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Abstract

The development of autonomous agent behaviors depends on the sensor
information available to the robot. Often, these behaviors ignore the robot’s internal
status in favor of data gleaned from the outside environment. Behaviors usually have a
hard time obtaining and interpreting this data. Robots find object tracking, mapping,
navigation, and other ‘trivial” human tasks difficult to implement. They require ‘active’
sensors such as sonar, which return simple numeric data. Factors such as robot position,
angle, and battery status make environmental readings highly temperamental. Currently
available sensors (infrared, sonar, light detectors, etc.) do not provide adequate
information to implement robust behaviors that depend on the outside environmental state.

Mad Max demonstrates behaviors derived from mostly internal sensors. Internal
sensors generally require less complexity, which in turn increases reliability. The data
provided by internal sensors may not match the ‘information content’ of external data.
However, the behaviors based on this simple data should form a solid foundation for all
autonomous agents as they attempt to interact with a dynamic external environment. Max
implements three behaviors based on three sensors. Object avoidance, the only behavior
reliant on external IR sensors, follows simple, proved techniques to guide Max through a
room. The internal sensors, a wheel encoder and heat monitor, communicate important
internal status to self-regulating behaviors. The wheel encoder allows Max to maintain a
constant speed on different surfaces. He can also detect inclines and increase or decrease
power as necessary to traverse them. The heat sensor determines when Max ‘over-exerts’
himself, and forces a rest-period to allow cooling. These behaviors mimic a human’s
adaptability and sense of ‘tiredness.’



Executive Summary

Mad Max has again undergone a redefinition of behaviors and design goals since
the last report. It was found that, as predicted by the IMDL staff, the wheel encoders
required for accurate dead reckoning were beyond the scope of this class. Mapping and
navigation were thus eliminated as possible behaviors in the remaining time. In retrospect
it is believed that object recognition may play the most important part of navigation.

Max also underwent a significant structural change late in the development
process. As described in the Actuators section, the original steering mechanism was
replaced by a servo motor. This replacement greatly improved steering reliability and
accuracy. The second major problem, the overheating of the motor driver chip, was
solved by adding a second parallel driver chip, a heat sink, and a monitoring behavior to
rest Max when temperatures reached dangerous levels.

The final Mad Max version successfully implements three behaviors based on three
sensor types. The internal sensors proved relatively easy to implement and support as
compared to external sensors. Future IMDL robots should give serious consideration,
when appropriate, to using the internal data readily available to autonomous agents.

Effort throughout the semester to keep the implementation clean and cosmetically
pleasing resulted in a very accessible robot. The EVBU board in particular can be lifted
out by removing four screws. Max can be completely disassembled by removing other
screw sets. The rechargable batteries can be quickly swapped by unfastening a single
rubber band. Finally, all wires connecting the EVBU to Max’s body pass through a 20-pin

ribbon cable with removable connector.






Introduction

The scope of the Mad Max project was chosen to allow completion by the end of
the semester (development cannot be continued in a formal sense due to coursework and
time constraints). The resulting behavior set consists of basic yet useful routines that
allow Max to roam safely about a room. In addition to the usual obstacle threat, Max’s
rear drive motor posed two additional problems: 1) high current requirements, and 2) low
torque.

The high current requirements required an additional driver chip as described in the
Actuator section. A heat-monitoring behavior was developed to preserve the integrity of
this circuit. Modifications to the base RC car platform (addition of the battery pack,
EVBU, etc.) resulted in a heavier car than the rear drive motor was designed to handle. A
constant PWM signal, instead of producing a constant speed, drove Max at a variable
speed depending on the surface conditions and incline. A constant-speed behavior
superimposed on the PWM signal corrected for the heavier base weight.

Eight major parts compose this paper. The Integrated System section describes
the relationship between the behaviors, sensors, and platform. The Mobile Platform
section details the radio-controlled car base and controlling microprocessor. Actuation
covers the rear drive and front steering mechanisms and their associated problems. The
Sensors section depicts the three sensor sets and indicates their use relative to the
behaviors. The Behavior section examines each behavior in detail. The Experimental

Results and Conclusions summarize the verification and success of each behavior/sensor



combination. Appendix A contains all ‘C’ source code Max uses to implement his

behavior set.

