Intelligent Machine Design Lab

EML 5666

Final Report

Luther Lloyd Il

Mechanical Engineer

Table of Contents

1. Abstract

2. Executive Summary

3. Introduction

4. Integrated System

5. Mobile Platform

6. Actuation

7. Sensors

8. Behaviors

9. Experimental Layout and Results

10. Conclusion

11. Documentation

12. Appendices
A-1: Drive Sub-functions
A-2: Obstacle Avoidance Functions

A-3: Search Function main call
A-4: Acquire Function main

12

13

13

14

16

18
19

1. Abstract

The purpose of the following report is to descrihe design challenge of building an
intelligent machine and then testing it to validdte design. The intelligent machine described
below is a search and acquire robot. Relying odaanturn sequences the robot will search the
room pausing often to use the vision system toK'ldor certain objects and then acquire them
based on the position of the object within the eashot. Once the robot is in the correct position
to acquire the object a lifting mechanism will @datinto the storage container. As an intelligent
machine it will be capable of obstacle avoidancelavkearching such that it will be able to
preemptively avoid walls in its immediate path @vaéid running through objects.

2. Executive Summary

After spending the semester working on this pitojebave learned a lot more about
intelligent machines that | thought | was going With a greater mechanical knowledge of
machines than electrical, there were many learojgortunities available with a search and
acquire robot. The plan was to create a robot wivohld be a fun project and something | could
use after it was completed. To get the most outhef project | decided to leverage my
mechanical design and manufacturing skill to alfowa more aggressive electrical control setup
including wireless communication between the roloamera and image processor. The steep
learning curve with programming the robot and depelg the image processing was much
steeper than | had anticipated. This made the @reghedule tight; though working diligently |
was able to overcome it while still learning a lot.

As a teaching assistant for the mechanical engmgstudent shop | was able to use the
machines to fabricate the single piece chassisnaachine all of the mounts. The aluminum
chassis is made from right angle extrusions weldgéther, providing a sturdy platform with
great form factor and reliability. Sheet metal wasized to mount the sensors and buttons
because of its ease of manufacturing and simplafigssembly. The mounts for the gear-motors
were machined from billet to hold the motors amhfrobstacle avoidance sensors to the chassis.

The Epiphany DIY control board was simple to pesgrusing the Atmel Studio
environment and the interface subroutines writtgriTion Martin. The biggest benefit of using
this control board is that it had all of the inputaitputs, motor and servo drivers built in
reducing the its footprint on the chassis. Thidralbne control board also made it much easier to
debug, allowing me to focus on programming the bema. Programming the obstacle
avoidance and acquire subroutines went smoothlyweder, when piecing all of the subroutines
together | ran into issues where the robot didpgstorm as expected. Tweaking of the code and
function continued up till the end of the projeztget it working as desired.

The image processing work took the most effort ¢ iinning, though since it was
completed it has worked stunningly. The difficutipact of the image processing was deciding
how the robot would “see” the wrench and then win&rmation the robot would need to
proceed. OpenCV had many useful libraries to chdmsa when determining how to find the
wrench. | went with color detection using an HSVsigathis worked very well with the
wrenches painted orange and having a blue floomgJthe rotated rectangle bounding box
function the position and orientation of the wreneds very easy to calculate. The calculations
had to be sent over a wireless serial connectidme€Xradio) which required converting the
calculated numbers from type double to type chaffirét | was worried about the potential loss
of integrity of the data though that turned oub&a non-issue after testing.

Although the class is over and the robot mostlykivay; | plan to continue developing
this as prototype to make it more reliable. | wolikee to develop it further and potentially
market the concept to iRobot as a garage clearengel This is the end goal which is easily a
few months or more away from being a reality.

