Final Report

Creation of a Mobile Robotic Design

Designer: Charles R. Barker, Jr.

EEL5934 Robotics - Fall 1995 - University of Florida
Intelligent Machines Design Laboratory

Instructor: Keith L. Doty
TA's: Erik de la Iglesia

Scott Jantz

December 4, 1995

Table of Contents
Abstract

Executive Summary 4

Introduction

Integrated System

Mobile Platform
Power and MCU Systems 8
Mobile Chassis Design
Motor Drive

Sensors
Sharp IR Sensors
Motor Commutator Sampler Sensor
Cyclops Vision Sensor

Behaviors
Bump 'N Go Behavior
Collision Avoidance Behavior
Trapped Behavior
Arbitration System

Conclusions 18

Documentation

Appendices
CASEY.C
CASEY2.C
CASEY3.C
CYCLOPS.C 27
CASEY4.C
Motor Sensor Circuit

10
10
11
12

16
16
17
17
17

19

20
20
23
26

28
39

Abstract

This report is on the construction of an autonomous robotic platform for
EEL5934 - Robotics at the University of Florida. The first construction phase
was concerned with developing a platform on which to develop future plans.
The second phase was centered on creating a sensor set to allow the robot to
develop a view of its environment and react to it. The primary sensors
developed were the standard IR collision avoidance sensors, a motor
commutator sampler, and an improved version of the "Cyclops" 360° object
detection sensor. The third and fourth phases were aimed at creating a
behavior set in software that could read and interpret the sensor data in some
meaningful way, and then react to it, directing the robot's only actuation system,
the drive motors.

Executive Summary

The robot created for this project is built around the design of an improved
Cyclops 360° vision system. Every aspect of the robot is centered around this
sensor. A simple, low-maintenance platform, protective dome casing, and basic
sensor package were made with the sensor in mind.

The platform itself is highly mobile, if not fast. The round-platform, dual-wheel
approach makes it nimble enough to rotate in place and navigate areas just
slightly larger than it's diameter. The internal structure has a second deck to
elevate the Cyclops sensor at midline.

The dome casing contains the IR Emitter banks, as well as easy-access
switches, a serial port, and a charging jack. This lets the user perform all
downloads and battery charges without having to dismantle the robot.

The sensor suite incudes standard IR sensors along the base for low-level
collision avoidance, and a motor commutator noise sampler, designed to aid in
straight line navigation, odometry, and stall detection.

The Cyclops System is at the heart of the design, allowing active or passive
reading of 40KHz modulated IR in a full 360° sweep of the environment at a
sampling rate of better than one full revolution per second. The sensor has
none of the limitations of previous implementations, like blind spots, instability,
or CPU-intensive routines. Currently, the sensor can reliably take 16 readings
per revolution, though this number may be increased at the cost of higher CPU
overhead and/or lower revolution speed.

The software package allows for multitasked Sensor Daemons and Behaviors,
running under IC. Currently, the Daemon package is essentially complete,
collecting and filtering data from the sensors reliably and in real time. The
Behavior package is sparse, including Bump 'N Go, Collision Avoidance, and
Trapped behaviors. However, these can be easily expanded on with only the
addition of behavior code and adjustments to the arbitration system.

Introduction

The goal of this project was to construct an autonomous robotic platform with
capabilities that met the requirements of EEL5934 for basic development. The
eventual goal for meeting the sensor requirements was to construct a 360-
degree "vision" system similar to the one seen on "Cyclops," a robot designed
by Rosa Maria Charneca Pasadas and Rui Jorge Ferreira da Costa. The new
design would improve upon Cyclops's design to allow both passive and active
tracking of other robots, tracking of light sources, and improved 360-degree
collision avoidance. The new design would also be more rugged, controllable,
and modular than the original.

Integrated System

The robot's hardware systems are integrated as depicted in Figure 1. The input
packages, the sensors, are monitored by "daemon" processes, which feed
values to the behaviors. The behaviors are monitored by an arbitrator, which in
turn sends signals to the output systems, primarily the motor driver system.

v

Motor
Commutator
Sampler
Motor
—P Drive
System
| Base-Mounted p| 68HC11
IR Sensors MCU
4-Level
— | Adjustable IR
Emitter Banks
"Cyclops"
> Vision
System

Figure 1.

Each sensor and monitoring daemon package produces a distinct data set which
is handled by the behavior modules. (Figure 2.) These monitoring daemons are
run as independent processes under IC's multitasking system and are explained
in detail in the Sensors section.

>
Sensor | \
Monitoring |—¢»| Behavior
Daemons Processes \ Motor
. Smoothing
Generate) Generate Arbitration nd Drivin
High-Level High-Level > Network > Routineg
Global Flags & /’
Variables |[—®| Instructions
>
Figure 2.

Each Behavior takes in the sensor package variables and determines a course
of action or a flag to raise. These actions and flags are then evaluated by an
arbitration network, which is in itself a behavior. From there, the desired action
is buffered by a motor driver which directly interfaces with the motors. These
behaviors are described in the Behaviors section.

