
University of Florida

Department of Electrical Engineering

EEL 5666

Intelligent Machines Design Laboratory

Holly: An Autonomous Air Cushion Vehicle

Bruce K. Miller
Aamir Qaiyumi

Instructor: Dr. Keith L. Doty

9 December 1996

TABLE OF CONTENTS

Abstract (BKM) � � � � � � � � � 3

Executive Summary (BKM) � � � � � � � � 4

Introduction (BKM) � � � � � � � � � 5

Integrated System (BKM) � � � � � � � � 6

Mobile Platform (AQ) � � � � � � � � 7

Actuation (BKM) � � � � � � � � � 9

Sensors (AQ) � � � � � � � � � � 19

Behaviors (BKM) � � � � � � � � � 26

Experimental Layout and Results (AQ) � � � � � � 28

Conclusion (BKM) � � � � � � � � � 44

Documentation (AQ) � � � � � � � � � 46

Vendors (AQ) � � � � � � � � � � 47

Appendix A: Program Code (BKM) � � � � � � � 48

Appendix B: Movement Control Test Code (AQ) � � � � � 55

Appendix C: Discrete Component Specifications (AQ) � � � � 64

3

ABSTRACT

Following is a discussion of the development of an obstacle avoidance system for an autonomous
hovercraft using infrared emitters and sensors. The hovercraft reacts when a sensor indicates the
presence of an obstacle in the vehicle’s path. Sensor readings elicit programmed responses through
the ICC11 programming language. Upon location of an obstacle, a microprocessor initiates a
collision avoidance algorithm which alters the spinning of two rear-mounted propulsion fans,
causing the hovercraft to veer away from the object. Various behavioral responses emerge as a
result of the interaction of components within the integrated system. Several maneuverability
problems unique to air cushion vehicles are presented in accompaniment with corresponding
software-based corrective measures. A sonar system supplements infrared sensory information with
rangefinding data and directional data. The closing discussion addresses future innovations and
additions which appear likely as a result of the present course of experimentation.

4

EXECUTIVE SUMMARY

Holly is an autonomous hovercraft which is designed to navigate large areas at high speeds. An

efficient centrifugal lift fan provides an air cushion which creates a near-frictionless surface over

which Holly can maneuver. Two propulsion fans, driven by a high power motor driver circuit,

supply speed and directional control to the hovercraft. Vehicle weight is minimal in order to reduce

power consumption and allow for reasonable run time.

Holly’s principle navigational system is long range IR. The hovercraft travels at high speeds and

has little friction to facilitate braking and must therefore see upcoming obstacles as soon as possible

in order avoid them in time. The integrated short range and long range IR system provides sensory

information from 0.25 to 10 meters ahead without resorting to new, specialized, or expensive

components. The long range IR system also provides fairly accurate range information.

A microprocessor provides a means of control for the integrated system including lift fan, motor

drivers and propulsion fans, long and short range IR emission, and IR sensing. ICC11 programmed

functions permit Holly to speed up, slow down, turn, and rotate in a controlled fashion despite the

inherent difficulties in navigation of an autonomous air cushion vehicle. A main program provides

behavioral guidelines which determine Holly’s reaction to the environment by changing the speed

and/or direction of the propulsion fans according to the control functions. The microprocessor also

elicits specific behavioral reactions, such as “search” and “attack”, to certain combinations of

external stimuli.

5

INTRODUCTION

Our primary goal upon completion of the Intelligent Machines Design Laboratory (IMDL) was the

realization of a fully autonomous mobile hovercraft, hereafter referred to as Holly. Physical design

is of utmost importance because of the delicate balance between vehicle weight, power

considerations, and air-channeling efficiency. Holly’s central behavior is obstacle avoidance at high

speeds. We have therefore developed a long range infrared system in order to avoid obstacles in

time when moving quickly. The resulting autonomous hovercraft is the platform upon which

additional, more goal-oriented, behaviors are implemented.

Following is a description of Holly separated into nine sections. Integrated System characterizes the

relationship between the individual component systems of which Holly is composed. Mobile

Platform describes the physical structure of the hovercraft and the mechanical systems used for

motion. Actuation covers the supply of power as well as the basic propulsion and lift motor

controls. Sensors denotes the types of sensors used and their relation to Holly’s behaviors.

Behaviors examines each behavior in detail. Experimental Layout and Results discusses the

development processes involved for various components of the integrated system. Conclusion

summarizes the successes and limitations of all work performed as well as future modifications

under consideration. Documentation provides complete list of references, including data books for

circuit components and a paper on a sonar system which was designed in parallel with this project.

Appendix A contains the program code used to implement Holly’s behaviors, and Appendix B holds

detailed component specifications.

6

INTEGRATED SYSTEM

Holly is a sum of multiple system inputs which result in the emergence of a set of particular

behaviors. The physical basis for a hovercraft is given in Mantle [1]. The central operational

principle is the so-called “lift” which is provided by a motor-fan combination which takes in air

through a portal of relatively large area and channels it down through the craft and out the bottom

through openings of small area. The resulting compression of air forces the hovercraft to rise a

small distance above the surface over which it travels. Often a skirt is attached to the base of an air

cushion vehicle in order to maximize lift efficiency. Multiple propulsion techniques exist; we use a

pair of rear-mounted propeller fans.

We use for control an ME11 expansion board, produced by Novasoft, which adds to a Motorola

68HC11 microprocessor an extra 32K of RAM, a pair of motor drivers, IR emitter modulation

circuitry, and voltage regulation. Due to the high-current demand of the propulsion motors,

however, the motor drivers were replaced with a more rugged system. The devices controlled by the

microprocessor include short-range IR emitters, long-range IR (hereafter referred to as the IR

cannon), IR sensors, one lift fan and two propulsion fans. The robot, once set in motion, senses the

environment and responds based on programmed behavioral guidelines by which the

microprocessor changes the speed and/or direction of the propulsion fans. The microprocessor

program also elicits specific behavioral reactions to external stimuli.