Integrated System

Mad Max follows general structural guidelines given by Brooks [1]. Multiple
processes generate behaviors based on current sensor states. The competing behaviors

feed information to an arbitration network, which determines Max’s resulting action.

Behavior Signal Flow

Mad Max uses three sensors and three behaviors to navigate a room. He dodges
obstacles using IR light reflection. Max can maintain a constant, ideal speed using wheel
encoders in a feedback loop. Max also keeps from overexerting himself; a thermistor
monitors the motor driver for dangerous heat build-up. The arbitration network realizes a
simple priority scheme to choose between behaviors: Highest - heat monitoring, and
Lowest - obstacle avoidance. Figure 1 shows the signal flow through the behavior

modules. Each box corresponds to a separate software process.
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Fig. 1

Behavior Relationships

The object avoidance routine includes Max’s “curiosity,” driving him forward
when no obstacles are present. The speed monitoring behavior works closely with object
avoidance to keep Max moving at a desired speed. Whenever the current speed moves
lower or higher than the desired speed the monitoring process will tell the object
avoidance behavior to speed up or slow down. The self-preservation process provides an
overriding cutoff switch to rest Max whenever the motor driver heat rises to dangerous

levels.

Mobile Platform

Radio-Controlled Car Base

Max uses a radio-controlled car as a platform base. This platform has the

movement restrictions of a regular car, the most limiting of which is a finite turning radius.



The “Invader” RC car by Nikko was chosen for several reasons. It provides left/right
steering in both forward and reverse drive. Removing only 3 screws eliminated the plastic
body, allowing easy access to the RC circuit board. Finally, the $39.99 price compared

favorably to the other RC car choices.

Motorola HC11 Processor

The Motorola HC11 Evaluation Board gives Mad Max processing power. The
HC11 was chosen for its simplicity, availability, and familiarity. A provided expansion
circuit [3] gives high-level control over motors and sensors. Interactive C (IC), used by
the MIT 6.270 course [2], allows programming in a high-level language. IC manages a
multitasking environment suitable for the distributed processing module design and also

includes routines to drive the expansion circuit.

Actuation

Front Steering Mechanism

Nikko designed the front wheels with a cheap turning mechanism. The front
wheels each pivot about their center, moved by a common steering rod about .5cm behind
the pivot points. Originally, an electromagnet attracted or repelled a permanent magnet
attached to the steering rod, flopping the wheels left or right. The driving signal was
measured at 2V across and .12A through the magnet. Some turn granularity was realized
by simply driving the electromagnet with the same type of PWM signal as the rear drive

motor.



Due to this cheap mechanism, poor rotational torque and unreliability at non-peak
power conditions haunted Max for a considerable time. The problem was ultimately
resolved by “major surgery.” The electromagnet was entirely removed and replaced by a
servo motor. Since the servo takes a larger volume of space than the electromagnet,
Max’s plastic body was altered to accommodate the servo casing. A hot soldering iron
was used to melt a large, rectangular hole in the top of Max’s body. The downward-

pointing servo shaft was then attached to the steering arm. (see Fig. 2).

Body

Body _®_

—X

Servo

Servo

Side View Top View, Right Turn

Figure 2.

The servo proved much easier to control than the electromagnet. The L293 motor
driver was removed from the loop entirely, and its PWM enable signal was fed directly to
the servo control line. Using the version of IC that supports floating point motor control
resolution, the standard “motor(DRIVE,x);” command steered Max through a full turning

radius. The actual values of ‘x’ ranged from 1.0 to 3.0 (of a possible -100.0 to +100.0).

Rear Drive Motor

The Invader frame uses a single bi-directional DC motor to drive the rear axle.

The original 4.8V power pack supplied a 3V difference across terminals for full-speed
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movement. The radio control unit provided only one speed--fast. The motor drew
.3Amps with no load and 1.15A stalled. Using the motor driver circuit supplied by [3] the
HCI11 can achieve multiple speed levels by varying the Pulsed Width Modulation (PWM)
on the motor driver enable pin. The motor’s high amperage requirements caused
overheating of the original motor driver circuit. This problem was tempered by stacking a
second L293 chip in parallel over the first, providing double the current sourcing
capabilities. Since the L.293 contains two driver circuits per chip, the power requirement
was spread across the entire chip by connecting outputs from both circuits to the drive

motor.