Mobile Platform
Power and MCU Systems

Power to the robot is provided by onboard 8-AA cells arranged in a 9.6V battery.
The battery provides both drive motor and MCU power (via a voltage regulator).
The battery is rechargeable via a connection jack which is mounted on the rear
of the robot. This battery pack can last several hours per charge.

The MC69HC11E9 board from Motorola has been expanded based on the
standard design schematic for the course. This design includes a 32K RAM
expansion, voltage regulator, and motor / IR LED driver circuits.

Mobile Chassis Design

The design of a robot's platform can greatly enhance the robot's capabilities,
allowing it to traverse a multitude of terrains without problems, and likewise
make the rest of the design drastically simpler. By making a "worry-free" and
robust chassis, the designer spares the need to compensate for shortcomings
with extra sensors and algorithms. For example, a wide footprint design with
outboard wheels and a properly placed center of gravity eliminates any need for
balance sensors and the associated software to read and react to them. In
keeping with this philosophy, the goals of the platform design were simplicity,
easy access and expandability, and stability.

The base of the robot is a 12-inch diameter circular sheet of lightweight birch
plywood with reinforcement cross members supporting the two drive motors. A
single castor at the rear of the robot forms the third ground contact. The bulk of
the robot's weight lies above this castor to prevent the nose from dragging. The
wheels are 2.5-inch shock-absorbing model airplane wheels, and fit into wheel
well notches on the sides of the platform.

The goals of the overall design, specifically the Cyclops sensor, brought a
number of unknowns into the chassis design at the time it was built. The
associated mechanics of the Cyclops sensor could have been bulky and heavy.
The Cyclops sensor needed to be placed near the center of the robot to prevent

the need for compensation calculations, but the microcontroller and batteries
also had to fit onto the board. The base simply didn't have enough room for all
of these parts, so a second level was added above the first to mount the drive
mechanism and sensors. The LED's for the Cyclops sensors and the numerous
switches and jacks needed to be mounted on something as well, so a Fuller-
style dome was created from thick cardboard both to mount components on, and
to protect the robot itself from damage. This dome was also painted and sealed
to increase strength. The dome also serves to block out IR from undesired
sources to the Cyclops IR sensors. These sensors would have been susceptible
to IR from other robots or reflective surfaces without a shield around them.

Motor Drive

The only actions the robot is capable of are ground movements. There are no
plans for additional actuators, though in some respect the motor drive for the
Cyclops sensor is an actuator, even if it doesn't react directly with the
environment.

A robot's motor drive system can simplify it's control systems in much the same
way a well-designed platform can. Here, the goals centered around simple
control algorithms and low power consumption. The easier it is for the software
to translate desired travel into motor commands, the more instruction cycles are
free for other algorithms.

A modification to two Futaba FP-S148 servos allowed continuous rotation.
These motors are ideal for the robot's drive system, since they are geared down
appropriately and well-sealed for low maintenance. The motors are fed a pulse-
width-modulated signal from the 293 motor driver and can rotate forwards and
backwards. They use power from the on-board 9.6V battery, and are relatively
efficient. The wheels are glued to the servo horns and screwed directly onto the
output shaft. With the servos mounted at midline, the robot can steer and spin
much like a tank can. The robot can easily turn in any direction without having
to back out of a tight position. This, again serves to simplify future coding.

Sensors
Sharp IR Sensors

The robot has a battery of 6 analog-modified Sharp IR sensors mounted in a
crossing pattern on the base of the platform. (Figure 3.) These were moved
from their positions on top of the robot to the bottom side, mainly to allow for the
robot's dome-casing design. These pick up reflections from the four 40-KHz
modulated IR LED's mounted under the platform. These four LED's are now
controlled by a switching circuit that uses only two lines from the latch to switch
resistor banks, much like the method Erik de la Iglesia used. This switching
system allows for 3 different brightness levels for the LED's when activated.
This ability is probably going to be only marginally useful for the low-level
collision avoidance sensors, but the circuit was added primarily for use with the
"Cyclops" sensor, making the lower LED bank only a trivial addition.

Undercarriage
Showing Sharp
IR Sensors

Figure 3.

This sensor arrangement provides ample information about nearby objects. The
method is very much "time-tested" by previous semesters of EEL 5934, and is
fairly reliable, though less so if the environment contains IR-absorbent materials.

The Base-Mounted IR sensors are polled routinely by the Base IR Monitoring
Daemon. This package generates several arrays as output, with each element
representing a different sensor. The arrays hold actual "analog" return values,
deltas from previous samplings, and a computed factor based on the current
actual value and the delta value.

