
Final Report
Creation of a Mobile Robotic Design

Designer: Charles R. Barker, Jr.

EEL5934 Robotics - Fall 1995 - University of Florida

Intelligent Machines Design Laboratory

Instructor: Keith L. Doty

TA's: Erik de la Iglesia

Scott Jantz

December 4, 1995

Table of Contents
Abstract 3

Executive Summary 4

Introduction 5

Integrated System 6

Mobile Platform 8

Power and MCU Systems 8

Mobile Chassis Design 8

Motor Drive 9

Sensors 10

Sharp IR Sensors 10

Motor Commutator Sampler Sensor 11

Cyclops Vision Sensor 12

Behaviors 16

Bump 'N Go Behavior 16

Collision Avoidance Behavior 17

Trapped Behavior 17

Arbitration System 17

Conclusions 18

Documentation 19

Appendices 20

CASEY.C 20

CASEY2.C 23

CASEY3.C 26

CYCLOPS.C 27

CASEY4.C 28

Motor Sensor Circuit 39

Abstract

This report is on the construction of an autonomous robotic platform for
EEL5934 - Robotics at the University of Florida. The first construction phase
was concerned with developing a platform on which to develop future plans.
The second phase was centered on creating a sensor set to allow the robot to
develop a view of its environment and react to it. The primary sensors
developed were the standard IR collision avoidance sensors, a motor
commutator sampler, and an improved version of the "Cyclops" 360° object
detection sensor. The third and fourth phases were aimed at creating a
behavior set in software that could read and interpret the sensor data in some
meaningful way, and then react to it, directing the robot's only actuation system,
the drive motors.

Executive Summary

The robot created for this project is built around the design of an improved

Cyclops 360° vision system. Every aspect of the robot is centered around this

sensor. A simple, low-maintenance platform, protective dome casing, and basic

sensor package were made with the sensor in mind.

The platform itself is highly mobile, if not fast. The round-platform, dual-wheel

approach makes it nimble enough to rotate in place and navigate areas just

slightly larger than it's diameter. The internal structure has a second deck to

elevate the Cyclops sensor at midline.

The dome casing contains the IR Emitter banks, as well as easy-access

switches, a serial port, and a charging jack. This lets the user perform all

downloads and battery charges without having to dismantle the robot.

The sensor suite incudes standard IR sensors along the base for low-level

collision avoidance, and a motor commutator noise sampler, designed to aid in

straight line navigation, odometry, and stall detection.

The Cyclops System is at the heart of the design, allowing active or passive

reading of 40KHz modulated IR in a full 360° sweep of the environment at a

sampling rate of better than one full revolution per second. The sensor has

none of the limitations of previous implementations, like blind spots, instability,

or CPU-intensive routines. Currently, the sensor can reliably take 16 readings

per revolution, though this number may be increased at the cost of higher CPU

overhead and/or lower revolution speed.

The software package allows for multitasked Sensor Daemons and Behaviors,

running under IC. Currently, the Daemon package is essentially complete,

collecting and filtering data from the sensors reliably and in real time. The

Behavior package is sparse, including Bump 'N Go, Collision Avoidance, and

Trapped behaviors. However, these can be easily expanded on with only the

addition of behavior code and adjustments to the arbitration system.

Introduction

The goal of this project was to construct an autonomous robotic platform with

capabilities that met the requirements of EEL5934 for basic development. The

eventual goal for meeting the sensor requirements was to construct a 360-

degree "vision" system similar to the one seen on "Cyclops," a robot designed

by Rosa Maria Charneca Pasadas and Rui Jorge Ferreira da Costa. The new

design would improve upon Cyclops's design to allow both passive and active

tracking of other robots, tracking of light sources, and improved 360-degree

collision avoidance. The new design would also be more rugged, controllable,

and modular than the original.

Integrated System

The robot's hardware systems are integrated as depicted in Figure 1. The input

packages, the sensors, are monitored by "daemon" processes, which feed

values to the behaviors. The behaviors are monitored by an arbitrator, which in

turn sends signals to the output systems, primarily the motor driver system.

Base-Mounted
IR Sensors

Motor
Commutator

Sampler

"Cyclops"
Vision

System

68HC11
MCU

Motor
Drive

System

4-Level
Adjustable IR
Emitter Banks

Figure 1.

Each sensor and monitoring daemon package produces a distinct data set which

is handled by the behavior modules. (Figure 2.) These monitoring daemons are

run as independent processes under IC's multitasking system and are explained

in detail in the Sensors section.

Sensor
Monitoring
Daemons

Generate

High-Level

Global
Variables

Behavior
Processes

Generate

High-Level

Flags &
Instructions

Arbitration
Network

Motor
Smoothing
and Driving

Routine

Figure 2.

Each Behavior takes in the sensor package variables and determines a course

of action or a flag to raise. These actions and flags are then evaluated by an

arbitration network, which is in itself a behavior. From there, the desired action

is buffered by a motor driver which directly interfaces with the motors. These

behaviors are described in the Behaviors section.