7

MOBILE PLATFORM

Holly’s original frame consisted of four parts as derived from Meyers/Wilkerson [2]. The load-

bearing platform was disk-shaped with a hole in the center for a lift fan. Beneath the load-bearing

platform, the outer shell for air flow was dome-shaped and the inner frame conical, to allow for a

high volume of air intake and the necessary compression at the base of the craft. All frame

components were shaped with plastic at the machine shop. We used a “skirt” formed with a

bisected bicycle inner tube. The skirt allows the hovercraft to hover higher without any additional

power requirement. Fig. 1 below depicts the basic model.

 air flow

platform

air-flow shells

skirt

 ground plane

Fig. 1: Early Hovercraft Model

After experiencing problems with the weight/lift ratio of the initial hovercraft model, we

investigated the availability of alternative hovercraft platforms. Based on the equations and

qualitative information in [1], we determined that a craft with a centrifugal lift fan, skirt, and dual

propulsion motors would best suit our purposes.

8

After obtaining numerous hovercraft components, we constructed Holly’s current body with parts

obtained from various hovercraft kits mounted on a Tyco R/C Typhoon II hovercraft frame.

Operational dimensions, including a fully inflated skirt, are 16 inches long, 11 inches wide, and 7

inches tall. Principle of operation is essentially the same as that of the earlier model. The

centrifugal fan is more efficient than its axial counterpart, as demonstrated by the cross-sectional

diagram presented in Fig. 2. Air intake is from above; the centrifugal fan propels air directly to the

sides, immediately filling the skirt and creating an air cushion. Air is then channeled through holes

underneath the body and out through a small gap between the skirt and the surface plane; the small

area for the air to escape in relation to the intake area produces a high-pressure area underneath and

lifts the craft. The bi-directional propulsion fans are independent of each other and the lift fan.

 air flow

 propulsion

centrifugal fan

skirt

air holes

Fig. 2: Mechanical Structure of Holly

9

ACTUATION

Battery Power

Holly originally used two 8-cell, 9.6 V NiCd battery packs for power, one for the motors and the

other for the microprocessor, sensors, and LEDs. Voltage was regulated down to 5 V for the

68HC11 processor and ICs through a MC78M05C voltage regulator. Estimated run time was 5-7

minutes. In order to extend the run-time, we replaced the NiCd battery pack with a Nickel-Metal

Hydride battery pack. Nickel-Metal Hydride cells have a greater energy density than NiCd batteries,

and with a 40% increase in cell capacity (measured in mAhrs) Holly’s life expectancy on a fresh

battery pack is extended to an estimated 9 minutes.

Motor Drivers

High Power Motors

Holly originally drove two rear propulsion motors with an SN754410 motor controller. A single

heat-sinked SN74410 motor driver on the ME11 board can sustain a current of about 1 A. We

determined through testing that Holly’s propulsion fans draw a constant current of 1.75 A but with

peaks that are much higher. The original solution was a heat-sinked, stacked arrangement of motor

driver chips to decrease the current load and dissipate the excess heat. Both drivers burned out

despite these precautions. Our next attempt was a relay-driven circuit similar to that in [1], which

also failed because the relays could not handle the current. Since neither design was capable of

sustaining the current pulled by the hovercraft motors, we developed a new motor control circuit

using high power CMOS motor drivers.

10

H-Bridge Motor Driver

A typical H-bridge configuration for a motor driver circuit using two pnp transistors (A, D) and two

npn transistors (B, C) is given in Fig. 3. This is the basis for our motor driver.

Fig. 3: Basic H-Bridge Motor Configuration

H-Bridge Input Logic

CMOS logic determines the voltages at the motor leads in Fig. 3 according to inputs enable (EN, a

PWM square waveform of 0-5 V from the EVBU) and direction (DIR, high, or low as specified by

programming). Since the emitters of the pnp transistors are tied to +BAT, neither will conduct

current if the base is at battery voltage as well, since the required vbe of 0.7 V cannot result.

Conversely, application of 0 to the base of an pnp allows current to flow. Operation is reversed for

the npn transistors; 0 V applied to the base of an npn turns the transistor off while +BAT allows

passage of current.

11

Table 1 specifies the logic used to turn the motors on and off in both forward and reverse. When

EN is off, the motor should be off regardless of the input DIR. Referring to Fig. 3, we must apply

high voltage to the bases of transistors A and D and low voltage to B and C. When EN is high we

wish to turn the motor on in reverse for DIR = 0 (low voltage) and forward for DIR = 1 (high

voltage). Setting A = 1 and C = 0 for DIR=0 ensures that current may only flow into D, through the

motor, and out through B. B and D are therefore set to 1 and 0, respectively, to permit the desired

current. Logic for DIR = 1 is the opposite the DIR = 0 case, reversing current and hence motor

direction.

EN DIR A B C D

0 0 1 0 0 1

0 1 1 0 0 1

1 0 1 1 0 0

1 1 0 0 1 1

Table 1: CMOS logic

12

Implementation: Phase I

The CMOS logic given in Table 1 led to the circuit design presented in Fig. 4. Transistors in the H-

bridge are represented as single BJTs but are in fact darlingtons. This H-bridge configuration uses

additional transistors to pull the H-bridge voltage inputs to battery voltage or ground. Examine the

logic into the base of transistor A. For EN = 1 and DIR = 1, the voltage at the output of the inverter

is high, causing the BJT on the other side of the resistor to conduct current and pull the collector

voltage low. This results in an application of low voltage to the base of transistor A as desired. For

any other combination of EN and DIR, the BJT just beyond the inverter does not turn on, yielding

high voltage at the collector since no voltage drop occurs across the non-current carrying pull-up

resistor. Similar tracing of logic for other conditions yields agreement with the logic shown in

Table 1.

Fig. 4: BJT Implementation of H-Bridge Controller

13

Implementation: Phase II

The prototype for the circuit implemented in Phase I was cumbersome and occasionally drove the

68HC11 voltage below the required level. Our solution was the circuit diagrammed in Fig. 5. A

single M3008 power MOSFET motor driver replaces each BJT H-bridge. Optoisolators replace the

BJT input network, presenting two advantages. First, a single optoisolator chip replaces more than a

dozen components, which significantly simplifies the circuit. Second, optical transmission of input

information physically separates the microprocessor board from the motors, which completely

protects the board from instantaneous switching effects.

Fig. 5: Phase II Motor Driver

14

Turning on the input diode of an optoisolator activates the transistor at the output side of the device.