Motor Commutator Sampler Sensor

This circuit is designed as a replacement for the traditional "wheel encoder”
system for odometry. The theory behind it and the circuit itself were both first
utilized in this class by Erik de la Iglesia. The system relies on the inductive
feedback from the point where the motor's coils are switched. When the
commutator moves from pickup to pickup, the coils discharge and create a spike.
This spike can typically bring havoc upon digital systems, but is used here as a
very fast (about 1KHz) pulse representation of the motor's speed. The
advantages of this system over the traditional wheel encoders are the lack of
additional moving parts and the very short time needed to take a representative
sample. At full speed, the motor need only be sampled for about 80ms to get
around 70 pulses in the accumulator, which is enough to estimate the motor's
actual speed. These pulses are measured with the functions in CASEY3.C, in
the appendix. This information can also be used to compare the relative speeds
of the two motors to help insure straight-line motion under IC's PWM system,
and even allow self-calibration. Testing has also shown that the if the robot
were to hit an object, the motor pulse count will fall off significantly, even if the
wheels slip some. This was fact was used in the "Bump 'N Go" Behavior much
like a low-sensitivity bumper to detect if the robot had stalled or partially stalled a
motor, assuming that it had hit an unseen object.

The only anticipated problems were with the PWM signal from the HC11, as this
pulse would also appear as a noise spike to the system. Fortunately, the PWM
signal is only about 33Hz and therefore can only really create a maximum of 2 or
3 noise spikes for every sample, and would be equally present in both channels
if set at the same speed.

The circuit in the appendix shows the concept. A two stage OP Amp circuit is
used as a comparator to first generate a pulse and then as a debouncer to clean

up low-end noises. The motors are both continually sampled and fed into a
simple multiplexer made of a 7400 NAND package. These signals are
multiplexed into PA7, the pulse accumulator, and then read as desired from IC.
The selector line for the multiplexer comes from one of the data pins that was
intended to supply an IR LED. The latch design was changed to provide solid-
power lines for the multiplexer selector, the "Cyclops" motor, and the LED
intensity selector.

There have been several small problems with the system that were not
anticipated. The primary problems were with getting the proper resistor and
capacitor values to filter the signal somewhat, but still spike when required.
Experiments at low speeds showed the resistors were too high to allow the
commutator noise to offset the OP-Amp as desired, so these values were
adjusted some. Crosstalk between motors was eliminated by adding large
capacitors to the board, but the addition of the multiplexer and bus wire between
the circuit and the motors added a good deal of noise to the system. As the
system stands, it is only used as part of a "last resort" behavior. A stalled motor
can be detected, but the values simply aren't accurate enough to base odometry
on.

The Motor Sampler Monitoring Daemon generates data on the number of pulses
returned by each motor. The interface-level output is a "Stall Factor" that is
based on repeated samplings where the motor pulse output is less than should
be expected for the current output of the motor PWM system. Both drive motors
have stall factors, which are read in as global variables by any behavior that
requires that data.

Cyclops Vision Sensor

This sensor is designed to allow the robot to quickly and efficiently gather
reflected IR readings like those from the collision avoidance sensors, but in a full
360° circle around the robot and at a rate of better than one full scan per
second. The design | have opted for is the "periscope"” style implementation,
chosen primarily for it's aesthetics and modularity; The sensor is very simple in
design and construction and easy to add to an existing robotic platform.
Unfortunately, the original design's variable-gearing motor kit was not available,

so the current design uses a Futaba servo with the stop gears clipped to turn the
mirror. The servo has worked out well, though, since it is small, readily
available, and easy to work with. (Figure 4.)

-— Mirrored Surface
Modulated |:|

IR Light \

Servo Horn
With Stripe
Encoding

Sharp \ \

IR Sensor

Siemens SFH900 Package

Sharp
IR Sensors

¥~ Futaba S148 Servo (Free-Rotating) ¥
Figure 4.

The mirrored surface rotates, directing the reflected IR into the side-mounted
sensors. The Siemens sensor reads a stripe on the servo horn to indicate when
the mirror has gone around. This stripe is read to maintain timing and
calibration of the servo's speed. A circuit has been designed to select different
intensities on two high-mounted banks of LED's to create the modulated IR.

The Sharp IR sensors were hacked to return analog values, just as the base
sensors were, but they were also hacked to have a lower time constant so they
would react faster to changes in the IR intensity. This meant replacing the
internal capacitor with a smaller value. This hack is reported to reduce the
range on the sensors, but the IR emitter intensity was increased to compensate.

The eight IR emitters were placed on the perimeter of the dome aiming outward.
These LED's had to be modulated at 40KHz and also controlled by the MCU, but
power needs were too great for HC logic gates. Transistor switches were added
inline with the latch outputs and 40KHz line to provide ample current through the
LED's. Preliminary tests practically lit up a darkened room when viewed by a
video camera. Resistors in the circuit are socket mounted for easy adjustment.

First impressions indicated that the Cyclops-level emitters would have to be
synchronized with the base emitters, which were normally only turned on only for
0.1s durations. Since the Cyclops sensor requires practically constant IR
emissions anyhow, it was decided that all of the emitters would remain
continuously on. This makes the robot very "intrusive" to other robots, which
may be confused by the high-intensity IR bathing the environment, but this side
effect cannot be avoided.