Sensors
Sharp IR Detectors
Sharp GP1US-8X IR detectors meet the first requirement of any mobile,
autonomous agent--object avoidance. The detectors receive 40kHz modulated IR light
reflected from objects in the near vicinity. Mad Max supports 6 Sharp IR sensors, three

forward and three reverse, as shown in in Fig. 3.
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Figure 3.

Wheel Encoders

Mad Max uses a Siemens SFH9000 miniature light reflection emitter/sensor [D7]
to encode the rear drive axle. The first attempt to encode the rear wheel used a standard
“doughnut” with 36 black and white teeth around the rim of the wheel. This was
discarded since 1) Max inherently has a large degree of slop in the wheels and cannot use
that level of accuracy, and 2) the sensor was difficult to mount such that it reached all the
way out to the rim of the tire. The second solution divided the wheel into quarters with 4
white-out stripes. The axle was marked near the body making it easy to position the
sensor securely. The sensor output was run through a standard 74L.S04 [D1] inverter to
produce a digital pulse whenever a white stripe passes beneath the sensor. This

arrangement seems immune to external light sources. Figure 4 depicts the encoder circuit.

>V +5V
Siemens SFH900
1 2 3
3000hm 30k ohm
I : A/D port
Analog output Digital output

Figure 4.
Note that an A/D port interprets the digital signal output! The ‘ticks’ were originally fed
to the pulse accumulator. However, a severe bouncing problem produced totally

unuseable results. Attempts to debounce the analog output by putting a capacitor across
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the inverter input resulted in even worse bouncing. Apparently, the bouncing was
introduced by the inverter itself as the analog output moved slowly across the
TRUE/FALSE threshold. Polling the A/D port every 10ms via a dedicated software

process effectively debounced the digital output.

Thermistor

A simple thermistor provides heat feedback on the L293 motor driver circuit. It
lies fastened to the side of the heat sink surrounding the dual L.293 stack. Resistance
nominally starts at 10k ohm (room temperature) and decreases with increased
temperature. The circuit of Figure 5 converts temperature to an analog value ranging

from 20 (cool) to 40 (very hot).

+5V 10k thermistor
A/D port

>3
§2< 1k ohm

Heat Sink

Figure 5.

Behaviors

Obstacle Avoidance

The original avoidance behavior simply steered Max left or right away from
obstacles. The front wheels were turned proportional to the difference between the analog

values of the left and right sensors: iTurnDegree = K * ( iAnalogLeft - iAnalogRight ).
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Max’s finite turning radius means there will be some obstacles from which he cannot steer
away. Intrusion into a buffer zone (large for the center sensor, small for the side sensors)
forced Max to reverse direction. Behavior in the reverse direction mirrored forward
motion.

Two processes support this behavior. “UpdateIRData” continually reads the IR
sensors, shifts the readings to a zero-base, and stores the result in a global array. On reset,
UpdateIRData will read each IR sensor to obtain a “clear” baseline reading (expected to
range from 84-86). This individual threshold later subtracts from the raw analog reading
to shift each sensor to a common zero-base. The “AvoidObstacles” process monitors the
global zero-based sensor array for objects, calculates any necessary steering changes, and
reverses direction upon object intrusion into the buffer zone.

A simple modification to this scheme produced a much better ©° roaming’ pattern.
In the reverse direction the left and right IR sensors were logically switched. As a result
Max steered towards the nearest object. When the object came close enough, Max
reversed direction again and headed forward in a radically new direction. The resulting
pattern covered much more area, and as a bonus actually mimicked a real car’s three-point

turn (see Figure 6).

Original Modified

Figure 6.
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Speed Monitoring

Two processes form the speed monitoring behavior. The first, “UpdateSpe  ed,”
monitors the wheel encoder and calculates Max’s current speed. The wheel encoder has a
resolution of one tick per 1/4 revolution. UpdateSpeed counts the number of ticks per
timeslice (500ms) and calculates the number of ticks/second.

The second process, “MonitorSpeed,” compares the current ticks/second to an
ideal speed (say, 8 ticks/sec or 2 wheel revs/sec). The difference between current and
ideal speeds adds to the current motor PWM setting, which ranges from 0 to +100:
iCurrentSpeed = i0ldSpeed + ( IDEAL TICKS PER_SEC - iTicksPerSec ). Figure 7
visualizes this behavior in a simple feedback structure.