3. Introduction

As a mechanical engineer | enjoy working on my aaad motorcycle and | don’t enjoy
having to pick up the wrenches all the time. Toidvthis | am creating Wrench Dog, a
mechanic’s best friend. Wrench Dog will search ieenches on the floor, identify them and
then pick them up. Since there will likely be otitems on the floor Wrench Dog will need to be
able to sense these random objects and avoid thaha Ygniffing” out the wrenches. Wrench
Dog will also need to be durable and robust tolile #0 consistently pick up wrenches everyday
work is being done to a car or motorcycle. The ngoal in conjunction with picking up the
wrenches is to provide a learning environment figion and electrical controls while building
on my previous mechanical design experience. Gaiekperience in dealing with vision and
electrical controls will aid me in my future job high-speed manufacturing equipment designer.

4. Integrated System

The intelligent machine ‘Wrench Dog’ utilizes thEpiphany DIY board for
“intelligence” and functional control. Sensors uséat object avoidance, IR range and
bumpl/feeler switches are fed directly to the Epigh®1Y for quick reaction in adjusting the
robots direction. An IP camera will be integratedtie control board by first having the raw
video transmitted from the camera to a laptop oI for processing and then sending the
resultant command signals to the Epiphany DIY adritoard via RF with XBee radios. The
video processing is done on an external laptoptdube processing power required for color
detection and potentially pattern recognition. Tdimice to use an external video processor
instead of using a more advanced processor forraobbard was due to my insufficient
experience in dealing with such hardware/softwarteractions. Utilizing the Epiphany DIY
board allows simpler programming for motion contbflbbwing more focus to be spent learning
the vision system controls. The Epiphany DIY boasd an integrated system by itself
incorporating motor and servo drivers along witheeBcommunications port and a large 1/0
selection making it a simple package that nestleslyhwithin the robot frame. There are three
major components to the function of the robot: 8eaAcquire and Avoid. The Search and
Acquire functions are interconnected through theediunctions. The drive functions control the
motion of the robot while checking the four bummsas. If a bump sensor is hit the drive
function is ended and Avoid function determinesdiieidance maneuver required and then calls
on the appropriate drive function. Once the avaigamaneuver is over the Search function
regains control of the drive functions. While inaBgh the robot will pause between drive
commands to analyze the image taken by the IP @artfea wrench is in the image the Acquire
function takes over using the IP camera imagesdaivé functions to move the robot to the
wrench so the magnet can grab it and it can thedrdygped into the storage bin.

IR Range IP Camera
(2)

"o, WiFi
*

Bump

Switch
(A)

Figure 4.1 Block diagram of controls integration between itspaontrollers and outputs.

5. Mobile Platform

The mobile platform is used to hold all of the s&ns, actuators, motors and controller in
an appropriate size to allow the full functionaldi/the design. The base of the mobile platform
is manufactured from various pieces of aluminumemegtrusions due to their strength to weight
ratio and ease of machining and welding. The ma@tepis a 2"x2"x3/16” aluminum angle
which will be the bottom of the storage bin, moagtpoint of the drive motors, front bump and
IR sensors, high torque servo and lifting arm. phegpose of mounting all of these components
to the angle is to reduce the weight by using glsipiece for multiple tasks. Light weight is
goal because the robot is battery operated; treedewer needed to move the robot around the
longer the robot can go between charges. The dobt@d and rear caster will be held by
smaller pieces of angle since less strength iseteémt that part of the frame. The platform will
be driven via a 25mm diameter 75:1 gearmotors @a@mm rubber wheels directly mounted the
output shaft via custom machined hubs. This alldarsdifferential steering which has the
advantage of being able to turn the robot withérfaotprint. To avoid shorting the control board
it will be electrically isolated via plastic moungj and covers. The single piece construction
protects the important electronics and allows nraoynting points to be made in the frame.

Figure 5.1 Picture of Wrench Dog, Highlighting aluminum exdien as chassis and multiple
task mounting brackets. All screws are easily agibésallowing for quick serviceability.

