
Ziggy: Final Report

By

Reynaldo A. Molina

Machine Intelligence Laboratory

Prof: Keith L. Doty

12 / 4 / 95

EEL 5934 Final Report

Reynaldo A. Molina 2

 Table of Contents

1. Abstract 3
2. Executive Summary 3
3. Introduction 4
4. Integrated System 4
5. Mobile Platform 4
6. Servo Motors 5
7. Ziggy’s Sensors 5
8. Behaviors 6
9. Experimental Layout and Results 8
10. Conclusion 8
11. Documentation 9
12. Appendices 10

EEL 5934 Final Report

Reynaldo A. Molina 3

Abstract
“Ziggy” is a mobile robot created to behave as a prey to defend
itself from “Mazo;” its counter part. To simulate a
predator/prey relation between these two creatures, Ziggy and
Mazo must display basic predator/prey behaviors. Ziggy’s
reaction to Mazo’s actions will determine how well it copes with
its environment.

Executive Summary

This project consists in the creation of an autonomous agent

that is able to display specific behaviors programmed in

“Interactive C” and stored in 32k of Random Access Memory. The

Brain of this agent is a MC68HC11 microprocessor board with a

circuit to control two motors and a circuit to regulate voltage.

The board is screwed to a plywood platform that provides support

for the rest of the components. Ziggy uses two servo motors

placed under the plywood board and attached to two model

airplane wheels to give this agent mobility. The polarity in the

motors determines the direction in which they rotate. To

interact with the environment, Ziggy uses three kinds of

sensors. These are infrared, ultrasonic, and sound detection

sensors.

All these sensors combined give Ziggy the ability to interact

with the environment in the way it was intended. Ziggy’y program

takes information from each sensor and determines whether it is

relevant or not based on a series of condition statements.

Although some sensors can provide relevant information at the

same time, Ziggy’s programming can only evaluate one at a time

and make a decision.

EEL 5934 Final Report

Reynaldo A. Molina 4

Introduction

In this project we intend to use two autonomous agents to

simulate behaviors that predators and prey display when they

meet. Although, at this point, it is impossible to simulate

complex behaviors, we are capable of simulating some of the most

basic ones as locating the prey, following it, and coming in

contact with it.

On the other hand, the prey also displays behaviors that it uses

to survive and that may or may not save it from a predator. Our

intentions are to provide Ziggy with means to defend itself.

Among these means we have: searching for possible predators in

the area, knowing when the predator is following, running away

from it, and hiding from it. This report describes some of the

means we are going to use to simulate these behaviors.

Integrated Systems

To achieve the goal of this project Ziggy must have the means to

move and interact with the environment that surrounds it. These

means are realized in the integrated system of this unit.

Mobile Platform

Ziggy’s body consist of a very flexible plywood 12in in diameter

painted in green to maintain consistency with the color of its

brain. This round shaped platform makes Ziggy able to turn on

its axis helping it avoid objects easily. In addition, a

circular platform requires fewer wheels and actuators to control

EEL 5934 Final Report

Reynaldo A. Molina 5

the robot helping it save power. The platform supports the EVBU

board and the battery pack.

The platform rests on three wheels. Two of these are model

airplane wheels with 4.75in in diameter parallel to each other.

Their main function is to move the body in any direction that

the behaviors indicate. Unlike the main wheels, the third wheel

is screwed to the platform. It provides balance to the hole

structure. See Figure 1 for visual representaion.

Servo Motors

Ziggy uses two servo motors to drive the main wheels. These

servos are adequate for the purpose of this simulation because

they provide sufficient torque-speed for Ziggy to maintain a

reasonable distance from Mazo that also uses servos. In

addition, the noises the servo make, simulate the noises prey

make as they move. With this in mind the predator will be

looking for noises Ziggy produces helping the simulation to be

more realistic.

A thin sheet of metal, screwed to the platform, keeps the servos

in a fix position. The ground and voltage wires connect to the

EVBU board through a hole in the center of the platform 0.4in in

diameter.