Old Speed

_|_

n New Spee{g

IDEAL - New

Figure 7.
The AvoidObstacle behavior reads the new speed setting, adds (+/-) direction information,

and sends the request to the Arbitration process.

Heat Monitoring

A red LED reports Max’s internal temperature to the external world. It blinks on
and off (like a heartbeat) with a frequency proportional to temperature. Two processes
support this behavior. The “UpdateHeat” process continually reads the thermistor analog

output and ensures it falls between HEAT MIN and HEAT MAX constants (20 and 40,
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for example). It then maps this reading to a value between 0 and 1000 and stores the
result in a global variable.

The “MonitorHeat” process checks the current heat against 1000 (HEAT MAX).
When it detects this critical ‘heart-attack’ stage several things happen. First, the LED
stays on solid red to indicate overheating. Second, the Arbitration process receives a
signal to stop all motor activity. Third, the MonitorHeat algorithm waits until Max has
cooled off by 20% (heat down to 800). When Max cools off the Arbitration block

disappears and Max continues on his way.

Experimental Layout and Results

Behavioral Testing

All three behaviors were successfully tested. Max was able to avoid obstacles in
an enclosed area. He ramped up to a target ideal speed on surfaces ranging from thick
carpet to tile. When Max reached an inclined surface he increased power to the motors,
moving onto the surface if possible. The heat monitoring behavior successfully shut down
Max whenever high heat levels were detected. A quick touch verified a hot heat sink

whenever the LED turned solid red.

Current Status

All basic behaviors have been implemented. Some fine-tuning of constants may be

necessary for demonstration purposes; Max has never seen the ‘arena’ in the MIL lab.
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Conclusion

This semester taught many lessons about basic robot construction. Most
importantly, “It isn’t a paper world!” Sensors and platforms performed differently than
expected in almost every instance, resulting in several major design iterations. A robot’s
behaviors depend entirely on the capabilities of its sensors. More time should have been
spent learning about sensor characteristics, perhaps even before platform selection was
made.

In retrospect, a platform other than radio-controlled car would have been chosen.
Several problems were encountered. First, the finite turning radius made all control
algorithms more complex while limiting Max’s mobility. Second, the RC body hindered
major modifications which may be required by evolving design goals. Third, it proved
difficult to mount the EVBU, battery pack, and IR sensors on limited hard-points. On the
plus side, the RC car platform provided a very quick initial setup time for a relatively low
cost. However, these advantages were outweighed by the disadvantages later in the

semester.
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Documentation

Books and Papers

[1]. “Elephants Don’t Play Chess.” Brooks, Rodney. From Designing Autonomous
Agents, ed. by Pattie Maes. The MIT Press, c. 1990.
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[3]. Doty, Keith et al. “EVBU Expansion Schematic.” Machine Intelligence Laboratory.

[4]. Doty, Keith. Class lectures in EEL5934 Intelligent Machines Design Laboratory.
University of Florida, Fall, 1995.

Referenced Data Sheets

[D1]. Motorola MC74HCO04A hex inverter.

[D2]. Motorola MC74HC10 triple 3-input NAND gate.

[D3]. Motorola MC74H138A 1-0f-8 decoder.

[D4]. Motorola MC74HC390 dual 4-stage counter with /2 and /5 sections.
[D5]. Motorola MC74HC573A Octal 3-state noninverting latch.

[D6]. Motorola MCM60L256A 32kx8 bit CMOS SRAM.

[D7]. Siemens SFH9000 IR light reflection emitter/sensor.

[D8]. Texas Instruments uA7805 voltage regulator.

[D9]. Texas Instruments L293 quadruple half-H driver.
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Appendix A: Behavior Code

[* Chris Yust, SS# 263-77-4056 */
/* EEL5934 Intelligent Machi nes Design Laboratory */
/* Fall, 1995 */