6. Actuation

Wrenches weigh around 0.25 Ibs so a high torquengd’501MG) was selected to allow
for a 2.75” long lifting arm. The large factor dadfsty in lifting force allows for adjustments to
the arm and mechanism without needing the chargedhvo. The gearmotors are small though
provide plenty of torque through the 75:1 gear otidm. With these motors mounted to the
56mm tires the robot will be capable of a speedrotind 8 in/sec. After testing it was found that
this speed was much greater than desired causikyg §ad inconsistent motions. Choosing a
motor that would produce a maximum speed of arduimdsec would have been a better choice.
Because the motors are too fast for what | neex/é o run them at the lowest PWM signal that
still moves the robot limiting the speed tuningttban be done. A magnet is utilized on the end
of the lifting arm to “grab” the wrench. The higbrque servo then rotates the arm upward to the
release position. Once in the release positiorséitendary servo pulls a string connected to the
magnet to reduce the magnet field at the tip ofdhe enough to drop the wrench into the
storage area. Unfortunately while lifting the wrkribe single magnet does not provide enough
strength to prevent the wrench from twisting. Tlaguires more precise alignment to actually
pick up the wrench where the use of a pair of mgweuld have made it easier to acquire the
wrenches.

Table 6.1 Actuator List

Picture Name Description
75:1 Metal Gearmotor Gearmotor used to drive the robot.
25Dx54L mm Two motors total each directly tied to
the tires.

HiTec HS-645MG This medium torque servo is used|to
pull the release wire of the magnget.
This wire pulls the magnet away from
the arm end release the wrench

Power HD High- This high torque (240 oz-in) servol|is

Torque Servo used to lift the shovel. With the 4-bar

1501MG link used to move the shovel this
servo can lift nearly 4lbs at the shovel
end.

Tamiya 70111 Sportg Cool race looking tires mounted

Tire Set directly to drive motors for looks and
performance.

Magnetic Pick-Up Used to pick up the wrench. Only the
Tool top of the pick-up tool was needed

7. Sensors

Sensors are an important part of this robots fonelity. The comination of infre-red
(IR) range finders at the front of the robot and bumgches at each corner allow for rob
obstacle avoidance. The IR sensors allow for thetrto avoid wallsand objects over 2 in te
before the robot contacts thetheither of the two IR sensodetects a wall that is closer th
five inchesit will turn instead of drive forwardThe bump switches at each corner for
avoiding wallsand other objects ththe robot may come in contact witlith low contact force
required for detection and a 100 Hz sampling raxen the slightest of bumps are detected
avoided.The IP camera was chosen to provan opportunity for advanced learning since tt
are may uses for vision systems within the manufacturimdustry which | will be working in
The IP carera is utilized to take a snapshot of the grourdisaamd it to the laptop to determine
a wrench is in viewTo find the wrenches OpenC2.3.1 will be empdyed forcolor detection
and tracking. For reliability on multiple surfacasd different lighting scenarios the wrenc
will be painted ina high visibilitymatte orangeUtilizing example code for HSV color detecti
from Josh Weaver | was able to ce a robust program which calculates the orientabiothe
wrench, distance from wrench center to robot amcrelative angle between wrench center
robot heading. Originally this data was going toused for ope-loop motions to acquire tt
wrenches.This scheme did not function reliably so a modifma of acquire function will b
implemented to use the same information and maeseashots to create clo-loop motion to
increase the robustness of the actue

Table 7.1 Sensor List

Picture Name Description

IP Camera, WCV80 | Wireless camera used to look for ¢
identify wrenches to be picked via
HSV color detection

Sharp IR range finder sed forlong range
GP2Y0A21YKOF object avoidance

Analog Distance
Sensor 1-80cm

Snaj-Action Switch | Bump switch at all four corne to
with 16.7mm Lever | check for undesired environme
3-Pin, SPDT, 5/ contact

8. Behaviors

As mentiond in the Integrated System sec, there are three major components to
function of the robot: Search, Acquire and AvcThese behaviors are separate in nature
interconnected in operation to allow seamless itians between the functior Each of these
functions make use of basic sfumctions for operatiomo reduce code complexity and simpl
debugging.