The resulting current causes a voltage drop across the pull-up resistor to battery voltage, pulling low

the input voltage to the corresponding MOSFET gate in the motor driver chip. Turning off the input

diode, however, prevents current flow through the resistor on the output side and results in a gate

voltage equal to the battery voltage. The CMOS logic which drives the optoisolator chip is the same

as that in Phase I, but the connections to the Optoisolators are slightly different. Tying the output of

a logic gate to the cathode side of an optoisolator input is equivalent to a logic inversion, which

obviates the inverters in the Phase I circuit.

Motor Driver Construction

In order to minimize the risks associated with preliminary testing, we first tested each

implementation of the motor driver circuit without the motor drivers and tested only the input logic.

After correcting connection errors and verifying all logic patterns, we hooked up the motor drivers

to a test motor to verify the logic functions in Table 1. The motor drivers can run far longer than the

hovercraft can sustain battery power without ever becoming warm. Once the optoisolators were

installed, we never lost connection to the microprocessor. Since the Phase II implementation ran to

our satisfaction, we transferred the circuit to two permanent and compact solderboards, testing the

new boards in the same fashion as the breadboarded version. After fully testing the motor drivers,

we installed them on the hovercraft for use with the two propulsion fans. Testing on the hovercraft

confirmed correct operation of the driver system.

15

Propulsion

Holly moves forward when both propulsion motors are spinning in the same direction and at the

same speed. Braking is accomplished by switching both motors to reverse operation by the

microprocessor, maintaining equal duty cycle to each motor. In our early tests, Holly could not

move backwards because of the type of propeller used for movement. The fan blades are a type of

blade known as pusher propellers, meaning that they are designed to push air in one direction. As a

result, when the fans are run in reverse, they provide very little thrust. In environments with

smooth, level surfaces, Holly is capable of limited reverse motion, but not enough to be useful for

anything other than slowing forward motion of the hovercraft. Holly turns right when the duty cycle

applied to the left motor is greater than that applied to the right motor, and left at the reverse

condition. Holly rotates right by applying forward thrust to the left motor and reverse thrust to the

right motor. Likewise, driving the right fan forward and the left in reverse results in left rotation.

Control Problems

Cumulative Motion

The main obstacle in controlling Holly’s motion is what will be hereafter referred to as cumulative

motion. Cumulative motion is the result of movement on a near-frictionless surface; if the craft is

moving in one direction and turns, it will tend to slide laterally in the direction of its previous

motion. Cumulative motion theoretically carries over indefinitely for any number of turns. In

practice, however, friction eventually slows both the forward and rotational motion of the

hovercraft. Therefore some measure of speed and time will be helpful in navigational control.

16

Other Problems

In addition to cumulative motion, the hovercraft tends to veer to one side as a result of even the

slightest weight imbalance or unevenness of the surface above which holly maneuvers. Due to the

difficulty in controlling an autonomous hovercraft we have developed several algorithms which

combine to form a unique navigational system.

Control Algorithms

Speed

Appendix A contains a complete listing of the final ICC11 programming code used to control the

hovercraft. In order to compensate for changes in speed, the program is designed to monitor speed

according to the maneuvers performed. Functions forward, full_forward, reverse, and full_reverse

drive both motors in the same direction and at the same speed for a given amount of time. Delays

are set such that any call of these four functions results in the appropriate propulsion for a fixed

amount of time. Speed is normalized at increments of one corresponding to one time delay of

reverse motion. One call of the reverse function decrements speed by one, while full_reverse

subtracts two from speed. Since reverse power is approximately one half as effective at slowing the

hovercraft as forward is at speeding it up, forward and full_forward routines increase speed at

double the rate of decrease of their reverse counterparts. The full_stop function illustrates the

usefulness of the speed variable. Based on how many time delays the hovercraft has gone forward,

the full_stop algorithm determines how long to run in reverse before the hovercraft comes to a

complete stop.

17

Rotation

The rotate_left and rotate_right routines handle the rotational motion of the hovercraft. As

described above, rotational motion occurs as a result of forward power applied to one motor and

reverse power applied to the other. Since forward power is stronger than reverse power, the latter

must operate at a higher duty cycle to minimize extraneous forward motion. We optimized the

power to each motor through experimentation to achieve this desired minimization. In order to stop

rotational motion, a counter-rotation must be applied for the same time as the rotation in the original

direction.

Turning

Gradual right and left turns were the most challenging maneuvers to implement. Since the

hovercraft is normally moving forward upon the initiation of a turn, cumulative motion tends to

shift the hovercraft laterally as Holly completes the turn. The most effective means of controlling

this problem is to perform two maneuvers: a normal turn operation, which involves applying more

forward power to one propulsion motor than the other, followed by a counter-rotational maneuver as

described above. The original turn maneuver must actually surpass the desired post-turn facing,

thereby applying thrust to counter the original motion. The rotation operation then adjusts the

facing of the hovercraft to the required heading. An additional difficulty to turning as opposed to

rotation is that the initial forward speed and rotational motion, as well as weight imbalances, greatly

affect the outcome of the turn. Because of the number of variables involved, development of the

final left_turn and right_turn functions contained in the appendix required extensive testing and

modification.

18

Oscillation and Damping

Despite the software-controlled speed and rotation controls described above, the hovercraft

inevitably loses control due to unforeseen factors. Colliding with or even barely sideswiping an

obstacle often adds significant rotational motion and/or speed which cannot be accounted for.

Surface slopes normally undetectable by any but the most accurate methods may also affect speed

and rotation. We have developed two software routines to reduce these uncontrollable effects:

oscillate and dampen. Both functions use what little friction the hovercraft has to its advantage.

The oscillate routine alternates quickly between high forward power to one propulsion motor and

low forward power to the other. The visible result is a left-to-right rocking of the hovercraft as it

slowly moves forward. The shifting of air cushion height on the port and starboard sides increases

the difficulty for the hovercraft to rotate, effectively canceling much of the rotational motion which

existed prior to the oscillate routine. Dampen produces a similar effect to oscillate, but motor speed

is reversed. Again, much of the hovercraft’s rotational motion disappears. The dampen function,

unlike oscillate, produces a significant decrease in forward speed.