/* MADMAX.C : Mad Max's final control program */

/**********************************************************/

/* "define' constants */

i nt DRI VE=1; /* notors */
i nt STEER=O0;

i nt TRUE=1,
i nt FALSE=O0;

i nt FRONT=0;
i nt REAR=1,

i nt FORWARD=1,
int STOP=0;
i nt REVERSE=- 1,

int NUM | R_SENSORS=6;

nt |1 R_FRONT=0; /* AID port definitions */
nt | R_FRONTLEFT=1,;

nt | R_FRONTRI GHT=2;

nt | R_REAR=3;

nt | R_REARLEFT=4;

nt | R_REARRI GHT=5;

nt WE_DRI VE=6;

nt HEAT=7;

int MDDLE PAD=25; /* minimmdistance to front sensor */
i nt SI DE_PAD=35; /* mnimum di stance to side sensors */

i nt MAX_SPEED=50; /* in motor PWM */
int |DEAL_SPEED=4; [* in ticks per sec */

float STEERMAX=2.9; /* servo range for full turning */
fl oat STEERM N=1. 1;

fl oat STEERMAP=( STEERVAX- STEERM N)/ 200. 0;

int LED1_NMASK=0x01; /* port O0x7000 bit definitions */
int LED2_MASK=0x02;

i nt HEAT_MASK=0x04;

i nt HEAT_M N=20; /* mni mum and maxi num heat val ues */
i nt HEAT_MAX=40;

| ong TI MESLI CE=500L; /* mlliseconds per speed update */

float TI MEQUT=60. O; /* seconds of lifetime */

/**********************************************************/

19



/* gl obal variables */

/* for speed tracking */

i nt gi Current Speed,; /* current suggested notor PWV */

i nt gi Ti cksPer Sec; /* current speed in 1/4rev /| sec */
i nt gi SpeedDel t a;

[* for arbitration */

int gbHeartAttack; /* indicates Max has overheated */
int giDriveRequest; /* Avoi dObstacles drive suggestion */
i nt gi SteerRequest; /* Avoi dObstacl es steer suggestion */

/* for obstacle avoi dance */
int garri Cbstacl e[ 6]; /* current IR sensor states */
int garri Threshhold[6]; /* used to convert to zero-base */

/* for Tinmeout process */

nt gbUpdat el RDat a; /* Watchdog timer sets these */
i nt gbUpdat eSpeed; /* to false, killing all */
i nt gbUpdat eHeat ; /* processes when lifetinme */
i nt gbMoni t or Speed,; /* expires. */

i
i
i
i
i nt gbMoni tor Heat ;

i nt gbAvoi dost acl es;

int gbArbitration;

i nt gbSet NewDx i ve;

/* for Avoi dCbstacles */

i nt gi M ddl eSensor; /* current machine state */
i nt gilLeftSensor;

i nt gi R ght Sensor;

int giDrection;

i nt gi NewDri ve;

i nt gi NewSt eer;

/* current heat status */
i nt gi Heat;

[* msc */
i nt gi Port 7000; /* value of bits at port 0x7000 */

/**********************************************************/
/**********************************************************/
/* Main */
/**********************************************************/
/**********************************************************/

voi d main()
i nt i Front Sensor, i BackSensor ;

/* Take quick reading on front and back sensor. [If */
/* either one is obstructed, do NOT start Max! */

poke( 0x7000, LED1_MASK| LED2_MASK) ;
wai t (100);

i Front Sensor =anal og(| R_FRONT) ;

i BackSensor =anal og(| R_REAR) ;
poke( 0x7000, 0) ;

if ((iFrontSensor>120)|| (iBackSensor>120))

20



/* do nothing! */
poke( 0x7000, HEAT_MASK); /* solid red */

el se

{ _
/* sensory input processes */
start_process(Updatel RData());
start _process(Updat eSpeed());
start_process(UpdateHeat ());

/* behaviors */
start_process(Avoi dObstacl es());
start_process(MnitorSpeed());
start_process(MnitorHeat());

/* hel per processes */
start_process(Set NewDrive());
start_process(Ti neCut ( TI MEQUT) ) ;

/* behavior arbitration */
start_process(Arbitration());
}
}

/**********************************************************/
/**********************************************************/

/* sensory input processes */
/**********************************************************/

/**********************************************************/

/**********************************************************/

/* Update | RData */

/**********************************************************/

voi d Updat el RDat a()
{

int iSensor;

/* get threshhold value for each IR sensor; */
/* clear current obstacle */
for (iSensor=0;i Sensor<NUM | R_SENSCRS; i Sensor ++)
{

garri Threshhol d[ i Sensor] =anal og(i Sensor) +1

if (garri Threshhol d[i Sensor]>100)