Motion Sub-functions

Four motor driving sulbuinctions; driveForward, driveBackward, turnLefirriRight have eithe
a time input or angle injg and return the state of the digital inputs & Bump switches. If th
bump switches are hit these functions exit retgnihe “bump” statt The code for thes
functions can be found in Appendix-1.

Search

The search function works by choosing adom number (between 3-1@rward drives. The
distance of théorward drive is approximately-2 inches After this series of forward drives
random turn from 0-360will occur. After each drive forward and turn thebot will pause tc
scan the camera irga for a wrencl If no wrench is found this group will repeat, otivese the
Acquire function will be calledAfter the Acquire function completes the Seanghction will

resume.
LOOP
random
number H LOOP
3-10 —
| driveForward
|
| YES TACQUIRE
l NO
random
number
+180
turnRight turnLeft
(=0) (=<0])

Figure 8.1 Search function block diagram

Acquire

The purpose of the Acquire function is to group ¢cbenmands necessary to detecting, tracking
and picking up a wrench. The detection program kellrunning in Visual Studio/OpenCV on a
remote laptop and use HSV color detection. Thectiete will be done by comparing the image
against a known range of HSV values for the wresadbr. With the mask image created (white
pixel for in HSV range, black dot for outside, Figu8.4) the rotated rectangle bounding box
function will be used to determine distance frorbaband orientation of the wrench (Figure
8.3). These values will be read from the Xbee radioal comm port. If the wrench is farther
away than an inch from the arm the robot will drfgewvard a small amount and then request a
new image scan. This process repeats until theokrenclose to arm. At this point the arm is
lowered to the pick-up position, the robot drivesafard into the wrench and then raises the arm
and wrench to the drop location; releasing the slezompletes the Acquire function. The small
movements and multiple image captures create aidliservoing” to help reduce the error
between the commanded motion of the robot anccttsabmotion.

—> (Seanimage>

ACQUIRE

Release
VWrench

Figure 8.2 Acquire function block diagram

Avoid

The Avoid function is used to determine which sesseere hit or if there is an object directly in
front of the robot. Bump detection is running evéfymilliseconds, if a bump is detected then a
sub-routine is used to determine which senor os@anwere hit to determine which direction to
move in to avoid the wall, table 8.1 details owtsth reactions. Each avoidance maneuver has
some random turn angle associated with it to redloedikelihood it will get stuck in a corner.

10

The bump detection continues to run while in anidemace maneuveThe IR sensors are ap.

of the avoid fundbn group though are only checked as the robot sméwevard since they ce
only detect if an object is in front of the rok

Table8.1 Bump switch avoidance tal

Bump Switches Hit Avoidance M aneuver
Front Left Drive Backward 0.25sec, Turn Right ramad@ngle
Front Right Drive Backward 0.25sec, Turn Left random al
Rear Left Drive Forward 0.25sec, Turn Right random a
Rear Right Drive Forward 0.25sec, Turn Left random ai
Both Front Drive Backward 0.25sec, Random Turn (angle, dioex)
Both Rear Drive Forward 0.25sec, Random Turn (angle, direg

Figure 8.3 Color Image processed with rotated bounding

11

HSV MASK

H=10+

I. -16.744218
= t. 26.582918
g = 5. 5.3144597

phifiug =
thetafvyg
disztZgofu

Figure 8.4 Mask Image showcasing how the HSV difference faneh vs backgroul
9. Experimental Layout and Results

The robot has been fabated and the si-routinestested. The IR sensors were ceated
using a measuring tape to obtain the distance legtwiee IR sensor and a notebook to com
to the analog value. The measurements and valgemiTable 9.1. Theobstacle avidance
program was written antéstec independently of the rest of the prograhiis was tested b
having the robot run in a loop of random movemeritde in a room and periodically hitting tl
various switches multiple times in order to conficode robstnessThe robot responds quick
and with the random turn angles does a good jdeeping off of walls and out of corne