The Cyclops sensor's mirror is susceptible to jostling if handled, so the code in
CYCLOPS.C was written to help realign the mirror with the Siemens sensor
stripe. The motor is pulsed very slowly until the sensor registers. The rotation is
so slow because if the motor is shut off from full speed, the inertia of the system
causes the mirror to rotate another 30° after shutdown. The motor shaft is thus
aligned such that the robot believes the mirror is pointing due forward. The
mirror must then be rotated manually into place. Eventually this code could be
replaced by an automatic system that compared the returns from the Base IR
sensors, though this would probably be unreliable.

The Cyclops sensor is monitored by two separate daemons. The Cyclops
Synchronization Daemon monitors the Siemens shaft encoder to determine the
rate of rotation and provide synchronization to the other module, the Cyclops
Scanning Daemon, which generates return values much like those for the Base-
Mounted IR sensors. These values are also in arrays, with each of the elements
representing a different position in the rotation. Currently, there are 16 elements
to each array, as the 360° sweep is sampled 16 times per revolution.

Behaviors

The first behaviors that were written are simple collision avoidance systems,
both using only the basic IR sensors. The first attempt, CASEY.C (using a
simple look-and-turn algorithm), was not intended to ever actually be used as a
behavior, but only as a demonstration of the robot's sensors. The Dynam.11-
based collision avoidance system appears in the appendix as CASEY2.C. The
code worked well, but would probably break down when forced to multitask with
the processor-intensive Cyclops routines, since it relies on regular sampling
intervals. The programs CASEY3.C and CYCLOPS.C are only parts of sensor
maintenance routines, and not behaviors themselves.

The first multiple-behavior code was CASEY4.C. This code served as the
platform for basic behavior development, as it was designed to be modular. New
behavior modules and sensor daemons were added to the structure as they
were developed and then tested in place. This code contains the behaviors
currently in use, as well as the arbitration system. Though the behavior system
is constantly being updated, added to, and tweaked, the following are the three
best examples of stable, working behaviors as of this report. These are also the
ones seen in the current version of CASEY4.C. Other behaviors include wall
following, robot seeking, and object scanning. As of this report, though, these
behaviors were either non-functional or very unstable. The robot seeking
behavior, for example, requires that the Cyclops sensor enter a "passive" mode.
By shutting down IR emitters, it is possible to identify other robots, but this
hinders the collision avoidance system. An interprocess communication needs
to be established to allow this. Future behaviors, once stabilized, will probably
be integrated into a new version of the code with an IR Daemon to allow
behaviors to know when the IR system is in passive or active mode.

Bump 'N Go Behavior

This behavior is a last-resort reaction in case of collision or stall. The only input
is the motor commutator sensor's stall factors. When the stall factors reach a
certain level, the behavior flags the arbitration network to indicate a stalled
motor. The flag is in the form of a non-zero value in the "desired motor speed"

variable corresponding to the stalled motor, and is equal to 100% in the opposite
direction of the current value.

Collision Avoidance Behavior

This behavior is the basic method for avoiding collisions in the environment. It is
based solely on the Base IR sensor arrays, and indicates to the arbitration
system a general direction in which to travel to avoid collision.

Trapped Behavior

This behavior is based on the Cyclops sensor package, and simply scans the
Cyclops return values and compares them to a threshold. If too many of these
values exceed the threshold, the robot assumes it is trapped and will alert the
arbitration system, which will then shut down the motors and emit a low tone to
let the user know of the problem.

Arbitration System

The eventual result of these behaviors is the control of the motors by the
Arbitrator. Priority status is given to the "emergency" flags like the Bump 'N Go
behavior produces. Barring flags, the robot tends to move forward. The current
methods allow the robot to navigate a room with very few collisions, and even
fewer "hang-ups" wherein the robot is completely immobilized. (The "Trapped"
behavior usually only occurs under forced circumstances, though this would
immobilize the robot.) It also seems to find many of the niches in the
environment, even if it cannot navigate around in them.

Conclusion

The robot now meets the criteria set by the EEL 5934 syllabus. It has 3 major
sensor groups and a behavior system based on those sensors. Although
actuation is limited to propulsion in the environment, the robot seems to control
this ability well. As for creating a better "Cyclops" sensor, the current design has
surpassed some of the limitations of it's predecessor. The Siemens shaft
encoder eliminates the need for a synchronizing LED, which created a blind spot
in the earlier design. A side effect of this is that the sensors are only sampled as
needed, not in a tight , continuous loop as the original system used. This results
in far more stable values from the board, as well as lower CPU overhead. The
dual-sensor periscope design doesn't have any of the blind spots from the
rotation shaft that a normal periscope would have, and is very aesthetically
pleasing.

More tests are needed to refine the code as it stands. Most of the coefficients
could be replaced by learning algorithms. Some of the code might be best
implemented in assembly. A large variety of behaviors could be based on the
information provided by the Cyclops sensor, but time has limited such
development for this semester. Unfortunately, the hardware end of the project
became very time consuming, leaving little time to develop the software to it's
fullest potential. Hopefully in the future more complex behaviors can be created.
A mapping and navigation routine would be ideal for this sensor set, as would a
hunter-seeker routine for chasing other robots (and no doubt terrorizing them
with excessive IR). Overall, the robot's design has been very successful for it's
basic goals, and shows a great deal of potential for the future.