EEL 5934 Final Report

Reynaldo A. Molina 6

Ziggy’s Sensors

For its eyes Ziggy uses infrared sensor. With six of these

sensors Ziggy is able to avoid walls, detect other robots, and

small objects in the area. These sensors are necessary for

Ziggy, as a prey, to survive and defend itself in case of

attack. See Figure 2 for visual representation.

For its ears Ziggy uses microphones to detect noises and

determine the direction of their source. The microphones have

plastic covers to enhance the acoustics. This capability, in

conjunction with a sonar sensor, helps Ziggy determine if a

potential predator is in the area. Ziggy uses four microphones

for a more accurate approximation in terms of direction. Figure

3 provides a diagram of a microphone circuit.

Ziggy’s ultrasonic motion detector helps it identify movement.

With this sensor Ziggy is able to recognize the predator because

it is the only moving object in the simulation. This sonar has a

transmitter that sends out a steady ultrasonic tone at 40khz.

Any reflected sound is detected by the receiver. If no movement

is detected, the sampling time between emission and reception of

the pulse is constant; however, if there is movement, then the

sampling time is not constant and the output signal of the

circuit changes, setting the alarm. For this process to be

effective Ziggy has to stay still while the sampling is taking

place.

EEL 5934 Final Report

Reynaldo A. Molina 7

Behaviors

Besides the obvious behaviors as avoiding object, Ziggy

identifies potential predators in the area. Once the predator

detects Ziggy’s movement, it tries to pursuit and attack. Ziggy

senses the movement as Mazo approaches and tries to escape by

running in the opposite direction. For a more realistic

simulation, Ziggy turns off its IR sensors and stay immobile to

make the predator believe it is not around. Unfortunately, Ziggy

is not able to maintain this state for long because it is

programmed to have the urge to run.

Experimental Layout and Results

According to the reading obtained from the A/D channels, the

output integer values from the infrared sensors vary from sensor

to sensor. In general, if there is no object present in a range

of three to four feet, the sensors return a value of 85-90. On

the other hand, if there is an object present within this range

all six sensors return a value of 100 to 128, depending on how

close the object is to the emitter.

The ultrasonic motion detector returns a value of 255 if there

is no movement present, and a value of less if there is.

Similarly, the microphone return values of 150 if there is no

sound detected , and values of 180 if there is. This range is

not sufficient to determine which of the microphones is closer

to the source.

EEL 5934 Final Report

Reynaldo A. Molina 8

It is necessary to set boundaries in the programs that determine

when Ziggy has to change direction or take some action. These

boundaries are variables of type integer named “Thresholds.” The

threshold for the infrared sensors must be 126 before the robot

considers the information valuable.

Conclusion

At this point in time Ziggy is able to display object avoidance

behavior, detect moving objects and sounds. The combination of

all the sensors give Ziggy the ability to respond better to the

surrounding environment. We are giving Ziggy a limited set of

behaviors with intentions to incorporate new ones and improve on

the old ones. The success of this simulation depends upon how

well Ziggy can play the game of the predator and the prey.

Documentation
J. L. Jones and A. M. Flynn, “Mobile Robots: Inspiration to
implementation,” A. K. Peters, ltd., Wellesley Ma, 1993.

F. G. Martin, “The 6.270 Robots Builder’s Guide,” F. G. Martin,
1992.

Motorola, MC68HC11 EVBU User’s Manual, Motorola, Inc., 1992.

Appendices
/* Right motor and Left motor */
int Right_Motor = 1;
int Left_Motor = 0;

/* boundaries for LEDs */
int T_Hold0 = 110;
int T_Hold1 = 110;
int T_Hold2 = 128;

int T_Hold4 = 111;
int T_Hold5 = 110;
int T_Hold6 = 118;

EEL 5934 Final Report

Reynaldo A. Molina 9

/* Speeds */
int Full_Speed = 100;
int Norm_Speed = 80;
int Half_Speed = 50;
int Stop = 0;

/* Infrared sensor variables */

int Left;
int Right;

int Center_Left;
int Center_Right;

int Left2;
int Right2;

int Center_Left2;
int Center_Right2;

int Back_Left;
int Back_Right;

/* Sonar sensor variable & boundaries */
int Sonar;
int Sonar_T_Hold = 255;