Table 9.1 IR Range Calibration

Wall Distance Analog Value
<3 4095
5" 3200
7" 2100
9” 1700
> 11" 1100

12

With the camera and a sample color tracking codiet galors and finishes has been tested for
their repeatable detection against various backgiewand lighting conditions; the chosen color
was a high visibility matte orange on a blue baokgd. Once the image processing program
was working | tested the acquire sub-routine toenslre the communications between the robot
and laptop. When testing the sub-routine with aneiein the screenshot the robot reacted well
and accurately more than 80% of the time. Unfottelgavhen running this sub-routine with the
search function in the arena the robot was not @béehieve these same results in testing or in
demo day. It was determined that this issue wasethby using open-loop or dead reckoning to
control the robot; which, when multiple motions weequired compounded the error with the
motor control. To prevent this | have re-worked #eguire sub-routine to move the robot in
small increments and take more screenshots to egtiecerror compounding.

10. Conclusion

The robot design and fabrication took longer thatncgpated due to a few design changes
that had to be made while fabricating. The changess mostly related to serviceability or
material available when it was being built. Sin@nly fabricated the major focus has been on
creating the program code to control the robotsEtso seemed to take longer than | thought it
would though | had tried to plan for this sinceavk less programming experience than | have
mechanical design and fabrication experience. Ithadnost to learn from working on the vision
system and feel | gained some useful experiende latv it can be used and what methods are
available. Testing the robot revealed many ideaad not thought about before working on this
project such as planning the program when purchasardware instead of just programming
around the variability of hardware. | have gainddtaof useful experience from this project; to
think of projects from a combined mindset of bathedectrical and mechanical engineer. As this
project wraps up it should be something that iy weseful for my garage project.

11. Documentation

Epiphany DIY control boardittp://ootbrobotics.pixelgeko.com/
Hardware Integration Software for ATXMega — Tim Mar
Motors, Tires, Sensors from Polohatp://www.pololu.com/
Linksys IP Cameraittp://homestore.cisco.com/en-us/cameras/linksys-
WVC80N_stcVVproductld84737621VVviewprod.htm
HSV Sample Program (used for basis of OpenCV @y~ Josh Weaver

13

12. Appendices

A-1: Drive Sub-functions

// Motor 2 = Right Motor Motor 4 = Left Motor
// travel speed ~ 2.24" / 1 sec
// 1 wheel turn 14.01* / 1 sec, 2 wheel turn 28.97* / 1 sec

double turnTime;

int noBump = OxOF, i;

int mtr2spd = 560, mtrdspd = 570; //minimum PMW for motion
uint8_t bumpDetected = OxOF;

uint8_t driveForward(double driveTime){

i=0;

bumpDetected = OxOF;

while ((bumpDetected == noBump) && (i <= driveTime)){
setMotorEffort(4,mtr4spd,MOTOR_DIR_FORWARD);
setMotorEffort(2,mtr2spd,MOTOR_DIR_FORWARD);
_delay _ms(10);
i+=10;
bumpDetected = PORTD.IN;

}

setMotorEffort(4,0,MOTOR_DIR_NEUTRAL);

setMotorEffort(2,0,MOTOR_DIR_NEUTRAL);

return bumpDetected;

}

uint8 t driveBackward(double driveTime){

i=0;

bumpDetected = OxOF;

while ((bumpDetected == noBump) && (i <= driveTime)){
setMotorEffort(4,mtr4spd,MOTOR_DIR_BACKWARD) ;
setMotorEffort(2,mtr2spd,MOTOR_DIR_BACKWARD);
_delay ms(10);
i+=10;
bumpDetected = PORTD.IN;

b

setMotorEffort(4,0,MOTOR_DIR_NEUTRAL);

setMotorEffort(2,0,MOTOR_DIR_NEUTRAL);

return bumpDetected;

