the wrench into the
storage area. Unfortunately while lifting the wrench the single magnet does not provide enough
strength to prevent the wrench from twisting. This requires more precise alignment to actually
pick up the wrench where the use of a pair of magnets would have made it easier to acquire the
wrenches.

Table 6.1 Actuator List
Picture Name Description

75:1 Metal Gearmotor
25Dx54L mm

Gearmotor used to drive the robot.
Two motors total each directly tied to
the tires.

HiTec HS-645MG

This medium torque servo is used to
pull the release wire of the magnet.
This wire pulls the magnet away from
the arm end release the wrench

Power HD High-
Torque Servo
1501MG

This high torque (240 oz-in) servo is
used to lift the shovel. With the 4-bar
link used to move the shovel this
servo can lift nearly 4lbs at the shovel
end.

Tamiya 70111 Sports
Tire Set

Cool race looking tires mounted
directly to drive motors for looks and
performance.

Magnetic Pick-Up
Tool

Used to pick up the wrench. Only the
top of the pick-up tool was needed

7. Sensors

 Sensors are an important part of this robots functionality. The comb
(IR) range finders at the front of the robot and bump switches at each corner allow for robust
obstacle avoidance. The IR sensors allow for the robot to avoid walls
before the robot contacts them.
five inches it will turn instead of drive forward.
avoiding walls and other objects that
required for detection and a 100 Hz sampling rate, even the slightest of bumps are detected and
avoided. The IP camera was chosen to provide
are many uses for vision systems within the manufacturing industry which I will be working in.
The IP camera is utilized to take a snapshot of the ground and send it to the laptop to determine if
a wrench is in view. To find the wrenches OpenCV
and tracking. For reliability on multiple surfaces and different lighting scenarios the wrenches
will be painted in a high visibility
from Josh Weaver I was able to creat
wrench, distance from wrench center to robot and the
robot heading. Originally this data was going to be used for open
wrenches. This scheme did not function reliably so a modification of acquire function will be
implemented to use the same information and more screenshots to create closed
increase the robustness of the actuation.

Table 7.1 Sensor List
Picture Name

IP Camera, WCV80N

Sharp
GP2Y0A21YK0F
Analog Distance
Sensor 10

Snap
with 16.7mm Lever:
3-Pin, SPDT, 5A

Sensors are an important part of this robots functionality. The combination of infra
range finders at the front of the robot and bump switches at each corner allow for robust

obstacle avoidance. The IR sensors allow for the robot to avoid walls and objects over 2 in tall
 If either of the two IR sensors detects a wall that is closer than

it will turn instead of drive forward. The bump switches at each corner are
and other objects that the robot may come in contact with. With low contact force

required for detection and a 100 Hz sampling rate, even the slightest of bumps are detected and
The IP camera was chosen to provide an opportunity for advanced learning since there

y uses for vision systems within the manufacturing industry which I will be working in.
era is utilized to take a snapshot of the ground and send it to the laptop to determine if

. To find the wrenches OpenCV 2.3.1 will be employed for
and tracking. For reliability on multiple surfaces and different lighting scenarios the wrenches

a high visibility matte orange. Utilizing example code for HSV color detection
from Josh Weaver I was able to create a robust program which calculates the orientation of the
wrench, distance from wrench center to robot and the relative angle between wrench center and
robot heading. Originally this data was going to be used for open-loop motions to acquire the

This scheme did not function reliably so a modification of acquire function will be
implemented to use the same information and more screenshots to create closed
increase the robustness of the actuation.