Documentation

[1] Fred Martin. The 6.270 LEGO Robot Design Competition Course Notes.
Electrical Engineering and Computer Science Department, MIT 1992.
[2] Joseph L. Jones and Anita M. Flynn. Mobile Robots: Inspiration to
Implementation.
A. K. Peters 1993.
[3] Pattie Maes. Designing Autonomous Agents.
MIT Press / Elsevier Science Publishers 1990.
[4] M68HC11 Reference Manual.
Motorola 1991.
[5] MC68HC11E9 Technical Data.
Motorola 1991.
[6] Hugh Kenner. Geodesic Math and How To Use It.
University of California Press 1976.
[7] John Prenis. The Dome Builder's Handbook.
Running Press 1973.

CASEY.C

/* casey.c

Appendices

Attempt at collision avoidance

Casey Barker
*/

intLEFT= 0
intRIGHT = 0;

int FRONTLEFT =0;
int FRONTRIGHT=0;

intLTOR= O;
int RTOL= O;
int THRESH = 110;

int LMOTOR = 0;
int RMOTOR = 1;
int NORM = 80;
intSTOP= 0;

void irscan()

{

while (1) {
poke(0x7000, 0xff);
wait(100);
LEFT = analog(b);
RIGHT = analog(4);
FRONTLEFT = analog(3);

FRONTRIGHT = analog(0);

LTOR = analog(2);
RTOL = analog();
poke(0x7000, 0xff);
wait(100);

}

}

void wait(int milli_seconds)

{

/* Sensor input values */

/* Motor init values */

/* Don't busy wait, check timer */

long timer_a;
timer_a = mseconds() + (long) milli_seconds;
while(timer_a > mseconds()) {

defer();
}
}
void go_right() /* if object is on left side of robot */
{
motor(LMOTOR,NORM);
motor(RMOTOR,STOP);
}
void go_left() /* if object is on right side of robot */
{
motor(RMOTOR,NORM);
motor(LMOTOR,STOP);
}
void go_forward() /* if no objects detected */
{

motor(LMOTOR,NORM);
motor(RMOTOR,NORM);

}

void go_back() /* if objects in front of robot */
{
motor(LMOTOR,-1*NORM/2);
motor(RMOTOR,-1*NORM/2);

}

void main()

{
beep();
start_process (irscan());
while (1) {
if (FRONTLEFT > THRESH && FRONTRIGHT >THRESH) | | (LTOR >
THRESH && RTOL > THRESH)){
go_back();
wait (100);
go_right();
wait (400);

}
else if (LEFT > THRESH | | FRONTLEFT > THRESH | | RTOL >

THRESH) {
go_right();
}
else if (RIGHT > THRESH | | FRONTRIGHT > THRESH | | LTOR >
THRESH) {
go_left();
}

else {go_forward();}

CASEY2.C

/* casey2.c
Attempt at collision avoidance using Non-Linear Dynamics

Casey Barker
*/

intLEFT= 0 /* Sensor input values */
int RIGHT = 0;

int FLEFT =0;

int FRIGHT=0;

intLTOR= 0

int RTOL= 0

int LEFTO,RIGHTO,FLEFTO,FRIGHTO,LTORO,RTOLO;

float ABSPEEDR,
float ABSPEEDL;
float SPEEDL=100;
float SPEEDR=100;

float LETFD,RIGHTD,FLEFTD,FRIGHTD,LTORD,RTOLD;
float
ABSLEFTD,ABSRIGHTD,ABSFLEFTD,ABSFRIGHTD,ABSLTORD,ABSRTOLD:;

float ca=0.015;
float cb=0.5;
float cd=50;

void irscan()

{

while (1) {
poke(0x7000, 0xff);

RIGHTO=RIGHT;
LEFTO=LEFT,;
FRIGHTO=FRIGHT,
FLEFTO=FLEFT;
LTORO=LTOR,;

RTOLO=RTOL,

wait(90);

LEFT = analog(5);

RIGHT = analog(4);
FRONTLEFT = analog(3);
FRONTRIGHT = analog(0);
LTOR = analog(2);

RTOL = analog(1);
poke(0x7000, 0xff);

RIGHTD=(float)(RIGHTO-RIGHT);
LEFTD=(float)(LEFTO-LEFT);
RTOLD=(float)(RTOLO-RTOL);
LTORD=(float)(LTORO-LTOR);
FLEFTD=(float)(FLEFTO-FLEFT);
FRIGHTD=(float)(FRIGHTO-FRIGHT);