}

uint8_t turnRight(uint8_t turnMode, uintl6_t turnAngle){
bumpDetected = OxOF;
i=0;
switch(turnMode){
case(1): // turnMode = 1 : Right Wheel Forward
turnTime = (turnAngle / 14.01) * 1000;
while ((bumpDetected == noBump) && (i <= turnTime)){
setMotorEffort(2,mtr2spd,MOTOR_DIR_FORWARD);
_delay ms(10);
i+=10;
bumpDetected = PORTD.IN;
¥
setMotorEffort(2,0,MOTOR_DIR_NEUTRAL);
break;

14

case(2): // turnMode = 2 : Left Wheel Backward
turnTime = (turnAngle / 14.01) * 1000;
while ((bumpDetected == noBump) && (i <= turnTime)){
setMotorEffort(4,mtr4spd,MOTOR_DIR_BACKWARD) ;
_delay ms(10);
i+=10;
bumpDetected = PORTD.IN;

}
setMotorEffort(4,0,MOTOR_DIR_NEUTRAL);
break;
case(3): // turnMode = 3 : Right Wheel Forward and Left Wheel Backward
turnTime = ((double)turnAngle / 28.97) * 1000;
while ((bumpDetected == noBump) && (i <= turnTime)){
setMotorEffort(2,mtr2spd,MOTOR_DIR_FORWARD);
setMotorEffort(4,mtr4spd,MOTOR_DIR_BACKWARD);
_delay _ms(10);
i+=10;
bumpDetected = PORTD.IN;
}
setMotorEffort(2,0,MOTOR_DIR_NEUTRAL);
setMotorEffort(4,0,MOTOR_DIR_NEUTRAL);
break;

}

return bumpDetected;

}

uint8_t turnLeft(uint8_t turnMode, uint16_t turnAngle){
bumpDetected = OxOF;
i=0;
switch(turnMode){
case(1): // turnMode = 1 : Left Wheel Forward
turnTime = (turnAngle / 14.01) * 1000;
while ((bumpDetected == noBump) && (i <= turnTime)){
setMotorEffort(4,mtr4spd,MOTOR_DIR_FORWARD);
_delay ms(10);
i+=10;
bumpDetected = PORTD.IN;

¥
setMotorEffort(4,0,MOTOR_DIR_NEUTRAL);
break;
case(2): // turnMode = 2 : Right Wheel Backward
turnTime = (turnAngle / 14.01) * 1000;
while ((bumpDetected == noBump) && (i <= turnTime)){
setMotorEffort(2,mtr2spd,MOTOR_DIR_BACKWARD);
_delay ms(10);
i+=10;
bumpDetected = PORTD.IN;
¥
setMotorEffort(2,0,MOTOR_DIR_NEUTRAL);
break;
case(3): // turnMode = 3 : Left Wheel Forward and Right Wheel Backward

turnTime = ((double)turnAngle / 28.97) * 1000;
while ((bumpDetected == noBump) && (i <= turnTime)){
setMotorEffort(4,mtr4spd,MOTOR_DIR_FORWARD);

15

setMotorEffort(2,mtr2spd,MOTOR_DIR_BACKWARD);
_delay ms(10);
i+=10;
bumpDetected = PORTD.IN;
}
setMotorEffort(4,0,MOTOR_DIR_NEUTRAL);
setMotorEffort(2,0,MOTOR_DIR_NEUTRAL);
break;

}

return bumpDetected;

}

uint8_t turnLorR(uint8_t turnMode, int turnAngle){
//purpose is to use one function to decided between left or right functions
// (-) => Left (+) => Right
if(turnAngle < ©){bumpDetected = turnLeft(turnMode, -turnAngle);}
else{bumpDetected = turnRight(turnMode,turnAngle);}
return bumpDetected;

A-2: Obstacle Avoidance Functions

uint8_t bumpCheckDelay(double delayTime){

int i=0;

bumpDetected = OxOF;

while ((bumpDetected == OxOF) && (i <= delayTime)){
_delay _ms(10);
i+=10;
bumpDetected = PORTD.IN;