Name Description
IP Camera, WCV80N Wireless camera used to look for and

identify wrenches to be picked up
HSV color detection

Sharp
GP2Y0A21YK0F
Analog Distance
Sensor 10-80cm

IR range finder used for
object avoidance

Snap-Action Switch
with 16.7mm Lever:

Pin, SPDT, 5A

Bump switch at all four corners
check for undesired environment
contact

8

ination of infra-red
range finders at the front of the robot and bump switches at each corner allow for robust

and objects over 2 in tall
detects a wall that is closer than

The bump switches at each corner are for
With low contact force

required for detection and a 100 Hz sampling rate, even the slightest of bumps are detected and
an opportunity for advanced learning since there

y uses for vision systems within the manufacturing industry which I will be working in.
era is utilized to take a snapshot of the ground and send it to the laptop to determine if

oyed for color detection
and tracking. For reliability on multiple surfaces and different lighting scenarios the wrenches

Utilizing example code for HSV color detection
e a robust program which calculates the orientation of the

relative angle between wrench center and
loop motions to acquire the

This scheme did not function reliably so a modification of acquire function will be
implemented to use the same information and more screenshots to create closed-loop motion to

Wireless camera used to look for and
identify wrenches to be picked up via

sed for long range

Bump switch at all four corners to
check for undesired environment

8. Behaviors

 As mentioned in the Integrated System section
function of the robot: Search, Acquire and Avoid.
interconnected in operation to allow seamless transitions between the functions.
functions make use of basic sub-
debugging.

Motion Sub-functions
Four motor driving sub-functions; driveForward, driveBackward, turnLeft, turnRight have either
a time input or angle input and return the state of the digital inputs of the bump switches. If the
bump switches are hit these functions exit returning the “bump” state.
functions can be found in Appendix A

Search
The search function works by choosing a ran
distance of the forward drive is approximately 1
random turn from 0-3600 will occur. After each drive forward and turn the ro
scan the camera image for a wrench.
Acquire function will be called. After the Acquire function completes the Search function will
resume.

Figure 8.1

d in the Integrated System section, there are three major components to the
function of the robot: Search, Acquire and Avoid. These behaviors are separate in nature but
interconnected in operation to allow seamless transitions between the functions.

-functions for operation to reduce code complexity and simplify

functions; driveForward, driveBackward, turnLeft, turnRight have either
ut and return the state of the digital inputs of the bump switches. If the

bump switches are hit these functions exit returning the “bump” state. The code for these
ns can be found in Appendix A-1.

The search function works by choosing a random number (between 3-10) forward drives. The
forward drive is approximately 1-2 inches. After this series of forward drives a

will occur. After each drive forward and turn the robot will pause to
ge for a wrench. If no wrench is found this group will repeat, otherwise the

. After the Acquire function completes the Search function will

Figure 8.1 Search function block diagram

9

there are three major components to the
These behaviors are separate in nature but

interconnected in operation to allow seamless transitions between the functions. Each of these
to reduce code complexity and simplify

functions; driveForward, driveBackward, turnLeft, turnRight have either
ut and return the state of the digital inputs of the bump switches. If the

The code for these

forward drives. The
. After this series of forward drives a

bot will pause to
If no wrench is found this group will repeat, otherwise the

. After the Acquire function completes the Search function will

10

Acquire
The purpose of the Acquire function is to group the commands necessary to detecting, tracking
and picking up a wrench. The detection program will be running in Visual Studio/OpenCV on a
remote laptop and use HSV color detection. The detection will be done by comparing the image
against a known range of HSV values for the wrench color. With the mask image created (white
pixel for in HSV range, black dot for outside, Figure 8.4) the rotated rectangle bounding box
function will be used to determine distance from robot and orientation of the wrench (Figure
8.3). These values will be read from the Xbee radio serial comm port. If the wrench is farther
away than an inch from the arm the robot will drive forward a small amount and then request a
new image scan. This process repeats until the wrench is close to arm. At this point the arm is
lowered to the pick-up position, the robot drives forward into the wrench and then raises the arm
and wrench to the drop location; releasing the wrench completes the Acquire function. The small
movements and multiple image captures create a “visual servoing” to help reduce the error
between the commanded motion of the robot and its actual motion.