{ I'* sensor maxxed out */

garri Threshhol d[ i Sensor] =100;

garri Qostacl e[i Sensor]=0; /* initialize global data */

}
gbUpdat el RDat a=TRUE; /* set FALSE by TineCQut to end */
whi | e (gbUpdat el RDat a==TRUE)

/* read all sensors */
for (iSensor=0;i Sensor<NUM | R_SENSCRS; i Sensor ++)
{
garri Qostacl e[i Sensor] =
anal og(i Sensor)-garri Threshhol d[i Sensor];

21



if (garri Qbstacl e[i Sensor]<0)

garri Qost acl e[ i Sensor] =0;

wai t (100); /* wait 100 mlliseconds */
/**********************************************************/
/* hel per functions */
/* none */

/**********************************************************/

/* Updat e Speed */

/**********************************************************/

voi d Updat eSpeed()

{

int i NewDrive=0;

int iAdDrive;

int iTicks;

l ong | A dTi ne;

| ong | NewTi mre;

gi Ti cksPer Sec=0; /* initial speed is standstill */

i Ti cks=0;

gbUpdat eSpeed=TRUE; /* set FALSE by TinmeQut to end */

| NewTi me=nmseconds() ;

whi | e (gbUpdat eSpeed==TRUE)
{

| A dTi me=l NewTi me; /* save start of this tineslice */

i Ticks=0; /* reset ticks count */

whi I e (1 NewTi ne<(1 d dTi me+Tl MESLI CE))

{

}

/* check for ticks */
i AdDrive=i NewDri ve;
i NewDr i ve=anal og(WE_DRIVE); /* digital value */

/* tick occurs on a black to white transition */
if ((iAdDrive<128)&&(i NewDrive>128))

i Ti cks=i Ti cks+1;
wai t (10); /* debounce padding tinme */

| NewTi me=nmseconds() ; /* update current tinme */
defer();

/* do speed cal cul ation */
gi Ti cksPer Sec=i Ti cks*1000/ (i nt) (| NewTi ne-1 A dTi ne) ;
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/* check for timer waparound */
i f (giTicksPerSec<0) gi Ti cksPer Sec=0;

/* clean up process */

/**********************************************************/
/* hel per functions */
/* none */

/**********************************************************/

/* Updat e Heat */

/**********************************************************/

voi d Updat eHeat ()
{
int iHeat;
gbUpdat eHeat =TRUE; /* set FALSE by TineQut to end */
whi | e (gbUpdat eHeat ==TRUE)
/* expected range: HEAT_M N -> HEAT_MAX */
i Heat =anal og( HEAT); /* read thermstor */
if (iHeat < HEAT_MN) i Heat =HEAT_M N,
if (iHeat > HEAT_MAX) i Heat =HEAT_MAX;

i Heat =i Heat - HEAT_M N; /* nmove to zero base */
i Heat =( HEAT_MAX- HEAT_M N) -i Heat; /* reverse 'sense' */

/* now O = heart attack, (HEAT_MAX-HEAT M N) = cool */
/* stretch 0->(MAX-M N) range to 0->1000 */

/* note: keep (MAX-M N) <=32 to prevent overflow */

i Heat =(i Heat *1000) / ( HEAT_MAX- HEAT_M N) ;

gi Heat =i Heat ; /* set global variable */

wai t (1000); /* check new heat every second */

}

/* clean up this process */

/**********************************************************/
/* hel per functions */
/* none */

/**********************************************************/
/**********************************************************/

/* behavi or processes */
/**********************************************************/

/**********************************************************/
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/**********************************************************/

/* Avoi d Obstacl es */

/**********************************************************/

voi d Avoi dObst acl es()

{
i nt bChange;
int i Mddl eSensor,ilLeftSensor,iRi ght Sensor;

i nt i NewSpeed=0;
i nt i NewSt eer =0;

/* straighten out wheels */
not or ( STEER, ( STEERMAX- STEERM N) / 2. 0) ;

Set Di recti on( FORWARD) ;
gbAvoi dObst acl es=TRUE; /* set FALSE by TinmeQut to end */
whi | e (gbAvoi dOnst acl es==TRUE)