Mobile Platform

Power and MCU Systems

Power to the robot is provided by onboard 8-AA cells arranged in a 9.6V battery.

The battery provides both drive motor and MCU power (via a voltage regulator).

The battery is rechargeable via a connection jack which is mounted on the rear

of the robot. This battery pack can last several hours per charge.

The MC69HC11E9 board from Motorola has been expanded based on the

standard design schematic for the course. This design includes a 32K RAM

expansion, voltage regulator, and motor / IR LED driver circuits.

Mobile Chassis Design

The design of a robot's platform can greatly enhance the robot's capabilities,

allowing it to traverse a multitude of terrains without problems, and likewise

make the rest of the design drastically simpler. By making a "worry-free" and

robust chassis, the designer spares the need to compensate for shortcomings

with extra sensors and algorithms. For example, a wide footprint design with

outboard wheels and a properly placed center of gravity eliminates any need for

balance sensors and the associated software to read and react to them. In

keeping with this philosophy, the goals of the platform design were simplicity,

easy access and expandability, and stability.

The base of the robot is a 12-inch diameter circular sheet of lightweight birch

plywood with reinforcement cross members supporting the two drive motors. A

single castor at the rear of the robot forms the third ground contact. The bulk of

the robot's weight lies above this castor to prevent the nose from dragging. The

wheels are 2.5-inch shock-absorbing model airplane wheels, and fit into wheel

well notches on the sides of the platform.

The goals of the overall design, specifically the Cyclops sensor, brought a

number of unknowns into the chassis design at the time it was built. The

associated mechanics of the Cyclops sensor could have been bulky and heavy.

The Cyclops sensor needed to be placed near the center of the robot to prevent

the need for compensation calculations, but the microcontroller and batteries

also had to fit onto the board. The base simply didn't have enough room for all

of these parts, so a second level was added above the first to mount the drive

mechanism and sensors. The LED's for the Cyclops sensors and the numerous

switches and jacks needed to be mounted on something as well, so a Fuller-

style dome was created from thick cardboard both to mount components on, and

to protect the robot itself from damage. This dome was also painted and sealed

to increase strength. The dome also serves to block out IR from undesired

sources to the Cyclops IR sensors. These sensors would have been susceptible

to IR from other robots or reflective surfaces without a shield around them.

Motor Drive

The only actions the robot is capable of are ground movements. There are no

plans for additional actuators, though in some respect the motor drive for the

Cyclops sensor is an actuator, even if it doesn't react directly with the

environment.

A robot's motor drive system can simplify it's control systems in much the same

way a well-designed platform can. Here, the goals centered around simple

control algorithms and low power consumption. The easier it is for the software

to translate desired travel into motor commands, the more instruction cycles are

free for other algorithms.

A modification to two Futaba FP-S148 servos allowed continuous rotation.

These motors are ideal for the robot's drive system, since they are geared down

appropriately and well-sealed for low maintenance. The motors are fed a pulse-

width-modulated signal from the 293 motor driver and can rotate forwards and

backwards. They use power from the on-board 9.6V battery, and are relatively

efficient. The wheels are glued to the servo horns and screwed directly onto the

output shaft. With the servos mounted at midline, the robot can steer and spin

much like a tank can. The robot can easily turn in any direction without having

to back out of a tight position. This, again serves to simplify future coding.

Sensors

Sharp IR Sensors

The robot has a battery of 6 analog-modified Sharp IR sensors mounted in a

crossing pattern on the base of the platform. (Figure 3.) These were moved

from their positions on top of the robot to the bottom side, mainly to allow for the

robot's dome-casing design. These pick up reflections from the four 40-KHz

modulated IR LED's mounted under the platform. These four LED's are now

controlled by a switching circuit that uses only two lines from the latch to switch

resistor banks, much like the method Erik de la Iglesia used. This switching

system allows for 3 different brightness levels for the LED's when activated.

This ability is probably going to be only marginally useful for the low-level

collision avoidance sensors, but the circuit was added primarily for use with the

"Cyclops" sensor, making the lower LED bank only a trivial addition.

1
2

3 4

5
6

Undercarriage
Showing Sharp

IR Sensors

Figure 3.

This sensor arrangement provides ample information about nearby objects. The

method is very much "time-tested" by previous semesters of EEL 5934, and is

fairly reliable, though less so if the environment contains IR-absorbent materials.

The Base-Mounted IR sensors are polled routinely by the Base IR Monitoring

Daemon. This package generates several arrays as output, with each element

representing a different sensor. The arrays hold actual "analog" return values,

deltas from previous samplings, and a computed factor based on the current

actual value and the delta value.

Motor Commutator Sampler Sensor

This circuit is designed as a replacement for the traditional "wheel encoder"

system for odometry. The theory behind it and the circuit itself were both first

utilized in this class by Erik de la Iglesia. The system relies on the inductive

feedback from the point where the motor's coils are switched. When the

commutator moves from pickup to pickup, the coils discharge and create a spike.