ABSRIGHTD=RIGHTD;

iIf(RIGHTD<0.0) ABSRIGHTD=-RIGHTD;
ABSLEFTD=LEFTD;

if(LEFTD<0.0) ABSLEFTD=-LEFTD;
ABSFRIGHTD=FRIGHTD;
iIf(FRIGHTD<0.0) ABSFRIGHTD=-FRIGHTD;
ABSFLEFTD=FLEFTD;

if(FLEFTD<0.0) ABSFLEFTD=-FLEFTD;
ABSRTOLD=RTOLD;

if(RTOLD<0.0) ABSRTOLD=-RTOLD;
ABSLTORD=LTORD;

if(LTORD<0.0) ABSLTORD=-LTORD;

ABSPEEDR=SPEEDR,;
if(SPEEDR<0.0) ABSPEEDR=-SPEEDR;
ABSPEEDL=SPEEDL,;
if(SPEEDL<0.0) ABSPEEDL=-SPEEDL,;

SPEEDL=SPEEDL + ca*ABSPEEDL + cb*ABSLEFTD + cd*LEFTD;
SPEEDR=SPEEDR + ca*ABSPEEDR - cb*ABSRIGHTD + cd*RIGHTD;

if(SPEEDR>100.0)
SPEEDR=100.0;

if(SPEEDL>100.0)
SPEEDL=100.0;

if(SPEEDR<-100.0)
SPEEDR=-100.0:

if(SPEEDL<-100.0)
SPEEDL=-100.0;

motor(0,SPEEDL);
motor(1,SPEEDR);

wait(90);

}
}

void wait(int milli_seconds) /* Don't busy wait, check timer */
{

long timer_a;

timer_a = mseconds() + (long) milli_seconds;

while(timer_a > mseconds()) {

defer();

}

}

void main()

{
beep();
start_process (irscan());

CASEY3.C

/~k

Motor Sensor Routines

*/

void wait (int millisec) {
long timer_a;

timer_a = mseconds() + (long) millisec;
while (timer_a > mseconds()) {
defer();

b3

void countinit () {
poke(0x1026,0x40);

}

int duration;

int count (int duration)
{

poke(0x1027,0x00);
wait(duration);

return (peek(0x1027));
}

CYCLOPS.C

/* cyclops.c
Manual Calibrator Routine
Casey Barker

*/

/* **Wait Function*** */

void wait(int milli_seconds)

{
long timer_a;
timer_a = mseconds() + (long) milli_seconds;
while(timer_a > mseconds()) {defer();}

}

void main ()

{
while ((peek(0x1000)&0x01)==0)

{
poke(0x7000,0x80);
wait (1);
poke(0x7000,0x00);
wait (20);

}

beep();
}

CASEYA4.C
/* casey4d.c
First Integrated Behavior Platform.

Casey Barker
*/

/* kkkkkkkkkhkkkkkkkkkkkkkkkkkkkkkkkkkkkkkhkkkkkkkkkkkkkkk */

/* *****************Global VariabIeS***************** */
/* kkkkkkkkkkkkkkkkkkkkkkkhkkkkkkkkkkkkhkkkhkkkkkkkkkkkkkkk */

int irscan_pid,;

int motor_count_pid;
int motor_driver_pid;
int cysynch_pid;

int cyscan_pid;

int trapped_pid,;
int coll_av_pid;
int bumpngo_pid;
int arbitrate_pid,;

int |_motorid=1;
int r_motorid=0;

int |_motor = 0;
int r_motor = 0;

int |_motor_desired = 0; /*Arbitrated Values*/

int r_motor_desired = 0; /*These are the ones the Motor Driver reacts to*/

int bg_|_motor_desired =0; /*Bump 'N Go Values*/

int bg_r_motor_desired = 0;

int ca_l_motor_desired =0; /*Collision Avoidance Values*/

int ca_r_motor_desired = 0;

int rightside=4; /*IR Sensor Analog Port Values*/
int leftside=5;

int leftfront=3;
int rightfront=0;
int leftdiag=2;
int rightdiag=1;
int rcyclops=6;
int Icyclops=7;

int base[6]; /*Base-Mounted IR Sensor Array (Current Values)*/

int base_old[6]; /*Base-Mounted IR Sensor Array (Previous Values)*/

int base_delta[6]; /*Base-Mounted IR Sensor Array (Delta from Last Values)*/
int base_factor[6]; /*Calculated Collision Potential*/

int cyclops[16]; /*Cyclops Sensor Data Array (Current Values)*/

int cyclops_old[16]; /*Cyclops Sensor Data Array (Previous Values)*/

int cyclops_delta[16]; /*Cyclops Sensor Data Array (Delta from Last
Values)*/

int cyclops_factor[16]; /*Calculated Object / Robot Potential*/

int cyclops_count; /*The Current position in the Cyclops array*/

int thresh = 10; /*Threshhold for lowest factor responded to*/

int lower_limit = 80; /*Lowest Probable IR value, subtracted from current IR

reading for factor calculation*/

float motordelta=0.05; /*Motor Adjustment Coefficient*/

int pa_duration=100; /*Pulse Acc. Wait Time for Motor Sensor*/
int left_count; /*Motor Count for Left Motor*/

int right_count; /*Motor Count for Right Motor*/

int left_sf; /*Left "Stall Factor” (0-3)*/

int right_sf; /*Right "Stall Factor" (0-3)*/

float pulsefactor=1.0; /*Multiplied by current motor speed to determine what
ideal pulse return should be*/