/* microphones variables and boundaries */
int M1;
int M1_T_Hold = 165;

int M2;
int M2_T_Hold = 139;

int M3;
int M3_T_Hold = 150;

int M4;
int M4_T_Hold = 159;

/* Time variables */
int Time = 517;
int Time2 = 50;
int Time3 = 70;
int Time4 = 375;
int TimeRandom;

float Execution_Time1 = 17.0;
float Execution_Time2 = 4.0;
float Execution_Time3 = 2.0;

/* Go to the right */
void Go_Right (int Left_Speed, int Right_Speed) {
 motor (Left_Motor,Left_Speed);

EEL 5934 Final Report

Reynaldo A. Molina 10

 motor (Right_Motor,Right_Speed * -1);
}

/* Go to the Left */
void Go_Left (int Left_Speed, int Right_Speed) {
 motor (Left_Motor,Left_Speed * -1);
 motor (Right_Motor,Right_Speed);
}

/* Go back */
void Go_Back (int Left_Speed, int Right_Speed) {
 motor (Left_Motor, Left_Speed * -1);
 motor (Right_Motor, Right_Speed * -1);
}

/* Go forward */
void Go_Forward (int Left_Speed, int Right_Speed) {
 motor (Left_Motor, Left_Speed);
 motor (Right_Motor, Right_Speed);
}

/* stay still */
void Stay_Still () {
 motor (Left_Motor, Stop);
 motor (Right_Motor, Stop);
}

/* This function delays for n milliseconds */
void wait(int milli_seconds) {
 long timer_a;
 timer_a = mseconds() + (long) milli_seconds;
 while(timer_a > mseconds())
 defer();
}

/* random number generator */
void RG () {
 if ((TimeRandom > 7)||(TimeRandom < 0))
 TimeRandom = 0;
 else
 TimeRandom = TimeRandom + 1;
}

/* This function reads continuosly
 the infrared sensors */
void Infrared_Emitting () {
 while (1) {

 poke(0x7000,0b00010000);
 wait(Time2);
 Center_Left = analog(4);

 poke(0x7000,0b00001000);
 wait(Time2);

EEL 5934 Final Report

Reynaldo A. Molina 11

 Center_Right = analog(0);

 poke(0x7000,0b00100000);
 wait(Time2);
 Left = analog(5);

 poke(0x7000,0b00000100);
 wait(Time2);
 Right = analog(1);
 }
}

/* This function reads IRs
 when infrared is off*/
void Read_Receivers () {
 while (1) {
 poke (0x7000,0b00000000);
 wait(Time2);

 Center_Right2 = analog(0);
 Right2 = analog(1);
 Back_Right = analog(2);

 Center_Left2 = analog(4);
 Left2 = analog(5);
 Back_Left = analog(6);
 }
}

/* This function reads sonar and mics */
void Read_Sonic_Sensors () {
 while (1) {

 wait(Time3);
 Sonar = analog(7);

 poke(0x6000,0x00);
 wait(Time3);
 M2 = analog(3);

 poke(0x6000,0x06);
 wait(Time3);
 M3 = analog(3);

 poke(0x6000,0x02);
 wait(Time3);
 M1 = analog(3);

 poke(0x6000,0x04);
 wait(Time3);
 M4 = analog(3);
 }
}

EEL 5934 Final Report

Reynaldo A. Molina 12

/* This function checks for sounds
 in the surroundings */
int Sound_Checking () {

 int M1_Diff;
 int M2_Diff;
 int M3_Diff;
 int M4_Diff;
 int M_Sound;
 int Direction;

 float Current_Time;
 float Duration;

 Current_Time = seconds();
 Duration = Current_Time + Execution_Time3;