This spike can typically bring havoc upon digital systems, but is used here as a

very fast (about 1KHz) pulse representation of the motor's speed. The

advantages of this system over the traditional wheel encoders are the lack of

additional moving parts and the very short time needed to take a representative

sample. At full speed, the motor need only be sampled for about 80ms to get

around 70 pulses in the accumulator, which is enough to estimate the motor's

actual speed. These pulses are measured with the functions in CASEY3.C, in

the appendix. This information can also be used to compare the relative speeds

of the two motors to help insure straight-line motion under IC's PWM system,

and even allow self-calibration. Testing has also shown that the if the robot

were to hit an object, the motor pulse count will fall off significantly, even if the

wheels slip some. This was fact was used in the "Bump 'N Go" Behavior much

like a low-sensitivity bumper to detect if the robot had stalled or partially stalled a

motor, assuming that it had hit an unseen object.

The only anticipated problems were with the PWM signal from the HC11, as this

pulse would also appear as a noise spike to the system. Fortunately, the PWM

signal is only about 33Hz and therefore can only really create a maximum of 2 or

3 noise spikes for every sample, and would be equally present in both channels

if set at the same speed.

The circuit in the appendix shows the concept. A two stage OP Amp circuit is

used as a comparator to first generate a pulse and then as a debouncer to clean

up low-end noises. The motors are both continually sampled and fed into a

simple multiplexer made of a 7400 NAND package. These signals are

multiplexed into PA7, the pulse accumulator, and then read as desired from IC.

The selector line for the multiplexer comes from one of the data pins that was

intended to supply an IR LED. The latch design was changed to provide solid-

power lines for the multiplexer selector, the "Cyclops" motor, and the LED

intensity selector.

There have been several small problems with the system that were not

anticipated. The primary problems were with getting the proper resistor and

capacitor values to filter the signal somewhat, but still spike when required.

Experiments at low speeds showed the resistors were too high to allow the

commutator noise to offset the OP-Amp as desired, so these values were

adjusted some. Crosstalk between motors was eliminated by adding large

capacitors to the board, but the addition of the multiplexer and bus wire between

the circuit and the motors added a good deal of noise to the system. As the

system stands, it is only used as part of a "last resort" behavior. A stalled motor

can be detected, but the values simply aren't accurate enough to base odometry

on.

The Motor Sampler Monitoring Daemon generates data on the number of pulses

returned by each motor. The interface-level output is a "Stall Factor" that is

based on repeated samplings where the motor pulse output is less than should

be expected for the current output of the motor PWM system. Both drive motors

have stall factors, which are read in as global variables by any behavior that

requires that data.

Cyclops Vision Sensor

This sensor is designed to allow the robot to quickly and efficiently gather

reflected IR readings like those from the collision avoidance sensors, but in a full

360° circle around the robot and at a rate of better than one full scan per

second. The design I have opted for is the "periscope" style implementation,

chosen primarily for it's aesthetics and modularity; The sensor is very simple in

design and construction and easy to add to an existing robotic platform.

Unfortunately, the original design's variable-gearing motor kit was not available,

so the current design uses a Futaba servo with the stop gears clipped to turn the

mirror. The servo has worked out well, though, since it is small, readily

available, and easy to work with. (Figure 4.)

Mirrored Surface

Futaba S148 Servo (Free-Rotating)

Sharp
IR Sensors

Siemens SFH900 Package

Servo Horn
With Stripe
 Encoding

Sharp
IR Sensor

Modulated
IR Light

Figure 4.

The mirrored surface rotates, directing the reflected IR into the side-mounted

sensors. The Siemens sensor reads a stripe on the servo horn to indicate when

the mirror has gone around. This stripe is read to maintain timing and

calibration of the servo's speed. A circuit has been designed to select different

intensities on two high-mounted banks of LED's to create the modulated IR.

The Sharp IR sensors were hacked to return analog values, just as the base

sensors were, but they were also hacked to have a lower time constant so they

would react faster to changes in the IR intensity. This meant replacing the

internal capacitor with a smaller value. This hack is reported to reduce the

range on the sensors, but the IR emitter intensity was increased to compensate.

The eight IR emitters were placed on the perimeter of the dome aiming outward.

These LED's had to be modulated at 40KHz and also controlled by the MCU, but

power needs were too great for HC logic gates. Transistor switches were added

inline with the latch outputs and 40KHz line to provide ample current through the

LED's. Preliminary tests practically lit up a darkened room when viewed by a

video camera. Resistors in the circuit are socket mounted for easy adjustment.

First impressions indicated that the Cyclops-level emitters would have to be

synchronized with the base emitters, which were normally only turned on only for

0.1s durations. Since the Cyclops sensor requires practically constant IR

emissions anyhow, it was decided that all of the emitters would remain

continuously on. This makes the robot very "intrusive" to other robots, which

may be confused by the high-intensity IR bathing the environment, but this side

effect cannot be avoided.