Figure 8.2 Acquire function block diagram

Avoid
The Avoid function is used to determine which sensors were hit or if there is an object directly in
front of the robot. Bump detection is running every 10 milliseconds, if a bump is detected then a
sub-routine is used to determine which senor or sensors were hit to determine which direction to
move in to avoid the wall, table 8.1 details out these reactions. Each avoidance maneuver has
some random turn angle associated with it to reduce the likelihood it will get stuck in a corner.

The bump detection continues to run while in an avoidance maneuver.
of the avoid function group though are only checked as the robot moves forward since they can
only detect if an object is in front of the robot.

Table 8.1 Bump switch avoidance table

Bump Switches Hit
Front Left

Front Right
Rear Left

Rear Right
Both Front Drive Backward 0.25sec, Random Turn (angle, direction)
Both Rear Drive Forward 0.25sec, Random Turn (angle, direction)

Figure 8.3 Color Image processed with rotated bounding box

The bump detection continues to run while in an avoidance maneuver. The IR sensors are apart
ion group though are only checked as the robot moves forward since they can

only detect if an object is in front of the robot.

Bump switch avoidance table
Avoidance Maneuver

Drive Backward 0.25sec, Turn Right random angle
Drive Backward 0.25sec, Turn Left random angle
Drive Forward 0.25sec, Turn Right random angle
Drive Forward 0.25sec, Turn Left random angle

Drive Backward 0.25sec, Random Turn (angle, direction)
Drive Forward 0.25sec, Random Turn (angle, direction)

Color Image processed with rotated bounding box

11

The IR sensors are apart
ion group though are only checked as the robot moves forward since they can

m angle
Drive Backward 0.25sec, Turn Left random angle
Drive Forward 0.25sec, Turn Right random angle
Drive Forward 0.25sec, Turn Left random angle

Drive Backward 0.25sec, Random Turn (angle, direction)
Drive Forward 0.25sec, Random Turn (angle, direction)

Figure 8.4 Mask Image showcasing how the HSV difference for wrench vs background

9. Experimental Layout and Results

 The robot has been fabricated and the sub
using a measuring tape to obtain the distance between the IR sensor and a notebook to compare
to the analog value. The measurements and values are in
program was written and tested
having the robot run in a loop of random movements while in a room and periodically hitting the
various switches multiple times in order to confirm code robu
and with the random turn angles does a good job of keeping off of walls and out of corners.

Wall Distance
< 3”

> 11”

Mask Image showcasing how the HSV difference for wrench vs background

Experimental Layout and Results

ricated and the sub-routines tested. The IR sensors were calibr
using a measuring tape to obtain the distance between the IR sensor and a notebook to compare
to the analog value. The measurements and values are in Table 9.1. The obstacle avo

tested independently of the rest of the program. This was tested by
having the robot run in a loop of random movements while in a room and periodically hitting the
various switches multiple times in order to confirm code robustness. The robot responds quickly
and with the random turn angles does a good job of keeping off of walls and out of corners.

Table 9.1 IR Range Calibration
Wall Distance Analog Value

< 3” 4095
5” 3200
7” 2100
9” 1700

> 11” 1100

12

Mask Image showcasing how the HSV difference for wrench vs background

tested. The IR sensors were calibrated
using a measuring tape to obtain the distance between the IR sensor and a notebook to compare

obstacle avoidance
This was tested by

having the robot run in a loop of random movements while in a room and periodically hitting the
The robot responds quickly

and with the random turn angles does a good job of keeping off of walls and out of corners.

13

With the camera and a sample color tracking code paint colors and finishes has been tested for
their repeatable detection against various backgrounds and lighting conditions; the chosen color
was a high visibility matte orange on a blue background. Once the image processing program
was working I tested the acquire sub-routine to make sure the communications between the robot
and laptop. When testing the sub-routine with a wrench in the screenshot the robot reacted well
and accurately more than 80% of the time. Unfortunately when running this sub-routine with the
search function in the arena the robot was not able to achieve these same results in testing or in
demo day. It was determined that this issue was caused by using open-loop or dead reckoning to
control the robot; which, when multiple motions were required compounded the error with the
motor control. To prevent this I have re-worked the acquire sub-routine to move the robot in
small increments and take more screenshots to reduce the error compounding.