Problems Encountered

In the conversion from IC to ICC11 we found two bugs in the ICC11 support libraries which turned

a crude but somewhat reasonable collision avoidance behavior into complete chaos. First, IC and

ICC11 reference the motors in an opposite manner, that is, motor 0 for one language is motor 1 in

the other, and vice versa. Second, whenever one motor is driven to a 0 duty cycle and the other is

written to operate in reverse, the latter will actually go forward instead.

19

SENSORS

IR Configuration

Holly’s sensory array consists of integrated long and short range IR systems. A center mounted,

forward facing IR emitter and a pair of collimated IR LEDs at port and starboard “light up” a 120

degree arc in front of the robot. Two wide-angle LEDs at the headlight positions blend the IR

intensity to near-uniform levels throughout Holly’s visual range, represented by the dashed cardioid

in Fig. 6. A 74HC390 decade counter divides the 68HC11 E-clock to generate a 40kHz signal

which activates the LEDs. Four hacked Sharp GPIU58Y IR detectors read the intensity of IR

reflections as depicted by the solid cones in Fig. 6. Two cross-eye sensors blanket the area in front

of the hovercraft, and a second pair in line with the outward-angled emitters increases the field of

vision. Intermittent lines represent the long range IR cannon which, in combination with a fifth

sensor, increases forward visibility.

Fig. 6: IR System Configuration

20

IR System

Integrated IR System

Holly requires a long range detection system for several reasons. The hovercraft’s high power

propulsion motors, coupled with travel over a near frictionless surface, result in much higher

cruising speeds than conventional robots. An additional consequence of travel over a near

frictionless surface is an increased difficulty in changing direction. Accordingly, Holly must see

upcoming obstacles as soon as possible in order avoid them in time. Our goal was to develop and

integrate a long range IR object detection system with a standard short range system without

resorting to new, specialized, or expensive components as was necessary for Holly’s motor control.

Short Range IR

We removed all external resistance from the IR emitter/latch circuit on the ME11 and collimated an

LED with a black, lens-capped tube to maximize the current through the LEDs and focus IR

emissions while minimizing backscattering. Construction of the collimated infrared LED is shown

in Fig. 7 below. Noise in the A/D system increased with the lack of resistance in the IR emission

circuit. Additional capacitance across the system helped, but in order to get consistent IR readings

we needed a 470Ω resistor in series with each latch output to its corresponding LED. These simple

modifications allow IR detection up to 1 meter away. Lens collimation effects actually proved to

reduce IR range, so later models have been free of optical trickery

Fig. 7: Collimated Infrared LED

21

Long Range IR

The techniques used for short range IR were insufficient to give Holly the desired detection range.

The ME11 expansion board produces a 40 kHz square wave with a 50% duty cycle. The

transmission latch can source 35mA but an infrared LED can sustain at least 100mA continuously

according to its data sheet. Therefore an LED can handle a 200mA amplitude square wave with a

50% duty cycle. We suspected that a 10% duty cycle with an amplitude of 500 mA using a

monostable multivibrator, or one-shot, circuit would increase the intensity of the IR emissions

without damaging the LEDs. The one-shot circuit shown in Fig. 8 triggers a 555 timer to produce

an output signal with a short duty cycle and high current.

Fig. 8: One-Shot based on 555 Timer

 R2 and C2 dictate the period of the timer output according to T = 1.1(R1)(C1). We connected the

one-shot output to the base of a TIP127 PNP Darlington transistor to amplify the current through the

LED. The LEDs were able to take the additional current. We took sensor readings starting 0.25 m

away from a wall and additional readings at 0.25 m increments until we observed no change. Five

readings were taken at each distance in order to ensure the precision of the data, listed in Table 2.

Plotted data in Fig. 9 shows that readings level off somewhere between 2-3 meters, indicating

improvement over the original IR system, but still not enough for our purposes.

22

Distance(m) Analog1 Analog2 Analog3 Analog4 Analog5

0.25 129 129 129 129 129
0.50 121 122 121 122 121
0.75 111 111 111 111 111
1.00 105 105 105 105 105
1.25 103 103 102 102 102
1.50 100 101 101 101 101
1.75 100 100 99 100 100
2.00 99 99 99 100 99
2.25 98 98 98 99 99
2.50 98 98 98 98 98
2.75 97 98 97 97 98
3.00 97 97 97 97 97

Table 2: One-shot circuit test results

Fig. 9: Results of 555 Based One-Shot

IR Sensor Readings

95
97
99

101
103
105
107
109
111
113
115
117
119
121
123
125
127
129
131
133
135

0.00 0.50 1.00 1.50 2.00 2.50 3.00

Distance

A
n

al
o

g
 R

ea
d

in
g Analog1

Analog2

Analog3

Analog4

Analog5

23

We developed a second one-shot circuit, diagrammed in Fig. 10, to further improve the range of the

long range IR system. This configuration provides a precise duty cycle just long enough for the IR

sensor to respond. The shorter duty cycle permits a higher current signal and IR emission.

Fig. 10: One-Shot Based on Comparator

We discovered that the one-shot circuit requires precise adjustment of its construction in order to get

useful results. During testing we burned out several infrared LEDs because the output had a higher

amplitude or a longer duty cycle than anticipated. This incident prompted us to purchase a

prepackaged monostable multivibrator to reduce the complexity, weight, and size of our onboard

electronics. We chose to use a 74HCT123N dual retriggerable resettable multivibrator because of

its availability and because it could be used to implement both of the designs discussed above. The

relevant device specifications are shown in Appendix B. Using this IC we implemented the circuits

shown in Figs. 8 and 10.

24

IR Cannon

Extensive testing suggested that the Sharp IR sensors do not respond well enough to the duty

cycle/current magnification tradeoff to get the desired long range IR detection. We developed an

alternate implementation to the multivibrator approach based on a circuit for a 10 meter range

remote control unit. The ensuing high-intensity IR Cannon circuit consists of a TIP112 NPN

transistor, 8 infrared LEDs, 1 red LED, a 470Ω resistor, and a base resistor that can be adjusted from

1kΩ to 33kΩ to adjust the sensitivity of the sensor for use in multiple environments. Fig. 11 below

depicts the IR cannon circuit.