The Cyclops sensor's mirror is susceptible to jostling if handled, so the code in

CYCLOPS.C was written to help realign the mirror with the Siemens sensor

stripe. The motor is pulsed very slowly until the sensor registers. The rotation is

so slow because if the motor is shut off from full speed, the inertia of the system

causes the mirror to rotate another 30° after shutdown. The motor shaft is thus

aligned such that the robot believes the mirror is pointing due forward. The

mirror must then be rotated manually into place. Eventually this code could be

replaced by an automatic system that compared the returns from the Base IR

sensors, though this would probably be unreliable.

The Cyclops sensor is monitored by two separate daemons. The Cyclops

Synchronization Daemon monitors the Siemens shaft encoder to determine the

rate of rotation and provide synchronization to the other module, the Cyclops

Scanning Daemon, which generates return values much like those for the Base-

Mounted IR sensors. These values are also in arrays, with each of the elements

representing a different position in the rotation. Currently, there are 16 elements

to each array, as the 360° sweep is sampled 16 times per revolution.

Behaviors

The first behaviors that were written are simple collision avoidance systems,

both using only the basic IR sensors. The first attempt, CASEY.C (using a

simple look-and-turn algorithm), was not intended to ever actually be used as a

behavior, but only as a demonstration of the robot's sensors. The Dynam.11-

based collision avoidance system appears in the appendix as CASEY2.C. The

code worked well, but would probably break down when forced to multitask with

the processor-intensive Cyclops routines, since it relies on regular sampling

intervals. The programs CASEY3.C and CYCLOPS.C are only parts of sensor

maintenance routines, and not behaviors themselves.

The first multiple-behavior code was CASEY4.C. This code served as the

platform for basic behavior development, as it was designed to be modular. New

behavior modules and sensor daemons were added to the structure as they

were developed and then tested in place. This code contains the behaviors

currently in use, as well as the arbitration system. Though the behavior system

is constantly being updated, added to, and tweaked, the following are the three

best examples of stable, working behaviors as of this report. These are also the

ones seen in the current version of CASEY4.C. Other behaviors include wall

following, robot seeking, and object scanning. As of this report, though, these

behaviors were either non-functional or very unstable. The robot seeking

behavior, for example, requires that the Cyclops sensor enter a "passive" mode.

By shutting down IR emitters, it is possible to identify other robots, but this

hinders the collision avoidance system. An interprocess communication needs

to be established to allow this. Future behaviors, once stabilized, will probably

be integrated into a new version of the code with an IR Daemon to allow

behaviors to know when the IR system is in passive or active mode.

Bump 'N Go Behavior

This behavior is a last-resort reaction in case of collision or stall. The only input

is the motor commutator sensor's stall factors. When the stall factors reach a

certain level, the behavior flags the arbitration network to indicate a stalled

motor. The flag is in the form of a non-zero value in the "desired motor speed"

variable corresponding to the stalled motor, and is equal to 100% in the opposite

direction of the current value.

Collision Avoidance Behavior

This behavior is the basic method for avoiding collisions in the environment. It is

based solely on the Base IR sensor arrays, and indicates to the arbitration

system a general direction in which to travel to avoid collision.

Trapped Behavior

This behavior is based on the Cyclops sensor package, and simply scans the

Cyclops return values and compares them to a threshold. If too many of these

values exceed the threshold, the robot assumes it is trapped and will alert the

arbitration system, which will then shut down the motors and emit a low tone to

let the user know of the problem.

Arbitration System

The eventual result of these behaviors is the control of the motors by the

Arbitrator. Priority status is given to the "emergency" flags like the Bump 'N Go

behavior produces. Barring flags, the robot tends to move forward. The current

methods allow the robot to navigate a room with very few collisions, and even

fewer "hang-ups" wherein the robot is completely immobilized. (The "Trapped"

behavior usually only occurs under forced circumstances, though this would

immobilize the robot.) It also seems to find many of the niches in the

environment, even if it cannot navigate around in them.

Conclusion

The robot now meets the criteria set by the EEL 5934 syllabus. It has 3 major

sensor groups and a behavior system based on those sensors. Although

actuation is limited to propulsion in the environment, the robot seems to control

this ability well. As for creating a better "Cyclops" sensor, the current design has

surpassed some of the limitations of it's predecessor. The Siemens shaft

encoder eliminates the need for a synchronizing LED, which created a blind spot

in the earlier design. A side effect of this is that the sensors are only sampled as

needed, not in a tight , continuous loop as the original system used. This results

in far more stable values from the board, as well as lower CPU overhead. The

dual-sensor periscope design doesn't have any of the blind spots from the

rotation shaft that a normal periscope would have, and is very aesthetically

pleasing.

More tests are needed to refine the code as it stands. Most of the coefficients

could be replaced by learning algorithms. Some of the code might be best

implemented in assembly. A large variety of behaviors could be based on the

information provided by the Cyclops sensor, but time has limited such

development for this semester. Unfortunately, the hardware end of the project

became very time consuming, leaving little time to develop the software to it's

fullest potential. Hopefully in the future more complex behaviors can be created.