10. Conclusion

 The robot design and fabrication took longer than anticipated due to a few design changes
that had to be made while fabricating. The changes were mostly related to serviceability or
material available when it was being built. Since being fabricated the major focus has been on
creating the program code to control the robot. This also seemed to take longer than I thought it
would though I had tried to plan for this since I have less programming experience than I have
mechanical design and fabrication experience. I had the most to learn from working on the vision
system and feel I gained some useful experience with how it can be used and what methods are
available. Testing the robot revealed many ideas I had not thought about before working on this
project such as planning the program when purchasing hardware instead of just programming
around the variability of hardware. I have gained a lot of useful experience from this project; to
think of projects from a combined mindset of both an electrical and mechanical engineer. As this
project wraps up it should be something that is very useful for my garage project.

11. Documentation

Epiphany DIY control board: http://ootbrobotics.pixelgeko.com/

 Hardware Integration Software for ATXMega – Tim Martin
Motors, Tires, Sensors from Pololu: http://www.pololu.com/

Linksys IP Camera: http://homestore.cisco.com/en-us/cameras/linksys-

WVC80N_stcVVproductId84737621VVviewprod.htm

 HSV Sample Program (used for basis of OpenCV program) – Josh Weaver

14

12. Appendices

A-1: Drive Sub-functions
// Motor 2 = Right Motor Motor 4 = Left Motor
// travel speed ~ 2.24" / 1 sec
// 1 wheel turn 14.01* / 1 sec, 2 wheel turn 28.97* / 1 sec

double turnTime;
int noBump = 0x0F, i;
int mtr2spd = 560, mtr4spd = 570; //minimum PMW for motion
uint8_t bumpDetected = 0x0F;

uint8_t driveForward(double driveTime){
 i=0;
 bumpDetected = 0x0F;
 while ((bumpDetected == noBump) && (i <= driveTime)){
 setMotorEffort(4,mtr4spd,MOTOR_DIR_FORWARD);
 setMotorEffort(2,mtr2spd,MOTOR_DIR_FORWARD);
 _delay_ms(10);
 i+=10;
 bumpDetected = PORTD.IN;
 }
 setMotorEffort(4,0,MOTOR_DIR_NEUTRAL);
 setMotorEffort(2,0,MOTOR_DIR_NEUTRAL);
 return bumpDetected;
}

uint8_t driveBackward(double driveTime){
 i=0;
 bumpDetected = 0x0F;
 while ((bumpDetected == noBump) && (i <= driveTime)){
 setMotorEffort(4,mtr4spd,MOTOR_DIR_BACKWARD);
 setMotorEffort(2,mtr2spd,MOTOR_DIR_BACKWARD);
 _delay_ms(10);
 i+=10;
 bumpDetected = PORTD.IN;
 }
 setMotorEffort(4,0,MOTOR_DIR_NEUTRAL);
 setMotorEffort(2,0,MOTOR_DIR_NEUTRAL);
 return bumpDetected;
}

uint8_t turnRight(uint8_t turnMode, uint16_t turnAngle){
 bumpDetected = 0x0F;
 i=0;
 switch(turnMode){
 case(1): // turnMode = 1 : Right Wheel Forward
 turnTime = (turnAngle / 14.01) * 1000;
 while ((bumpDetected == noBump) && (i <= turnTime)){
 setMotorEffort(2,mtr2spd,MOTOR_DIR_FORWARD);
 _delay_ms(10);
 i+=10;
 bumpDetected = PORTD.IN;
 }
 setMotorEffort(2,0,MOTOR_DIR_NEUTRAL);
 break;