Fig. 11: IR Cannon Circuit Diagram

The transistor amplifies the 0-5 V 40 kHz signal from the ME11 board and the resulting collector

current splits into three branches, one of which is a high-resistance/visible LED combination to

indicate IR cannon activation. Neglecting the relatively small current through the visible light LED,

currents can reach up to about 1 A through each row of infrared LEDs. According to component

specifications there is no way these LEDs can handle 1 A DC, but software control can counter the

power problem by pulsing the IR cannon for 50-100 mA every few seconds when readings are

25

desired. Thus the average power remains low and the LEDs are unharmed. Note that because of the

IR Cannon’s high intensity emission, all short range sensors remain saturated for approximately 100

ms, the discharge time for the Sharp sensors, after shutting off the cannon.

 In the configuration shown in Fig. 6, the cannon allows Holly to detect objects at distances from

1.25 to 9 meters indoors and up to 6 meters outdoors. Greater range is possible, but we chose the

base resistance to best complement the short range IR, which covers the 0.25 to 1.00 meter range.

Analog output of the sensor is proportional to the amount of IR detected. Collision avoidance uses

successive sensor readings to adjust Holly’s speed and direction. The construction of the IR Cannon

is shown in Fig. 12 below.

Fig. 12: IR Cannon Construction

When we apply board power, the IR latch starts in a random, unknown state. When we connected

the cannon to the board for testing, the latch started high and six of the eight LEDs burned out

before we could remove power. Accordingly, we installed a jumper to deactivate the IR cannon

until the board is properly reset. We also changed the construction from permanently soldered

LEDs to a socketed configuration which facilitates quick-changing of burned out LEDs.

26

BEHAVIORS

Collision Avoidance

Holly’s central behavior is collision avoidance which monitors sensor readings and uses the basic

control functions described in the previous section to avoid collisions based on infrared reflections.

The microprocessor calls the turn, rotate, forward and reverse functions introduced previously to

maneuver around obstacles detected by IR sensors. The hovercraft also exhibits more complex

behaviors as described below.

Search

One of Holly’s secondary behaviors is the “search”. When Holly detects one or more obstacles

which prevent motion in the forward direction, including gradual left and right turns, the hovercraft

enters search mode by which it brakes to a full stop and rotates, scanning the environment for an

open direction for travel. The search_left and search_right routines in the appendix realize the

search behavior. Upon entering a search routine, Holly begins rotation in a certain direction,

recording sensory data at variable intervals determined by time delay and rotational speed. A timer

variable keeps track of rotational momentum. Once Holly finds an open space, the hovercraft

engages in counter-rotational motion for a delay time which corresponds to the value indicated by

the timer, bringing Holly to a stop. Holly then applies forward power in the newly discovered open

path. A nested timing loop adds counter-rotation when no open area is seen for several delay times

to prevent Holly from building up too much rotational motion and losing control.

27

Attack

Holly’s final behavior uses long-range IR for an “attack” behavior. At intervals of a few seconds,

the IR cannon pulses and the cannon sensor tracks the readings. Since the infrared ranging spectrum

is so broad, long-range IR enables Holly to determine range to the nearest obstacles. Consequently,

Holly uses the attack algorithm to exhibit different behaviors for various combinations of range and

current speed. The attack function is documented in the appendix; Holly seeks the most open area

and applies as much forward power as possible to reach the area quickly without colliding with any

obstructions en route. The extreme range capability of the IR cannon allows Holly to achieve

appreciable speeds while maintaining the ability to detect an object in time and veer away from it.

Integrated Behavior

Holly’s behaviors combine to form an aggressive collision avoidance behavior. Long range and

short range IR combine to provide Holly with range information, and programming directs Holly to

speed up when large openings appear. In search mode, Holly purposely seeks the largest open space

for travel, which further increases Holly’s tendency to explore at high speeds. Oscillate and

Dampen functions, in addition to stabilizing rotational motion, add an intimidation factor due to the

rocking back and forth.

28

EXPERIMENTAL LAYOUT AND RESULTS

Several experiments led to the development of Holly’s behaviors. We developed control algorithms

with combinations of maneuvers, time delays, and long and short range IR thresholds based on

experimental data.

Experiment 1: Short Range Obstacle Detection

This experiment was designed to test the short range IR detection system of the hovercraft. In order

to do this, Holly was set up in a clear area with an object directly in front. This object was placed

114cm from the hovercraft and moved away in 114cm increments until the readings reach the point

where they were no longer useful for object detection. Only the cross-view sensors were used in

this test because they are the primary means of detecting nearby objects. The short range system

was tested in three modes:

1) All short range LEDs turned on.

This gives Holly the most range out of the short range system, dropping off at

about 1 meter.

2) Center mounted LED and outward facing LEDs turned on, headlights turned off.

This provided the shortest range, with a drop-off at about 0.5m.

3) Headlights and wide-angle LEDs on, center mounted LED off.

This configuration yielded readings approximately 80% of those obtained in

case 1, with a corresponding drop in effective range.

29

Table 3 below contains the results of Experiment 1, and Fig. 13 follows with a plot of the distance

vs. analog reading of the cross-view sensors. The three modes are listed on the same graph and

color-coded to make it easy to compare the results. Darker colors show the left cross-view sensor

results while lighter colors indicate the right. The blue plots show the readings for case 1, case 2 is

represented by the green plots, and the red plots show case 3. The plots show that effective short

range detection out to about one meter results from the sensor/LED arrangement used on Holly.

 All LEDs On Center/Wide On Headlights/Wide On
Distance(cm) Left Right Left Right Left Right

114 130 130 124 123 132 132
229 129 129 112 111 126 126
343 123 122 100 100 119 118
457 116 116 94 93 110 109
572 106 107 93 93 98 100
686 101 102 89 89 96 96
800 99 99 87 87 95 94
914 96 98 87 87 93 93

Table 3: Cross-view Sensor Readings For Short Range IR

Short Range IR Detection

80

90

100

110

120

130

140

11
4

22
9

34
3

45
7

57
2

68
6

80
0

91
4

Distance (cm)

S
en

so
r

R
ea

d
in

g Left
Right
Left

Right
Left
Right

Fig. 13: Short Range IR Detection

30

Experiment 2: IR Cannon Base Resistance

Once the circuit for the IR Cannon was constructed, we had to determine what resistance in the base

of the transistor would give us the desired detection range. We tested base resistances ranging from

1kΩ to 47kΩ by placing the hovercraft five meters from an obstacle and reading the value returned

by the Sharp sensors. We took five readings for each resistance to account for error due to deviant

readings. Table 4 lists the data and Fig. 14 plots the results. A 1kΩ resistor allowed high current

through the LEDs, but would cause the LEDs to burn out if left on for more than one second at the

50% duty cycle, 40kHz input signal. The 33kΩ and 47kΩ resistors proved to be too high as it

prevented the transistor from turning on. Resistances between these extremes limit the intensity of

the IR emissions to accommodate operation in smaller or larger areas. Based on the data in Table 4

and the plot in Fig. 14 we decided to do additional testing with base resistances of 15kΩ and 22kΩ.