A mapping and navigation routine would be ideal for this sensor set, as would a

hunter-seeker routine for chasing other robots (and no doubt terrorizing them

with excessive IR). Overall, the robot's design has been very successful for it's

basic goals, and shows a great deal of potential for the future.

Documentation

[1] Fred Martin. The 6.270 LEGO Robot Design Competition Course Notes.

Electrical Engineering and Computer Science Department, MIT 1992.

[2] Joseph L. Jones and Anita M. Flynn. Mobile Robots: Inspiration to

Implementation.

A. K. Peters 1993.

[3] Pattie Maes. Designing Autonomous Agents.

MIT Press / Elsevier Science Publishers 1990.

[4] M68HC11 Reference Manual.

Motorola 1991.

[5] MC68HC11E9 Technical Data.

Motorola 1991.

[6] Hugh Kenner. Geodesic Math and How To Use It.

University of California Press 1976.

[7] John Prenis. The Dome Builder's Handbook.

Running Press 1973.

Appendices

CASEY.C

/* casey.c

 Attempt at collision avoidance

 Casey Barker
*/

int LEFT = 0; /* Sensor input values */
int RIGHT = 0;
int FRONTLEFT = 0;
int FRONTRIGHT= 0;
int LTOR = 0;
int RTOL = 0;
int THRESH = 110; /* Motor init values */
int LMOTOR = 0;
int RMOTOR = 1;
int NORM = 80;
int STOP = 0;

void irscan()
{
 while (1) {
 poke(0x7000, 0xff);
 wait(100);
 LEFT = analog(5);
 RIGHT = analog(4);
 FRONTLEFT = analog(3);
 FRONTRIGHT = analog(0);
 LTOR = analog(2);
 RTOL = analog(1);
 poke(0x7000, 0xff);
 wait(100);
 }
}

void wait(int milli_seconds) /* Don't busy wait, check timer */
{

 long timer_a;
 timer_a = mseconds() + (long) milli_seconds;
 while(timer_a > mseconds()) {
 defer();
 }
}

void go_right() /* if object is on left side of robot */
{
 motor(LMOTOR,NORM);
 motor(RMOTOR,STOP);
}

void go_left() /* if object is on right side of robot */
{
 motor(RMOTOR,NORM);
 motor(LMOTOR,STOP);
}

void go_forward() /* if no objects detected */
{
 motor(LMOTOR,NORM);
 motor(RMOTOR,NORM);
}

void go_back() /* if objects in front of robot */
{
 motor(LMOTOR,-1*NORM/2);
 motor(RMOTOR,-1*NORM/2);
}

void main()
{
 beep();
 start_process (irscan());
 while (1) {

if ((FRONTLEFT > THRESH && FRONTRIGHT >THRESH) || (LTOR >
THRESH && RTOL > THRESH)){

go_back();
wait (100);
go_right();
wait (400);

}
else if (LEFT > THRESH || FRONTLEFT > THRESH || RTOL >

THRESH) {
go_right();

}
else if (RIGHT > THRESH || FRONTRIGHT > THRESH || LTOR >

THRESH) {
go_left();

}
else {go_forward();}

 }
}

 CASEY2.C

/* casey2.c

 Attempt at collision avoidance using Non-Linear Dynamics

 Casey Barker
*/

int LEFT = 0; /* Sensor input values */
int RIGHT = 0;
int FLEFT = 0;
int FRIGHT= 0;
int LTOR = 0;
int RTOL = 0;

int LEFTO,RIGHTO,FLEFTO,FRIGHTO,LTORO,RTOLO;

float ABSPEEDR;
float ABSPEEDL;
float SPEEDL=100;
float SPEEDR=100;

float LETFD,RIGHTD,FLEFTD,FRIGHTD,LTORD,RTOLD;
float
ABSLEFTD,ABSRIGHTD,ABSFLEFTD,ABSFRIGHTD,ABSLTORD,ABSRTOLD;

float ca=0.015;
float cb=0.5;
float cd=50;

void irscan()
{
 while (1) {
 poke(0x7000, 0xff);

 RIGHTO=RIGHT;
 LEFTO=LEFT;
 FRIGHTO=FRIGHT;
 FLEFTO=FLEFT;
 LTORO=LTOR;

 RTOLO=RTOL;

 wait(90);
 LEFT = analog(5);
 RIGHT = analog(4);
 FRONTLEFT = analog(3);
 FRONTRIGHT = analog(0);
 LTOR = analog(2);
 RTOL = analog(1);
 poke(0x7000, 0xff);

 RIGHTD=(float)(RIGHTO-RIGHT);
 LEFTD=(float)(LEFTO-LEFT);
 RTOLD=(float)(RTOLO-RTOL);
 LTORD=(float)(LTORO-LTOR);
 FLEFTD=(float)(FLEFTO-FLEFT);
 FRIGHTD=(float)(FRIGHTO-FRIGHT);