15

 case(2): // turnMode = 2 : Left Wheel Backward
 turnTime = (turnAngle / 14.01) * 1000;
 while ((bumpDetected == noBump) && (i <= turnTime)){
 setMotorEffort(4,mtr4spd,MOTOR_DIR_BACKWARD);
 _delay_ms(10);
 i+=10;
 bumpDetected = PORTD.IN;
 }
 setMotorEffort(4,0,MOTOR_DIR_NEUTRAL);
 break;

 case(3): // turnMode = 3 : Right Wheel Forward and Left Wheel Backward
 turnTime = ((double)turnAngle / 28.97) * 1000;
 while ((bumpDetected == noBump) && (i <= turnTime)){
 setMotorEffort(2,mtr2spd,MOTOR_DIR_FORWARD);
 setMotorEffort(4,mtr4spd,MOTOR_DIR_BACKWARD);
 _delay_ms(10);
 i+=10;
 bumpDetected = PORTD.IN;
 }
 setMotorEffort(2,0,MOTOR_DIR_NEUTRAL);
 setMotorEffort(4,0,MOTOR_DIR_NEUTRAL);
 break;
 }
 return bumpDetected;
}

uint8_t turnLeft(uint8_t turnMode, uint16_t turnAngle){
 bumpDetected = 0x0F;
 i=0;
 switch(turnMode){
 case(1): // turnMode = 1 : Left Wheel Forward
 turnTime = (turnAngle / 14.01) * 1000;
 while ((bumpDetected == noBump) && (i <= turnTime)){
 setMotorEffort(4,mtr4spd,MOTOR_DIR_FORWARD);
 _delay_ms(10);
 i+=10;
 bumpDetected = PORTD.IN;
 }
 setMotorEffort(4,0,MOTOR_DIR_NEUTRAL);
 break;

 case(2): // turnMode = 2 : Right Wheel Backward
 turnTime = (turnAngle / 14.01) * 1000;
 while ((bumpDetected == noBump) && (i <= turnTime)){
 setMotorEffort(2,mtr2spd,MOTOR_DIR_BACKWARD);
 _delay_ms(10);
 i+=10;
 bumpDetected = PORTD.IN;
 }
 setMotorEffort(2,0,MOTOR_DIR_NEUTRAL);
 break;

 case(3): // turnMode = 3 : Left Wheel Forward and Right Wheel Backward
 turnTime = ((double)turnAngle / 28.97) * 1000;
 while ((bumpDetected == noBump) && (i <= turnTime)){
 setMotorEffort(4,mtr4spd,MOTOR_DIR_FORWARD);

16

 setMotorEffort(2,mtr2spd,MOTOR_DIR_BACKWARD);
 _delay_ms(10);
 i+=10;
 bumpDetected = PORTD.IN;
 }
 setMotorEffort(4,0,MOTOR_DIR_NEUTRAL);
 setMotorEffort(2,0,MOTOR_DIR_NEUTRAL);
 break;
 }
 return bumpDetected;
}

uint8_t turnLorR(uint8_t turnMode, int turnAngle){
 //purpose is to use one function to decided between left or right functions
 // (-) => Left (+) => Right
 if(turnAngle < 0){bumpDetected = turnLeft(turnMode,-turnAngle);}
 else{bumpDetected = turnRight(turnMode,turnAngle);}
 return bumpDetected;
}

 A-2: Obstacle Avoidance Functions
uint8_t bumpCheckDelay(double delayTime){
 int i=0;
 bumpDetected = 0x0F;
 while ((bumpDetected == 0x0F) && (i <= delayTime)){
 _delay_ms(10);
 i+=10;
 bumpDetected = PORTD.IN;
 }
 return bumpDetected;
}

void whichBump(uint8_t bumpDetected){
//case statement to determine which sensor combination was hit
//calls appropriate drive function to get away from it
 switch(bumpDetected){
 case(0x0E): //Front Left, pin 1 closed, mask = 0000 1110
 bumpHit = driveBackward(250);
 if (bumpHit == noBumpObs){
 turnAngle = rand() % 180;
 bumpHit = turnRight(2,turnAngle);
 if (bumpHit != noBumpObs) { whichBump(bumpHit); }
 }else { whichBump(bumpHit); }
 break;

 case(0x0D): //Front Right, pin 2 closed, mask = 0000 1101
 bumpHit = driveBackward(250);
 if (bumpHit == noBumpObs){
 turnAngle = rand() % 180;
 bumpHit = turnLeft(2,turnAngle);
 if (bumpHit != noBumpObs) { whichBump(bumpHit); }
 }else { whichBump(bumpHit); }
 break;