Resistance(kΩ) Reading 1 Reading 2 Reading 3 Reading 4 Reading 5
IR Cannon Off 89 89 89 89 89

1 117 119 118 118 119
2.2 121 121 121 118 120
3.3 120 121 121 121 121
4.7 123 120 122 120 120
5.1 123 120 120 122 122
5.6 121 120 122 122 120
6.8 123 122 123 122 123
8.2 123 122 121 123 123
10 123 123 121 123 122
12 122 124 124 123 123
15 119 121 121 119 120
22 102 102 103 103 103
33 93 93 93 94 94
47 94 94 94 94 94

Table 4: Sensor Data at 5m for Varying Base Resistance

31

Base Resistance vs. IR Intensity

80
85
90
95

100
105
110
115
120
125

1Μ
Ω

1κ
Ω

2.
2κ

Ω

3.
3κ

Ω

4.
7κ

Ω

5.
1κ

Ω

5.
6κ

Ω

6.
8κ

Ω

8.
2κ

Ω

10
κΩ

12
κΩ

15
κΩ

22
κΩ

33
κΩ

47
κΩ

Resistance

A
n

al
o

g
 R

ea
d

in
g Reading 1

Reading 2

Reading 3

Reading 4

Reading 5

Fig. 14: Sensor Readings vs. Change in Base Resistance

32

Experiment 3: 15kΩ and 22kΩ Base Resistances

Experiment 2 provided useful data about the performance of the IR Cannon with different

resistances into the base of the transistor. We determined that the performance of the 15kΩ or 22kΩ

resistor would mesh well with our short range IR system so we devised this experiment to allow us

to see which of the two would work better. The experiment was performed in the same manner to

Experiment 1 except with longer distances.

Table 5 lists the collected data for the 15kΩ resistor, followed by a plot of the sensor readings vs.

distance in Fig. 15. Table 6 contains the results obtained from the testing of the 22kΩ resistor and is

also followed by a plot of sensor readings vs. distance, Fig. 16. The data suggests that the 15kΩ

resistor gives a higher intensity IR output as indicated by the higher sensor readings at comparable

distances to those from the 22kΩ resistor tests. This suggests longer range detection, meaning that

the sensor will easily saturate in smaller areas. Since Holly will operate mostly indoors, we chose to

use the 22kΩ resistor so that we wouldn’t consistently blind Holly. Using this resistor gives us an

effective long range system capable of detecting objects at distances ranging from approximately 1.5

to nine meters.

33

Distance(m) Reading 1 Reading 2 Reading 3 Reading 4 Reading 5
2.06 131 131 131 131 131
2.29 130 132 129 130 132
2.51 130 131 130 131 129
2.74 128 130 130 130 130
2.97 129 128 126 127 127
3.20 125 126 124 126 127
3.43 126 124 124 124 126
3.66 125 124 124 123 124
3.89 124 123 124 123 124
4.11 123 123 123 122 122
4.34 123 122 122 122 121
4.57 122 121 122 123 121
4.80 120 120 121 122 122
5.00 119 121 121 119 120

Table 5: Sensor Readings with 15kΩ Base Resistance

IR Cannon Readings With 15k Ohm Base Resistance

80

90

100

110

120

130

140

2.06 2.51 2.97 3.43 3.89 4.34 4.80

Distance (m)

S
en

so
r

R
ea

d
in

g Reading 1

Reading 2

Reading 3

Reading 4

Reading 5

Fig. 15: Sensor Readings -- 15kΩ Base Resistance

Distance(m) Reading 1 Reading 2 Reading 3 Reading 4 Reading 5

34

1.14 130 129 129 130 130
1.37 130 130 130 129 130
1.60 127 128 128 128 128
1.83 125 123 124 124 125
2.06 120 121 121 122 122
2.29 118 117 117 117 117
2.51 114 115 116 115 116
2.74 114 113 113 113 114
2.97 109 109 110 110 111
3.20 110 109 110 109 109
3.43 107 108 107 108 107
3.66 107 106 106 106 106
3.89 105 106 105 104 105
4.11 104 105 104 104 103
4.34 103 103 102 103 104
4.57 103 104 102 104 104
4.80 101 102 103 102 103
5.00 102 102 103 103 103
5.03 103 101 100 101 102
5.26 101 99 100 101 102
5.49 101 99 99 100 101
5.72 100 99 99 100 99
5.94 98 98 99 99 100

Table 6: Sensor Readings with 22kΩ Base Resistance

35

IR Cannon Readings With 22k Ohm Base Resistance

80

90

100

110

120

130

140
1.

14

1.
60

2.
06

2.
51

2.
97

3.
43

3.
89

4.
34

4.
80

5.
03

5.
49

5.
94

Distance (m)

A
n

al
o

g
 R

ea
d

in
g Reading

1
Reading
2
Reading
3
Reading
4
R di

Fig. 16: Sensor Readings -- 15kΩ Base Resistance

36

Experiment 4: Controlling the Hovercraft

Before we could begin writing programs to produce behaviors in the hovercraft we had to learn how

to drive one. To this end, we developed several simple programs to move the hovercraft in what we

determined would be the basic motions of the robot. These functions were later used in

combinations by the code in Appendix A to produce the desired collision avoidance behaviors.

The first step in controlling the hovercraft was to get it to move forward and stop. The program

run_stop.c, listed in Appendix B, was written to perform this task. This program moved the

hovercraft at half speed for a given delay, delay_f, then turned the motors to full reverse for another

given time, delay_r, to stop the hovercraft. We were able to determine that the ratio delay_f :

delay_r was 1 : 1. When moving at full speed the ratio becomes 2 : 1.