 ABSRIGHTD=RIGHTD;
 if(RIGHTD<0.0) ABSRIGHTD=-RIGHTD;
 ABSLEFTD=LEFTD;
 if(LEFTD<0.0) ABSLEFTD=-LEFTD;
 ABSFRIGHTD=FRIGHTD;
 if(FRIGHTD<0.0) ABSFRIGHTD=-FRIGHTD;
 ABSFLEFTD=FLEFTD;
 if(FLEFTD<0.0) ABSFLEFTD=-FLEFTD;
 ABSRTOLD=RTOLD;
 if(RTOLD<0.0) ABSRTOLD=-RTOLD;
 ABSLTORD=LTORD;
 if(LTORD<0.0) ABSLTORD=-LTORD;

 ABSPEEDR=SPEEDR;
 if(SPEEDR<0.0) ABSPEEDR=-SPEEDR;
 ABSPEEDL=SPEEDL;
 if(SPEEDL<0.0) ABSPEEDL=-SPEEDL;

 SPEEDL=SPEEDL + ca*ABSPEEDL + cb*ABSLEFTD + cd*LEFTD;
 SPEEDR=SPEEDR + ca*ABSPEEDR - cb*ABSRIGHTD + cd*RIGHTD;

 if(SPEEDR>100.0)
 SPEEDR=100.0;
 if(SPEEDL>100.0)
 SPEEDL=100.0;

 if(SPEEDR<-100.0)
 SPEEDR=-100.0;
 if(SPEEDL<-100.0)
 SPEEDL=-100.0;

 motor(0,SPEEDL);
 motor(1,SPEEDR);

 wait(90);

 }
}

void wait(int milli_seconds) /* Don't busy wait, check timer */
{
 long timer_a;
 timer_a = mseconds() + (long) milli_seconds;
 while(timer_a > mseconds()) {
 defer();
 }
}

void main()
{
 beep();
 start_process (irscan());

}

CASEY3.C

/*
Motor Sensor Routines
*/
void wait (int millisec) {
 long timer_a;
 timer_a = mseconds() + (long) millisec;
 while (timer_a > mseconds()) {
 defer();
 }}

void countinit () {
 poke(0x1026,0x40);
 }

int duration;

int count (int duration)
 {
 poke(0x1027,0x00);
 wait(duration);
 return (peek(0x1027));
 }

CYCLOPS.C

/* cyclops.c
 Manual Calibrator Routine
 Casey Barker
*/
/* ***Wait Function*** */

void wait(int milli_seconds)
 {
 long timer_a;
 timer_a = mseconds() + (long) milli_seconds;
 while(timer_a > mseconds()) {defer();}
 }

void main ()
{
 while ((peek(0x1000)&0x01)==0)
 {
 poke(0x7000,0x80);
 wait (1);
 poke(0x7000,0x00);
 wait (20);
 }
 beep();
}

CASEY4.C

/* casey4.c

 First Integrated Behavior Platform.

 Casey Barker
*/

/* *** */
/* *****************Global Variables***************** */
/* *** */

int irscan_pid;
int motor_count_pid;
int motor_driver_pid;
int cysynch_pid;
int cyscan_pid;

int trapped_pid;
int coll_av_pid;
int bumpngo_pid;
int arbitrate_pid;

int l_motorid=1;
int r_motorid=0;

int l_motor = 0;
int r_motor = 0;

int l_motor_desired = 0; /*Arbitrated Values*/
int r_motor_desired = 0; /*These are the ones the Motor Driver reacts to*/

int bg_l_motor_desired = 0; /*Bump 'N Go Values*/
int bg_r_motor_desired = 0;

int ca_l_motor_desired = 0; /*Collision Avoidance Values*/
int ca_r_motor_desired = 0;

int rightside=4; /*IR Sensor Analog Port Values*/
int leftside=5;

int leftfront=3;
int rightfront=0;
int leftdiag=2;
int rightdiag=1;
int rcyclops=6;
int lcyclops=7;

int base[6]; /*Base-Mounted IR Sensor Array (Current Values)*/
int base_old[6]; /*Base-Mounted IR Sensor Array (Previous Values)*/
int base_delta[6]; /*Base-Mounted IR Sensor Array (Delta from Last Values)*/
int base_factor[6]; /*Calculated Collision Potential*/

int cyclops[16]; /*Cyclops Sensor Data Array (Current Values)*/
int cyclops_old[16]; /*Cyclops Sensor Data Array (Previous Values)*/
int cyclops_delta[16]; /*Cyclops Sensor Data Array (Delta from Last
Values)*/
int cyclops_factor[16]; /*Calculated Object / Robot Potential*/
int cyclops_count; /*The Current position in the Cyclops array*/

int thresh = 10; /*Threshhold for lowest factor responded to*/
int lower_limit = 80; /*Lowest Probable IR value, subtracted from current IR
reading for factor calculation*/