17

 case(0x0B): //Rear Left, pin 3 closed, mask = 0000 1011
 bumpHit = driveForward(250);
 if (bumpHit == noBumpObs){
 turnAngle = rand() % 180;
 bumpHit = turnRight(2,turnAngle);
 if (bumpHit != noBumpObs) { whichBump(bumpHit); }
 }else { whichBump(bumpHit); }
 break;

 case(0x07): //Rear Right, pin 4 closed, mask = 0000 0111
 bumpHit = driveForward(250);
 if (bumpHit == noBumpObs){
 turnAngle = rand() % 180;
 bumpHit = turnLeft(2,turnAngle);
 if (bumpHit != noBumpObs) { whichBump(bumpHit); }
 }else { whichBump(bumpHit); }

 break;

 case(0x0C): //Front, pin 1 & 2 closed, mask = 0000 1100
 bumpHit = driveBackward(250);
 if (bumpHit == noBumpObs){
 turnAngle = rand() % 360 - 180;
 bumpHit = turnLorR(2,turnAngle);
 if (bumpHit != noBumpObs) { whichBump(bumpHit); }
 }else { whichBump(bumpHit); }
 break;

 case(0x03): //Back, pin 3 & 4 closed, mask = 0000 0011
 bumpHit = driveForward(250);
 if (bumpHit == noBumpObs){
 turnAngle = rand() % 360 - 180;
 bumpHit = turnLorR(2,turnAngle);
 if (bumpHit != noBumpObs) { whichBump(bumpHit); }
 }else { whichBump(bumpHit); }
 break;
 }
}

int objAhead(){
//reads IR Sensors to avoid objects, returns 1 if object is there, 0 otherwise
 int leftIR = 0, rightIR = 0;
 adcChannelMux(&ADCA,1,0);
 adcChannelMux(&ADCA,2,2);
 _delay_ms(50);
 for(int ii=0; ii<2; ii++){
 leftIR += analogRead(&ADCA,1);
 rightIR += analogRead(&ADCA,2);
 _delay_ms(100); //read delay
 }
 leftIR /= 2;
 rightIR /= 2;

 if ((leftIR >= 2100)||(rightIR >= 2100)){ //bigger number = closer
 return 1;
 }else{return 0;}
}

18

A-3: Search Function main
void searchDrive(){
 int numDrive, turnAng, i=0, start = 0, wall =0;

 callCamera();
 int exit = 0;

 while (exit == 0){ //run switch break
 numDrive = rand() % 8 + 3; //3-10
 isWrench = 0;
 i = 0;
 //straight drives
 while ((isWrench == 0)&&(i < numDrive)){
 i++;
 wall = objAhead();
 if ((wall == 0)&&(PORTF.IN && 0x10)){
 bumpDet = driveFwSlow(drvTfrw);
 if (bumpDet == noBumpSrch){
 if(PORTF.IN && 0x10){bumpDet1 = bumpCheckDelay(3000);}
//wait for camera image to stabilize
 if ((bumpDet1 == noBumpSrch)&&(PORTF.IN && 0x10)){
 if(PORTF.IN && 0x10){callCamera();}
 }else{whichBump(bumpDet1);}