}

return bumpDetected;

void whichBump(uint8_t bumpDetected){
//case statement to determine which sensor combination was hit
//calls appropriate drive function to get away from it
switch(bumpDetected){
case(OxOE): //Front Left, pin 1 closed, mask = 0000 1110
bumpHit = driveBackward(2590);
if (bumpHit == noBumpObs){
turnAngle = rand() % 180;
bumpHit = turnRight(2,turnAngle);
if (bumpHit != noBumpObs) { whichBump(bumpHit); }
}else { whichBump(bumpHit); }
break;

case(@x@D): //Front Right, pin 2 closed, mask = 0000 1101
bumpHit = driveBackward(250);
if (bumpHit == noBumpObs){
turnAngle = rand() % 180;
bumpHit = turnLeft(2,turnAngle);
if (bumpHit != noBumpObs) { whichBump(bumpHit); }
}else { whichBump(bumpHit); }
break;

16

case(0x0B): //Rear Left, pin 3 closed, mask = 0000 1011
bumpHit = driveForward(250);
if (bumpHit == noBumpObs){
turnAngle = rand() % 180,
bumpHit = turnRight(2,turnAngle);
if (bumpHit != noBumpObs) { whichBump(bumpHit); }
}Yelse { whichBump(bumpHit); }
break;

case(0x07): //Rear Right, pin 4 closed, mask = 0000 0111
bumpHit = driveForward(250);
if (bumpHit == noBumpObs){
turnAngle = rand() % 180,
bumpHit = turnLeft(2,turnAngle);
if (bumpHit != noBumpObs) { whichBump(bumpHit); }
}else { whichBump(bumpHit); }

break;

case(Ox0C): //Front, pin 1 & 2 closed, mask = 0000 1100
bumpHit = driveBackward(250);
if (bumpHit == noBumpObs){
turnAngle = rand() % 360 - 180;
bumpHit = turnLorR(2,turnAngle);
if (bumpHit != noBumpObs) { whichBump(bumpHit); }
}else { whichBump(bumpHit); }
break;

case(Ox03): //Back, pin 3 & 4 closed, mask = 0000 0011
bumpHit = driveForward(250);
if (bumpHit == noBumpObs){
turnAngle = rand() % 360 - 180;
bumpHit = turnLorR(2,turnAngle);
if (bumpHit != noBumpObs) { whichBump(bumpHit); }
}Yelse { whichBump(bumpHit); }
break;

}

int objAhead(){

//reads IR Sensors to avoid objects, returns 1 if object is there, © otherwise
int leftIR = 0, rightIR = ©;
adcChannelMux(&ADCA,1,0);
adcChannelMux(&ADCA,2,2);

_delay ms(50);

for(int ii=0; ii<2; ii++){
leftIR += analogRead(&ADCA,1);
rightIR += analogRead(&ADCA,2);
_delay ms(100); //read delay

}

leftIR /= 2;

rightIR /= 2;

if ((leftIR >= 2100)||(rightIR >= 2100)){ //bigger number = closer
return 1;
}else{return 0;}

A-3: Search Function main

void searchDrive(){
int numDrive, turnAng, i=@, start = 0, wall =0;

callCamera();
int exit = 0;

while (exit == @){ //run switch break
numDrive = rand() % 8 + 3; //3-10
isWrench = 0;
i=0;
//straight drives
while ((isWrench == 0)&&(i < numDrive)){
i++;
wall = objAhead();
if ((wall == O)&&(PORTF.IN && ©x10)){
bumpDet = driveFwSlow(drvTfrw);
if (bumpDet == noBumpSrch){

if(PORTF.IN && 0x10){bumpDetl = bumpCheckDelay(3000);}

//wait for camera image to stabilize
if ((bumpDetl == noBumpSrch)&&(PORTF.IN && 0x10)){
if(PORTF.IN && ©x10){callCamera();}
}else{whichBump(bumpDetl);}