float motordelta=0.05; /*Motor Adjustment Coefficient*/

int pa_duration=100; /*Pulse Acc. Wait Time for Motor Sensor*/
int left_count; /*Motor Count for Left Motor*/
int right_count; /*Motor Count for Right Motor*/
int left_sf; /*Left "Stall Factor" (0-3)*/
int right_sf; /*Right "Stall Factor" (0-3)*/
float pulsefactor=1.0; /*Multiplied by current motor speed to determine what
ideal pulse return should be*/

long cyperiod; /*Total Rotational Time*/
long cydelta; /*Time Slice between Reads*/
long oldcydelta; /*Previous Time Slice*/
long time; /*Time of Siemens Hit*/
long prevtime; /*Previous Time of Siemens Hit*/
long icydelta = 40L; /*Guess of what cydelta should be*/
int goodrun; /*Is the current pass good?*/

int trap_flag; /*Am I Trapped?*/
int trapthresh = 93; /*Trapped Threshhold*/
int trap_count;

int port; /*Current Value of 0x7000 MMIO port)*/

/* *** */
/* *********************Functions********************* */
/* *** */

/* ***Wait Function*** */
void wait(int milli_seconds)
 {
 long timer_a = mseconds() + (long) milli_seconds;
 while(timer_a > mseconds()) {defer();}
 }

/* ***Float Wait Function*** */
void fwait(float milli_seconds)
 {
 long timer_a = mseconds() + (long) milli_seconds;
 while(timer_a > mseconds()) {defer();}
 }

/* ***Absolute Value Function*** */

int abs(int n)
{
if (n>0) return n;
if (n<0) return -n;
else return 0;
}

/* ***Pulse Accumulator Initialization Function*** */
void pa_init ()
 {
 poke(0x1026,0x40);
 }

/* ***Motor Smoothing Function*** */
void motor_smooth()
{
 l_motor = (int) ((float) l_motor + (motordelta * (float) (l_motor_desired -
l_motor)));

 r_motor = (int) ((float) r_motor + (motordelta * (float) (r_motor_desired -
r_motor)));
}

/* *** */
/* ************Sensor & Monitoring Daemons************ */
/* *** */

/* ***Motor Sensor Daemon*** */
void motor_count()
{
 while(1)
 {
 port = (port | 0x40);
 poke(0x7000,port);
 poke (0x1027,0x00);
 wait (pa_duration);
 left_count = peek(0x1027);
 if ((left_count< (int) ((float) l_motor * pulsefactor))&&((abs(l_motor))>15))
 {
 if (left_sf<3)
 {
 left_sf = left_sf +1;
 }
 }
 else
 {
 if (left_sf>0)
 {
 left_sf = left_sf -1;
 }
 }

 port = (port - (port & 0x40));
 poke(0x7000,port);
 poke (0x1027,0x00);
 wait (pa_duration);
 right_count = peek(0x1027);
 if ((right_count< (int) ((float) r_motor * pulsefactor))&&((abs(r_motor))>15))
 {
 if (right_sf<3)
 {
 right_sf = right_sf +1;

 }
 }
 else
 {
 if (right_sf>0)
 {
 right_sf = right_sf -1;
 }
 }
 }
}

/* ***Motor Driving Daemon*** */
void motor_driver()
{
 while(1)
 {
 motor_smooth();
 motor(l_motorid,l_motor);
 motor(r_motorid,r_motor);
 }
}

/* ***Cyclops IR Scanning Daemon*** */
void cyscan()
{
 int n=cyclops_count;

 while(1)
 {
 if ((n != cyclops_count)&&(goodrun==1))
 {
 n=cyclops_count;
 cyclops_old[n] = cyclops[n];
 cyclops[n]=((analog(lcyclops) + analog(rcyclops))/2);
 cyclops_delta[n] = cyclops[n] - cyclops_old[n];
 cyclops_factor[n] = (cyclops[n]-lower_limit) * cyclops_delta[n];
 }
 else defer();
 }
}

/* ***Cyclops Synchronizer Daemon*** */
void cysynch()
{
time = mseconds();
cydelta = icydelta;
while (1)
 {
 if (peek(0x1000) & 1)
 {
 goodrun = 1;
 prevtime = time;
 time = mseconds();
 cyperiod = time - prevtime;
 oldcydelta = cydelta;
 cydelta = ((long) (((float) cyperiod / 16.0) * (1.0/3.0)) + (long) ((float)
oldcydelta * (2.0/3.0)));
 start_process (tone(500.0, 0.05));
 if (cydelta > (long) (1.5 * (float) icydelta))
 {
 cydelta = oldcydelta;
 goodrun = 0;
 wait(300);
 }
 else
 {
 cyclops_count=0;
 lwait (cydelta - 2L);

 cyclops_count=1;
 while ((cyclops_count<15)&&(((peek(0x1000))&0x01) != 1))
 {
 lwait (cydelta);
 cyclops_count = cyclops_count + 1;
 }
 }
 cyclops_count = 15;
 }
 }
}