long cyperiod,; /*Total Rotational Time*/

long cydelta; /*Time Slice between Reads*/

long oldcydelta; /*Previous Time Slice*/

long time; /*Time of Siemens Hit*/

long prevtime; /*Previous Time of Siemens Hit*/
long icydelta = 40L; /*Guess of what cydelta should be*/
int goodrun; /*Is the current pass good?*/

int trap_flag; /*Am | Trapped?*/

int trapthresh = 93; /*Trapped Threshhold*/

int trap_count;

int port; /*Current Value of 0x7000 MMIO port)*/

/* kkkkkkkkkhkkkkkkkkkkkkkkkhkkkkkkkkkkkkhkkkkkkkkkkkkkkkkk */
/* *********************F un Cti 0 ns********************* */

/* kkkkkkkkkhkkkkkkkkkkkkkkkkkkhkkkkkkkkkhkkkkkkkkkkkkkkkkk */

/* **Wait Function*** */

void wait(int milli_seconds)

{
long timer_a = mseconds() + (long) milli_seconds;
while(timer_a > mseconds()) {defer();}

}

/* ***Float Wait Function*** */

void fwait(float milli_seconds)

{
long timer_a = mseconds() + (long) milli_seconds;
while(timer_a > mseconds()) {defer();}

}

/* ***Absolute Value Function*** */

int abs(int n)

{

if (n>0) return n;
if (n<0) return -n;
else return 0;

}

/* ***Pulse Accumulator Initialization Function*** */
void pa_init ()

{

poke(0x1026,0x40);

}

/* ***Motor Smoothing Function*** */
void motor_smooth()
{
I_motor = (int) ((float) |_motor + (motordelta * (float) (I_motor_desired -
|_motor)));

r_motor = (int) ((float) r_motor + (motordelta * (float) (r_motor_desired -
motor)));

r_
}

/* kkkkkkkkkhkkkkkkkkkkkkkkkkkkhkkkkkkkkkhkkkkkkkkkkkkkkkkk */

/* ************Sensor & Monitoring Daemons************ */

/* kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkhkkkkkkkkkkkkkkkkk */

/* ***Motor Sensor Daemon*** */
void motor_count()
{
while(1)
{
port = (port | 0x40);
poke(0x7000,port);
poke (0x1027,0x00);
wait (pa_duration);
left_count = peek(0x1027);
if ((left_count< (int) ((float) |_motor * pulsefactor))&&((abs(l_motor))>15))

{
if (left_sf<3)

{ left_sf = left_sf +1;
}

}

else

{
if (left_sf>0)
{ left_sf = left_sf -1;
}

}

port = (port - (port & 0x40));
poke(0x7000,port);
poke (0x1027,0x00);
wait (pa_duration);
right_count = peek(0x1027);
if ((right_count< (int) ((float) r_motor * pulsefactor))&&((abs(r_motor))>15))
{
if (right_sf<3)

{
right_sf = right_sf +1;

}

}
else
{
if (right_sf>0)
{
right_sf = right_sf -1;
}
}

}
}

/* ***Motor Driving Daemon*** */
void motor_driver()

{
while(1)
{
motor_smooth();
motor(l_motorid,|_motor);
motor(r_motorid,r_motor);
}
}

/* ***Cyclops IR Scanning Daemon*** */
void cyscan()

{

int n=cyclops_count;

while(1)
{
if ((n !'= cyclops_count)&&(goodrun==1))
{
n=cyclops_count;
cyclops_old[n] = cyclops[n];
cyclops[n]=((analog(lcyclops) + analog(rcyclops))/?2);
cyclops_delta[n] = cyclops[n] - cyclops_old[n];
cyclops_factor[n] = (cyclops[n]-lower_limit) * cyclops_delta[n];
}

else defer();

}

/* ***Cyclops Synchronizer Daemon*** */
void cysynch()

{

time = mseconds();
cydelta = icydelta;
while (1)

{

if (peek(0x1000) & 1)

{

goodrun =1;

prevtime = time;

time = mseconds();

cyperiod = time - prevtime;

oldcydelta = cydelta;

cydelta = ((long) (((float) cyperiod / 16.0) * (1.0/3.0)) + (long) ((float)

oldcydelta * (2.0/3.0)));

}

}

}

start_process (tone(500.0, 0.05));
if (cydelta > (long) (1.5 * (float) icydelta))

{
cydelta = oldcydelta;
goodrun =0;
wait(300);

}

else

{

cyclops_count=0;
Iwait (cydelta - 2L);

cyclops_count=1,
while ((cyclops_count<15)&&(((peek(0x1000))&0x01) != 1))
{
Iwait (cydelta);
cyclops_count = cyclops_count + 1;
}
}

cyclops_count = 15;

/* ***Long Wait Function (SPECIFICALLY for CYCLOPS Synchronization!)***

*/

void lwait(long milli_seconds)