}Yelse{whichBump(bumpDet);}
}else{break;}
if(PORTF.IN&& 0x10){break;}

}

//turn
bumpDet = OxOF;
if ((objAhead())&&(PORTF.IN && ©x10)){bumpDet = driveBackward(800);} //if
in front of wall back up before turn
if (bumpDet == noBumpSrch){
if(PORTF.IN && 0x10){turnAng = rand() % 360 - 180;
bumpDetl = turnLorR(3,turnAng);}
if (bumpDetl == noBumpSrch){

if(PORTF.IN && 0x10){bumpDet2 = bumpCheckDelay(3000);} //wait

for camera image to stabilize
if (bumpDet2 == noBumpSrch){
if(PORTF.IN && 0©x1@){callCamera();}
}else{whichBump(bumpDet2);}
}else{whichBump(bumpDet1l);}
}else{whichBump(bumpDet);}

if (! (PORTF.IN && 0x10)){exit = 1;} // run switch off

void callCamera(){//call for image processing data
int ii;
attempts = 0;
while (attempts < 3){
ph =0; th =0; di =0; ii = 0;
attempts++;
fprintf(&Xbee_str,"t"); //send command to OpenCV

18

while(!(dataInBufE1l())){_delay ms(10);} // wait for image processing data
//read image processing data
while(dataInBufE1l()){

fscanf(&Xbee_str, "%c",&readChar);

tempChar[ii] = readChar;

ii++;

if (ii == 3){
//convert image processing data
ph = (int) tempChar[0];
th (int) tempChar[1];
di = (int) tempChar[2];
if (((ph !'= 0)&&(th != 0))&&(di != 0)){
acquireDrive(ph-89,th-89,di);
}

attempts = 4; // exit loop

A-4: Acquire Function main
void acquireDrive(int phi, int theta, int dist2go){
//-phi = left of center
//+theta = cw from horizontal
//returns 1 for good grab and © for no grab
int theta2 = theta-phi; //phi-theta sign conv follows theta sign
//no realignment needed
if(abs(theta2) <= 30){grabWrench(phi,theta,dist2go);}

else{ //wrench at bad angle, attempt to re-align then find wrench again
bumpDetl = driveBackward(700);
if(bumpDetl == noBumps){
angle = 45*(-theta2/abs(theta2));
bumpDet2 = turnLorR(3,angle);
_delay _ms(250);
if(bumpDet2 == noBumps){
bumpDet3 = driveForward(700)
_delay_ms(250);
if(bumpDet3 == noBumps){
angle = 90*(theta2/abs(theta2));
bumpDet4 = turnLorR(1,angle);
_delay_ms(250);
if(bumpDet4 == noBumps){
callCamera(); //call camera again
}else{whichBump(bumpDet4);}
}else{whichBump(bumpDet3);}
}else{whichBump(bumpDet2);}
}else{whichBump(bumpDet1);}

void grabWrench(int phi, int theta, int dist2go){ //subroutine to execute motions to pick

up wrench
//which is wrenchDist away straight ahead
int pickupPos = 167, dropPos = 30;
int addTime = 0;
if(wrenchDist > 4.0){
bumpDet = turnLorR(3,phi);
if(bumpDet == noBumps){
bumpDetl = driveForward(4590);
if (bumpDetl == noBumps){callCamera();}
else{whichBump(bumpDetl);}
}Yelse{whichBump(bumpDet);}
}else{
setServoAngle(1,pickupPos);
_delay_ms(750); // make sure arm is all the way down
bumpDet = driveFwSlow(500);
servoPickup(pickupPos,dropPos);
servoRelease();
if(bumpDet != noBumps){whichBump(bumpDet);}

}

void servoPickup(int lowPos, int upPos){ //subroutine to raise arm at a slow speed
for(int i=lowPos;i >=upPos;i-=1){
setServoAngle(1,i);
_delay ms(25);

}

void servoRelease(){ //subroutine to release wrench
setServoAngle(2,130);
_delay_ms(500);
setServoAngle(2,60); //reset release

20