 }else{whichBump(bumpDet);}
 }else{break;}
 if(PORTF.IN&& 0x10){break;}
 }

 //turn
 bumpDet = 0x0F;
 if ((objAhead())&&(PORTF.IN && 0x10)){bumpDet = driveBackward(800);} //if
in front of wall back up before turn
 if (bumpDet == noBumpSrch){
 if(PORTF.IN && 0x10){turnAng = rand() % 360 - 180;
 bumpDet1 = turnLorR(3,turnAng);}
 if (bumpDet1 == noBumpSrch){
 if(PORTF.IN && 0x10){bumpDet2 = bumpCheckDelay(3000);} //wait
for camera image to stabilize
 if (bumpDet2 == noBumpSrch){
 if(PORTF.IN && 0x10){callCamera();}
 }else{whichBump(bumpDet2);}
 }else{whichBump(bumpDet1);}
 }else{whichBump(bumpDet);}

 if(!(PORTF.IN && 0x10)){exit = 1;} // run switch off
 }
}

void callCamera(){//call for image processing data
 int ii;
 attempts = 0;
 while (attempts < 3){
 ph =0; th =0; di =0; ii = 0;
 attempts++;
 fprintf(&Xbee_str,"t"); //send command to OpenCV

19

 while(!(dataInBufE1())){_delay_ms(10);} // wait for image processing data
 //read image processing data
 while(dataInBufE1()){
 fscanf(&Xbee_str,"%c",&readChar);
 tempChar[ii] = readChar;
 ii++;
 }
 if (ii == 3){
 //convert image processing data
 ph = (int) tempChar[0];
 th = (int) tempChar[1];
 di = (int) tempChar[2];
 if (((ph != 0)&&(th != 0))&&(di != 0)){
 acquireDrive(ph-89,th-89,di);
 }
 attempts = 4; // exit loop
 }
 }
}

A-4: Acquire Function main
void acquireDrive(int phi, int theta, int dist2go){
 //-phi = left of center
 //+theta = cw from horizontal
 //returns 1 for good grab and 0 for no grab
 int theta2 = theta-phi; //phi-theta sign conv follows theta sign
 //no realignment needed
 if(abs(theta2) <= 30){grabWrench(phi,theta,dist2go);}

 else{ //wrench at bad angle, attempt to re-align then find wrench again
 bumpDet1 = driveBackward(700);
 if(bumpDet1 == noBumps){
 angle = 45*(-theta2/abs(theta2));
 bumpDet2 = turnLorR(3,angle);
 _delay_ms(250);
 if(bumpDet2 == noBumps){
 bumpDet3 = driveForward(700)
 _delay_ms(250);
 if(bumpDet3 == noBumps){
 angle = 90*(theta2/abs(theta2));
 bumpDet4 = turnLorR(1,angle);
 _delay_ms(250);
 if(bumpDet4 == noBumps){
 callCamera(); //call camera again
 }else{whichBump(bumpDet4);}
 }else{whichBump(bumpDet3);}
 }else{whichBump(bumpDet2);}
 }else{whichBump(bumpDet1);}
 }
}

20

void grabWrench(int phi, int theta, int dist2go){ //subroutine to execute motions to pick
up wrench
 //which is wrenchDist away straight ahead
 int pickupPos = 167, dropPos = 30;
 int addTime = 0;
 if(wrenchDist > 4.0){
 bumpDet = turnLorR(3,phi);
 if(bumpDet == noBumps){
 bumpDet1 = driveForward(450);
 if (bumpDet1 == noBumps){callCamera();}
 else{whichBump(bumpDet1);}
 }else{whichBump(bumpDet);}
 }else{
 setServoAngle(1,pickupPos);
 _delay_ms(750); // make sure arm is all the way down
 bumpDet = driveFwSlow(500);
 servoPickup(pickupPos,dropPos);
 servoRelease();
 if(bumpDet != noBumps){whichBump(bumpDet);}
 }
}

void servoPickup(int lowPos, int upPos){ //subroutine to raise arm at a slow speed
 for(int i=lowPos;i >=upPos;i-=1){
 setServoAngle(1,i);
 _delay_ms(25);
 }
}

void servoRelease(){ //subroutine to release wrench
 setServoAngle(2,130);
 _delay_ms(500);
 setServoAngle(2,60); //reset release
}