{

long timer_a = mseconds() + milli_seconds;
while((timer_a > mseconds())&&((((peek(0x1000))&0x01) =
1)] | (cyclops_count<2))) {defer();} /* Doesn't wait if Siemens Sensor goes high */

}

/* ***Baseline IR Scanning Daemon*** */
void irscan()

{
intn;
while (1)
1£or (n=0; N<6; n++)
f)ase_old[n] = base[n]; /* Stores old data */
}

base[rightside] = analog(rightside);
base[leftside] = analog(leftside);
base[rightfront] = analog(rightfront);
base[leftfront] = analog(leftfront);
base[rightdiag] = analog(rightdiag);
base[leftdiag] = analog(leftdiag);

for (n=0; n<6; n++)
{
base_delta[n] = base[n] - base_old[n]; /* Calculates Change in IR */

}

for (n=0; Nn<6; n++)
{
base_factor[n] = (base[n]-lower_limit) * base_delta[n]; /* Calculates Object
Collision Factor */
}
wait(80);
}
}

/* kkkkkkkkkhkkkkkkkkkkkkkkkhkkkkkkkkkkkkhkkkkkkkkkkkkkkkkk */
/* kkkkkkkkkkkkkhkkkkkkhkkk Be h avi 0 rs********************* */

/* kkkkkkkkkkkkkkkkkkkkkkkhkkkkhkkkkkkkkkhkkkhkkkkkkkkkkkkkkk */

/* ***Bump 'N Go Behavior*** */

void bumpngo()

{
while (1)
{
if (left_sf>1)
{
if (I_motor>0)
{
bg_|I motor_desired = -100;
}
if (I_motor<0)
{
bg_| motor_desired = 100;
}
}
else
{

bg_| motor_desired = 0;

}

if (right_sf>1)
{
if (r_motor>0)
{
bg_r _motor_desired = -100;
}
if (r_motor<0)
{
bg_r_motor_desired = 100;
}
}

else

{

bg_r_motor_desired = 0;

}

/* ***Collision Avoidance Behavior*** */

void coll_av()

{

int largest, sensor, n;

while (1)
{
largest = 0;
sensor = 0;
for (n=0; n<6; n++)
{
if (largest<base_factor[n])
{
largest = base_factor[n];
sensor = n;
}
}

if (largest<thresh)
{
sensor = 6;
ca_| _motor_desired = 100;
ca_r_motor_desired = 100;
}
if (sensor==rightside)
{
ca_| _motor_desired = 50;
ca_r_motor_desired = 100;
}
if (sensor==leftside)
{
ca_|_motor_desired = 100;
ca_r_motor_desired = 50;
}
if (sensor==rightfront)
{
ca_l _motor_desired = -100;
ca_r_motor_desired = 100;
}

if (sensor==leftfront)

{

ca_|_motor_desired = 100;

ca_r_motor_desired = -100;
}
if (sensor==rightdiag)
{
ca_| _motor_desired = -50;
ca_r_motor_desired = -100;
}
if (sensor==leftdiag)
{
ca_l _motor_desired = -100;
ca_r_motor_desired = -50;
}
defer();

}
}

/* ***Shutdown if Trapped Behavior** */

void trapped()

{
intn;
while (1)
{
trap_count =0;
wait (1000);
for (n=0; N<16; n++)
{
if (cyclops[n] > trapthresh)
{
trap_count = trap_count + 1,
}
}
if (trap_count > 14)
{
trap_flag =1,
}
else
{
trap_flag = 0;

}

}
}

/* ***Robot Detection & Tracking Behavior*** */
/* ***Behavior Arbitration** */

void arbitrate ()

\{/vhile @
{ if (trap_flag == 1)
{ I_motor_desired = r_motor_desired = 0;
tone (300.0, 0.5);
}
else
{
if (bg_|I_motor_desired !=0)
{ I_motor_desired = bg_| _motor_desired,;
wait (1000);
}
else
{
I_motor_desired = ca_|_motor_desired,;
}
if (bg_r_motor_desired != 0)
{ r_motor_desired = bg_r_motor_desired,;
wait (1000);
}
else
{
r_motor_desired = ca_r_motor_desired,;
}
}
}
}

/* kkkkkkkkkhkkkkkkkkkkkkkkkhkkkkkkkkkkkkhkkkkkkkkkkkkkkkkk */

/* kkkkkkkkkkkkkkkhkkkk M ai n F un Ct | 0 n******************* */

/* kkkkkkkkkhkkk */

void main()

{
beep();
port = 0b10001111;

poke(0x7000,port);
pa_init ();

cysynch_pid = start_process (cysynch());
motor_driver_pid = start_process (motor_driver());
motor_count_pid = start_process (motor_count());

irscan_pid = start_process (irscan());
cyscan_pid = start_process (cyscan());
bumpngo_pid = start_process (bumpngo());
coll_av_pid = start_process (coll_av());
trapped_pid = start_process (trapped());

wait(2000); /*Lets System Stabilize*/

tone(1000.0, 0.5);
arbitrate_pid = start_process (arbitrate());