After we could successfully accelerate and stop the hovercraft, we began working on a way to make

the hovercraft rotate in place. As shown in the program, rotate.c, we first tried turning one fan on in

the forward direction and the other in reverse, but Holly had a tendency to move forward while

rotating. To reduce the forward motion, and thus decrease the turning radius, we reduced the power

to the forward motor and placed the other motor in full reverse. This reduced the problem but was

not enough to completely eliminate it. We then decided to pulse the forward motor only a few times

while keeping the reverse motor at full reverse. In order to stop the rotation, we simply reversed the

direction of the rotation for a time equal to the time of the original rotation. This did not give us any

improvement over the previous approach so we adopted our second technique as the standard rotate

routine. It would seem that our choice of propulsion fan arrangement has limited our abilities to

perform some operations.

37

The next objective was to get the hovercraft to perform a simple turn. We accomplished this using

the program, turn.c, which moved Holly forward for 1 second, then made a 30° turn and continued

moving in the new direction. The important idea behind the operation of this program is the use of

the rotate function to counter the rotation induced at the start of the turn and straighten out the

hovercraft in its new direction.

A significant problem encountered when we began combining the movement functions was a

tendency to lapse into a spin when running over depressions on the surface upon which Holly was

traveling. To counter this, we developed a function that would pulse the propulsion fans in reverse

when called to reduce the angular velocity of the hovercraft. This program was tested by putting the

hovercraft into a spin then running the program. When run, Holly was able to stop spinning in

roughly half the time as compared to the time it would take to do the same based on friction

between the skirt and ground alone. This function, wiggle.c, was also successful with the motors

running in the forward direction.

The development of the control functions proved to be more challenging than expected due to the

unique operating conditions presented by the hovercraft. Once developed, however, they provide

the basis for the development of further behaviors. Using these functions as the core of our later

programming, we were able to implement the behaviors previously discussed.

38

Experiment 5: Outdoor Range

We performed this experiment to determine the effectiveness of the IR Cannon outside, where the

ambient infrared is more intense and IR detection systems lose significant range. We set up the

hovercraft facing towards an area with a movable obstacle and took sets of five sensor readings

starting at the sensor saturation point and increasing the distance until the sensor no longer returned

useful data. We ran the tests with both the 15kΩ and 22kΩ resistors for comparison to each other

and to the data recorded indoors. Tables 7 and 8 contain the test data for the 22kΩ and 15kΩ

resistors. Figs. 17 and 18 are plots of the recorded data. The 22kΩ resistor seemed to have a

maximum outdoor range of about 2.5 meters, while the 15kΩ resistor seemed to be reliable until

about six meters.

Distance(m) Reading 1 Reading 2 Reading 3 Reading 4 Reading 5
0.30 130 131 130 130 130
0.61 128 128 127 127 128
0.91 123 123 123 122 123
1.22 113 113 114 114 115
1.52 104 104 104 104 105
1.83 100 102 102 101 102
2.13 98 99 97 99 97
2.44 97 96 96 97 96
2.74 96 96 96 96 96
3.05 95 96 96 95 95
3.35 95 95 95 95 95
3.66 94 95 95 95 94
3.96 95 94 95 94 94
4.27 93 94 95 94 94
4.57 92 93 94 94 94

Table 7: Outdoor Sensor Readings with 22kΩ

39

Outdoor IR Cannon Readings
With 22k Ohm Base Resistance

80

90

100

110

120

130

140

0.30 0.91 1.52 2.13 2.74 3.35 3.96 4.57

Distance (m)

S
en

so
r

R
ea

d
in

g Reading 1

Reading 2

Reading 3

Reading 4

Reading 5

Fig. 17: IR Cannon--Outdoor Test Results with 22kΩ Resistance

40

Distance(m) Reading 1 Reading 2 Reading 3 Reading 4 Reading 5
0.30 131 131 130 131 130
0.61 131 131 130 130 130
0.91 130 129 130 130 131
1.22 131 130 129 130 130
1.52 129 129 130 130 129
1.83 126 127 127 126 126
2.13 124 125 124 123 124
2.44 118 118 118 119 118
2.74 116 116 115 116 116
3.05 112 111 111 113 111
3.35 109 111 108 109 110
3.66 108 108 106 107 106
3.96 105 106 104 105 104
4.27 103 103 102 102 101
4.57 102 102 101 101 100
4.88 100 100 101 100 101
5.18 100 100 101 100 100
5.49 100 98 99 101 100
5.79 99 99 99 100 99
6.10 99 99 98 98 100
6.40 98 99 98 98 99
6.71 98 98 99 98 97
7.01 98 97 98 98 98
7.32 98 98 98 98 97
7.62 97 98 97 97 98

Table 8: Outdoor Sensor Readings with 15kΩ

41

Outdoor IR Cannon Readings
With 15k Ohm Base Resistance

80

90

100

110

120

130

140

0.
30

0.
91

1.
52

2.
13

2.
74

3.
35

3.
96

4.
57

5.
18

5.
79

6.
40

7.
01

7.
62

Distance (m)

S
en

so
r

R
ea

d
in

g Reading 1

Reading 2

Reading 3

Reading 4

Reading 5

Fig. 18: IR Cannon--Outdoor Test Results with 15kΩ Resistance

42

Figs. 19 and 20 below show a comparison between the indoor and outdoor readings for both

resistances. The 22kΩ resistor readings drop off significantly at short range when used outdoors,

while the 15kΩ resistor returns consistently lower values when used outdoors. For Fig. 19 the data

points labeled ‘Reading *’ are the results of the indoor tests and the data labeled ‘Series’ are for the

outdoor tests. For Fig. 20, however, the indoor and outdoor test data labels are reversed.