 Stay_Still ();
 wait(Time4 * 2);

 while ((Current_Time = seconds()) < Duration) {

 M_Sound = 0;

 if ((M1 > M1_T_Hold) || (M4 > M4_T_Hold)) {

 M1_Diff = (M1 - M1_T_Hold);
 M4_Diff = (M4 - M4_T_Hold);

 if ((M1_Diff > M4_Diff) && (M1_Diff > 0)) {
 Go_Forward (Half_Speed,Half_Speed);
 wait(Time4);
 return 1;
 }
 else if ((M4_Diff > M1_Diff) && (M4_Diff > 0)){
 if (TimeRandom > 3) {
 Go_Right(Full_Speed,Norm_Speed);
 wait(1500);
 return 1;
 }
 else {
 Go_Left(Norm_Speed,Full_Speed);
 wait(1500);
 return 1;
 }
 }
 }

 if ((M2 > M2_T_Hold) || (M3 > M3_T_Hold)) {

 M2_Diff = (M2 - M2_T_Hold);
 M3_Diff = (M3 - M3_T_Hold);

 if ((M2_Diff > M3_Diff) && (M2_Diff > 0)) {

EEL 5934 Final Report

Reynaldo A. Molina 13

 Go_Left (Norm_Speed,Full_Speed);
 wait(Time4 * 2);
 return 1;
 }
 else if ((M3_Diff > M2_Diff) && (M3_Diff > 0)) {
 Go_Right(Full_Speed,Norm_Speed);
 wait(Time4 * 2);
 return 1;
 }
 }
 }
 return 0;
}

/* This function detects motion */
int Motion_Detection () {

 int Direction_Flag;

 wait (Time * 3);

 if ((Center_Left2 > T_Hold5) || (Left2 > T_Hold4)) {
 Stay_Still();
 Direction_Flag = 1;
 }
 else if ((Center_Right2 > T_Hold0) || (Right2 > T_Hold1)) {
 Stay_Still();
 Direction_Flag = 2;
 }
 else if (Back_Left > T_Hold6) {
 Stay_Still();
 Direction_Flag = 3;
 }
 else if (Back_Right > T_Hold2) {
 Stay_Still();
 Direction_Flag = 4;
 }
 else if (Sonar < Sonar_T_Hold) {
 Stay_Still();
 Direction_Flag = 5;
 }
 else
 Direction_Flag = 0;

 return (Direction_Flag);
}

/* This function does object avoidance */
void Object_Avoidance () {

 int Detected;
 int Action;
 int Priority;

EEL 5934 Final Report

Reynaldo A. Molina 14

 float Duration;
 float Current_Time;

 while (1) {

 Priority = 0;
 Current_Time = seconds();
 Duration = Current_Time + Execution_Time1;

 while ((Current_Time = seconds()) < Duration) {
 if ((Center_Right > T_Hold0) || (Right > T_Hold1)) {
 Go_Left (Norm_Speed,Full_Speed);
 wait(TimeRandom * Time4);
 }
 else if ((Center_Left > T_Hold4) || (Left > T_Hold5)) {
 Go_Right (Full_Speed,Norm_Speed);
 wait(TimeRandom * Time4);
 }
 else {
 Go_Forward (Norm_Speed,Norm_Speed);
 }
 }

 Current_Time = seconds();
 Duration = Current_Time + Execution_Time2;

 Stay_Still();
 wait(Time4);

 while ((Current_Time = seconds()) < Duration) {
 Detected = Sound_Checking();
 if (Detected == 1) {
 Action = Motion_Detection();
 if (Action > Priority)
 Priority = Action;
 }
 }

 if ((Priority == 1) || (Priority == 3)){
 Go_Right (Full_Speed,Norm_Speed);
 wait(Time4);
 }
 else if ((Priority == 2) || (Priority == 4)) {
 Go_Left (Norm_Speed,Full_Speed);
 wait(Time4);
 }
 else if (Priority == 5) {
 Go_Back (Full_Speed,Full_Speed);
 wait(Time4);
 if (TimeRandom <= 3) {
 Go_Right(Full_Speed,Norm_Speed);
 wait(1500);
 }
 else {

EEL 5934 Final Report

Reynaldo A. Molina 15

 Go_Left(Norm_Speed,Full_Speed);
 wait(1500);
 }
 }
 }
}

/* This function executes all processes */
void main() {
 start_process(RG());
 start_process(Infrared_Emitting());
 start_process(Read_Receivers());
 start_process(Read_Sonic_Sensors());
 start_process(Object_Avoidance());
}