/* ***Long Wait Function (SPECIFICALLY for CYCLOPS Synchronization!)***
*/
void lwait(long milli_seconds)
 {

 long timer_a = mseconds() + milli_seconds;
 while((timer_a > mseconds())&&((((peek(0x1000))&0x01) !=
1)||(cyclops_count<2))) {defer();} /* Doesn't wait if Siemens Sensor goes high */
 }

/* ***Baseline IR Scanning Daemon*** */
void irscan()
{

int n;

while (1)
 {
 for (n=0; n<6; n++)
 {
 base_old[n] = base[n]; /* Stores old data */
 }

 base[rightside] = analog(rightside);
 base[leftside] = analog(leftside);
 base[rightfront] = analog(rightfront);
 base[leftfront] = analog(leftfront);
 base[rightdiag] = analog(rightdiag);
 base[leftdiag] = analog(leftdiag);

 for (n=0; n<6; n++)
 {
 base_delta[n] = base[n] - base_old[n]; /* Calculates Change in IR */
 }

 for (n=0; n<6; n++)
 {
 base_factor[n] = (base[n]-lower_limit) * base_delta[n]; /* Calculates Object
Collision Factor */
 }
 wait(80);
 }
}

/* *** */
/* *********************Behaviors********************* */
/* *** */

/* ***Bump 'N Go Behavior*** */

void bumpngo()
{

while (1)
{
 if (left_sf>1)
 {
 if (l_motor>0)
 {
 bg_l_motor_desired = -100;
 }
 if (l_motor<0)
 {
 bg_l_motor_desired = 100;
 }
 }
 else
 {
 bg_l_motor_desired = 0;
 }

 if (right_sf>1)
 {
 if (r_motor>0)
 {
 bg_r_motor_desired = -100;
 }
 if (r_motor<0)
 {
 bg_r_motor_desired = 100;
 }
 }
 else
 {
 bg_r_motor_desired = 0;
 }

}

}

/* ***Collision Avoidance Behavior*** */

void coll_av()
{
int largest, sensor, n;

while (1)
{
 largest = 0;
 sensor = 0;
 for (n=0; n<6; n++)
 {
 if (largest<base_factor[n])
 {
 largest = base_factor[n];
 sensor = n;
 }
 }

 if (largest<thresh)
 {
 sensor = 6;
 ca_l_motor_desired = 100;
 ca_r_motor_desired = 100;
 }
 if (sensor==rightside)
 {
 ca_l_motor_desired = 50;
 ca_r_motor_desired = 100;
 }
 if (sensor==leftside)
 {
 ca_l_motor_desired = 100;
 ca_r_motor_desired = 50;
 }
 if (sensor==rightfront)
 {
 ca_l_motor_desired = -100;
 ca_r_motor_desired = 100;
 }
 if (sensor==leftfront)
 {
 ca_l_motor_desired = 100;

 ca_r_motor_desired = -100;
 }
 if (sensor==rightdiag)
 {
 ca_l_motor_desired = -50;
 ca_r_motor_desired = -100;
 }
 if (sensor==leftdiag)
 {
 ca_l_motor_desired = -100;
 ca_r_motor_desired = -50;
 }
 defer();

 }
}

/* ***Shutdown if Trapped Behavior*** */

void trapped()
{
int n;

while (1)
{
 trap_count = 0;

 wait (1000);

 for (n=0; n<16; n++)
 {
 if (cyclops[n] > trapthresh)
 {
 trap_count = trap_count + 1;
 }
 }
 if (trap_count > 14)
 {
 trap_flag = 1;
 }
 else
 {
 trap_flag = 0;
 }

}
}

/* ***Robot Detection & Tracking Behavior*** */

/* ***Behavior Arbitration*** */

void arbitrate ()
{
while (1)
{
 if (trap_flag == 1)
 {
 l_motor_desired = r_motor_desired = 0;
 tone (300.0, 0.5);
 }
 else
 {
 if (bg_l_motor_desired != 0)
 {
 l_motor_desired = bg_l_motor_desired;
 wait (1000);
 }
 else
 {
 l_motor_desired = ca_l_motor_desired;
 }

 if (bg_r_motor_desired != 0)
 {
 r_motor_desired = bg_r_motor_desired;
 wait (1000);
 }
 else
 {
 r_motor_desired = ca_r_motor_desired;
 }
 }
}

}

/* *** */
/* *******************Main Function******************* */

/* *** */

void main()
{
 beep();
 port = 0b10001111;
 poke(0x7000,port);
 pa_init ();

 cysynch_pid = start_process (cysynch());
 motor_driver_pid = start_process (motor_driver());
 motor_count_pid = start_process (motor_count());
 irscan_pid = start_process (irscan());
 cyscan_pid = start_process (cyscan());

 bumpngo_pid = start_process (bumpngo());
 coll_av_pid = start_process (coll_av());
 trapped_pid = start_process (trapped());

 wait(2000); /*Lets System Stabilize*/

 tone(1000.0, 0.5);
 arbitrate_pid = start_process (arbitrate());

}