/* check for immnent collisions */

/* extract sensor data in this direction */

i M ddl eSensor =garri Qost acl e[ gi M ddl eSensor];

i Left Sensor =garri Qostacl e[ gi Left Sensor ];

i R ght Sensor =garri Qost acl e[ gi R ght Sensor ];

bChange=FALSE;

if (iMddl eSensor>M DDLE_PAD) bChange=TRUE;

if (iLeftSensor >SIDE PAD ) bChange=TRUE;

if (iRightSensor >SIDE PAD ) bChange=TRUE;

i f (bChange==TRUE)

i NewSpeed=0; /* stop drive notor in this direction */

if (giDrection==FORWARD) SetDirection(REVERSE);
el se Set Di recti on( FORWARD) ;

/* Let sensor data settle */
wai t (1000) ;
}

/* wandering around al gorithm*/

/* speed calculation - trivial */
i NewSpeed=gi Curr ent Speed;

/* set actual speed request in global variable */
gi Dri veRequest =i NewSpeed*gi Di recti on;

/* steering calculation */
if (iabs(iLeftSensor-iRi ghtSensor)>3)

i NewSt eer =5* (i Left Sensor-i R ght Sensor) ;
i f (iNewSteer>100) i NewSteer=100;
i f (iNewSteer<-100) i NewSteer=-100;

}
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}

el se 1 NewSt eer =0;

/* set actual steer request in global variable */
gi St eer Request =i NewSt eer ;

defer();

/* clean up this process */
i NewSpeed=0;

gi
gi

}

NewDr i ve=0;
St eer Request =0;

/**********************************************************/

/* hel per functions */

void SetDirection(int iDirection)

Reset Speed() ;

if (iDirecti on==FORWARD)

{

@

}
}

/* switch LED bits */
gi Port 7000=( gi Port 7000&( ~LED2_MASK) ) | LED1_MASK;
poke( 0x7000, gi Port 7000) ; /* turn on front IR LEDS */

gi Left Sensor =1 R_FRONTLEFT;

gi M ddl eSensor =1 R_FRONT;

gi R ght Sensor =I R_FRONTRI GHT;
gi D rect i on=FORWARD;

se /* gi Directi on=REVERSE */

/[* switch LED bits */
gi Port 7000=( gi Port 7000&( ~LED1_MASK) ) | LED2_MASK;
poke( 0x7000, gi Port 7000) ; /* turn on rear | R LEDS */

gi Left Sensor =1 R_REARLEFT,;
gi M ddl eSensor =1 R_REAR;

gi R ght Sensor =I R_REARRI GHT;
gi D rect i on=REVERSE;

/**********************************************************/

/* Moni t or Speed */

/**********************************************************/

voi d Monit or Speed()

{
gi

Current Speed=0; /* start Max at standstill */

gbMoni t or Speed=TRUE; /* set FALSE by TinmeCQut to end */

whi | e (gbMoni t or Speed==TRUE)
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/* delta between old and ideal speed, in ticks/sec */
gi SpeedDel t a=I DEAL_SPEED- gi Ti cksPer Sec;

/* new (current speed) is old speed plus delta */
gi Curr ent Speed=gi Curr ent Speed+gi SpeedDel t a;

i f (giCurrentSpeed>MAX _SPEED) gi Current Speed=MAX_SPEED;
i f (giCurrentSpeed<0) gi Curr ent Speed=0;

wait((int) TIMESLICE); /* allow change to take effect */
}

/* clean up this process */

/**********************************************************/
/* hel per functions */
/* none */

/**********************************************************/

/* Nbni t or Heat */

/**********************************************************/

voi d MonitorHeat ()
{
int iPeriod;
gbMoni t or Heat =TRUE; /* set FALSE by TinmeQut to end */
whi | e (gbMoni t or Heat ==TRUE)
if (giHeat!=0) /* if not at 'heart attack' status */
gbHear t At t ack=FALSE;
/* cal cul ate pul se period, in nms */
/* renenber: gi Heat 0->1000 */
i Peri od=gi Heat *1; /* slowest is 1 second */
i Period=i Period/2; /* LED on, off for 1/2 period */
/* blink pul se LED */

/* turn off heat LED */

gi Port 7000=gi Port 7000& ~HEAT_MASK) ;
poke( 0x7000, gi Port 7000) ;

wai t (i Peri od);

/* turn on heat LED */
gi Port 7000=gi Port 7000| ( HEAT_MASK) ;
poke( 0x7000, gi Port 7000) ;
wai t (i Peri od);
else /* heart attack! */

/* stop MAX */
gbHear t At t ack=TRUE;

/* solid red light */
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gi Port 7000=gi Port 7000| ( HEAT_MASK) ;
poke( 0x7000, gi Port 7000) ;

whi | e(gi Heat >800) /* wait until Max cools 20% */

defer();

}

/* clean up this process */
gi Port 7000=gi Port 7000&( ~HEAT_NMASK); /* turn off heat LED */
poke( 0x7000, gi Port 7000) ;

/**********************************************************/
/* hel per functions */
/* none */

/**********************************************************/
/**********************************************************/

/* hel per processes */
/**********************************************************/

/**********************************************************/
/**********************************************************/

[* Set NewDrive */

/**********************************************************/

voi d Set NewDri ve()
{

int iCurrentDrive=0;

gi NewDr i ve=0;
not or (DRI VE, (f 1 oat) gi NewDri ve);

gbSet NewDr i ve=TRUE; /* set FALSE by TineCQut to end */
whi | e (gbSet NewDr i ve==TRUE)

/* if need to change speed */
if (gi NewDrive!=iCurrentDrive)

/* if opposite directions */
if ((gi NewDrive*iCurrentDrive)<0)
{

motor (DRIVE, 0.0); /* kill current direction */
wait (1000); /* wait for intertia to fade */

/* ranp up to new speed */
i Current Drive=gi NewDri ve;
not or (DRI VE, (float)i CurrentDrive);

else /* same direction, different speed */

{
i CurrentDrive=gi NewDrive; /* change imediately */
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nmot or (DRI VE, (float)i CurrentDrive);
}

}
defer();
}

/* clean up this process */
not or ( DRI VE, 0. 0) ;

/**********************************************************/
/* hel per functions */

/* none */

/**********************************************************/

/* Ti meCut */

/**********************************************************/

void TimeQut (fl oat fLifeSeconds)

{
float fStartTi me;

float fEndTine;
fl oat f Now,

reset _systemtine();

fStart Ti me=seconds(); /* get start time */
f EndTi ne=f St art Ti ne+f Li feSeconds; /* calculate end tinme */

whil e (seconds()<fEndTinme) /* wait until lifetime ends */

wait (1000); /* wait a second */

/* time's up; kill all processes and shut down Max */
gbUpdat el RDat a=FALSE;

gbUpdat eSpeed=FALSE;

gbUpdat eHeat =FAL SE;

gbAvoi dObst acl es=FALSE;
gbMoni t or Speed=FALSE;
gbMoni t or Heat =FALSE;

gbSet NewDr i ve=FALSE;
gbAr bi trati on=FALSE;

}

/**********************************************************/

/* hel per functions */
/* none */

/**********************************************************/
/**********************************************************/

/* Arbitration */

/**********************************************************/
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/**********************************************************/

void Arbitration()
{

gbAr bi trati on=TRUE; /* set FALSE by TineCQut to end */
whi | e (gbArbitrati on==TRUE)
i f (gbHeart Att ack==TRUE)
Reset Speed() ;

/* new drive (another process handl es notor cnd) */
gi NewDr i ve=0;

/* set new steer */
gi NewsSt eer =0;
Set Steer ();

el se

/* new drive (another process handl es notor cnd) */
gi NewDr i ve=gi Dri veRequest ;

/* set new steer */
gi NewSt eer =gi St eer Request ;
Set Steer ();

}
}

/* clean up this process */
gi NewDr i ve=0;

gi NewsSt eer =0;

Set Steer();

/**********************************************************/
/* hel per functions */

voi d Set Steer()
float fNewSteer;

f NewSt eer =(f | oat ) (gi NewSt eer +100) ;
f NewSt eer =( f NewSt eer * STEERMAP) +STEERM N,
not or ( STEER, f NewSt eer) ;

}

/**********************************************************/
/**********************************************************/

/* msc. functions */
/**********************************************************/

/**********************************************************/
void wait(int mns)

long tinmer;
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ti mer =nseconds() + (I ong)mns;
while (tinmer>nmseconds())

defer();

float fabs(float fNum

if (fNun»=0.0) return(fNum;
el se return(-fNum;

}
int iabs(int iNum

if (iNunp=0) return(iNun;
el se return(-i Num;

}
voi d Reset Speed()

gi Dri veRequest =0;
gi Current Speed=0; /* force Max to ranp up again */
gi Ti cksPer Sec=0;

}
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