Indoor vs. Outdoor IR Cannon Readings
With 22k Ohm Base Resistance

80

90

100

110

120

130

140

0.00 5.00 10.00 15.00 20.00 25.00

Distance (m)

S
en

so
r

R
ea

d
in

g

Reading 1

Reading 2

Reading 3

Reading 4

Reading 5

Series6

Series7

Series8

Series9

Series10

Figure 19: Indoor vs. Outdoor IR Cannon Test Comparison

43

Indoor vs. Outdoor IR Cannon Readings
With 15k Ohm Base Resistance

80

90

100

110

120

130

140

0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00

Distance (m)

S
en

so
r

R
ea

d
in

g

Reading 1

Reading 2

Reading 3

Reading 4

Reading 5

Series6

Series7

Series8

Series9

Series10

Figure 20: Indoor vs. Outdoor IR Cannon Test Comparison

It would appear that three independent IR detection systems could be used for outdoors: a short

range system, a medium range system using the IR Cannon with a 22kΩ resistor, and a long range

system using the 15KΩ resistor. Integrating these systems would allow a robot to produce a

comprehensive map of its environment.

44

CONCLUSION

Holly is now a fully autonomous hovercraft which successfully avoids obstacles at medium to high

speeds while evidencing several emergent behaviors. High-power motor drivers enable Holly’s

motors to draw the required current for high-speed propulsion. The long-range IR cannon, in

combination with short range IR, allows Holly to travel at high speeds while maintaining the ability

to detect obstacles in time to prevent collisions. The search and attack behaviors give Holly a

somewhat bellicose personality; this hovercraft would make a formidable predator robot.

Software control of a high-speed autonomous hovercraft was a challenging task. Control of the

hovercraft is still not perfect with IR alone, but the long range IR helps immensely. A parallel sonar

project [] may prove to be the key in accurate navigational control, especially with regard to

monitoring speed and rotation. Such control improvements might lead to additional behavioral

capabilities such as mine laying/detecting, reconnaissance, and pattern recognition/targeting

techniques associated with predator robots.

Both the long-range IR and motor driver systems work much better than we anticipated. The motor

drivers can be used for robots whose motors draw considerably more current than Holly’s, as the

MPM3008 drivers are rated at 16 A. For applications similar to ours in power consumption,

however, we recommend MPM3004 drivers which are rated at 10 A but are less expensive. Long-

range IR reaches 10 meters, or more than 30 feet, which is more than enough for the hovercraft and

should be plenty for other autonomous robots which use the IR cannon approach. Long-range IR

readings also provide reasonably accurate range information.

45

Weight is a major consideration for Holly. Addition of the ME11 board weighed down the aft

portion of the craft enough to hinder motion so that counterweights were required up front.

Fortunately the second battery pack and IR cannon together produce approximately the correct

weight for this purpose. Acquisition of metal hydride batteries more than compensated for the

power drain associated with extra weight. Holly has enough power at this point to carry somewhat

more weight, but any additions will also reduce the already limited run time.

46

DOCUMENTATION

[1] Peter J. Mantle, Air Cushion Craft Development (1st rev.), Mantle Engineering Co. Inc, 1980.

[2] John W. Meyers and Stuart Wilkinson, Mechanical Engineering Dept., Univ. of South Florida,

Tampa, FL, A Electric Miniature Robotic Hovercraft for “Stealth” Land Mine Detection.

[3] Joseph Jones & Anita Flynn, Mobile Robots: Inspiration to Implementation, A.K. Peters

Publishers, Wellesley, MA, 1993.

[4] Motorola, Small Signal Transistors, FETs and Diodes Device Data, Motorola, 1994.

[5] Motorola, Motorola Semiconductor Master Selection Guide, Motorola, 1996.

[6] Motorola, Motorola High-Speed CMOS Data, Motorola, Motorola, 1996.

[7] Motorola, Motorola Analog Interface IC Device Data:Volumes 1 and 2, Motorola, 1996.

47

VENDORS

Digi-key
701 Brooks Avenue South
P.O. Box 677
Thief River Falls, MN 56701-0677
1-800-344-4539
http://www.digikey.com

Newark Electronics
1-800-463-9257
http://www.newark.com

All Electronics Corp.
P.O. Box 567
Van Nuys, CA 91408-0567
1-800-826-5432
http://www.quinn.com/allcorp

National Semiconductor
http://www.national.com

Radio Shack
3315 SW Archer Road
Gainesville, FL 32608
352-375-2426

48

/* Appendix A: Program Code */
/***
* EEL5666 Intelligent Machines Design laboratory, Fall 1996
* Programmer: Bruce K. Miller
* Version: hc48.c
* Description:
* ICC collision avoidance program for an autonomous hovercraft - Holly.
* Sensors: crosseye and front-mounted + outward-angled port and starboard.
* Short range IR emitters stay on, IR cannon sends quick pulses.
* Speed is monitored to determine brake time
* Long range IR looks for open spaces toward which to migrate.
**/

#include <mil.h>
#include <hc11.h>
#include <motor.h>
#include <analog.h>
#include <serial.h>

void full_forward();
void forward();
void coast();
void full_reverse();
void reverse();
void full_stop();
void rotate_left();
void rotate_right();
void turn_left();
void turn_right();
void search_left();
void search_right();
void cannon_pulse();
void scan();
void delay(int num);

/* Variable speed is a rough estimate of how fast hovercraft is traveling.
 Speed is always greater than or equal to zero.
 Speed thresholds moderate behavior to go fast but maintain control.
 Delay variables in milliseconds are used to time power to the motors.
 del_f is for forward/reverse power, del_s is motor/IR switching delay.
 del_t and del_c are turn and counter-turn delays, respectively.
 del_r is rotational delay, del_d is damping delay. */

int speed = 0, timer = 0, thresh_speed = 5, top_speed = 10;
int del_f = 30, del_s = 3, del_r = 5, del_t= 10, del_c = 10;

/* An analog reading above IR_thresh indicates presence of an obstacle.
 LIR_ variables allow holly to detect range and react appropriately.
 X_IR1 and X_IR2 are the left and right crosseye sensors.
 L_IR and R_IR are the sensors on the left and right sides. */

 int IR_thresh = 100;
 int LIR_short = 125, LIR_med = 115, LIR_long = 105;
 int X_IR1, X_IR2, L_IR, R_IR, IR_cannon, IR_gun;

void main()

49

{

/* Initialization routines for motors, IR. Turn on short range system. */
 init_motors();
 init_analog();
 ADDR7 = 0xf8;

 while(1)
 {
/* Take short range IR readings. */
 X_IR1 = analog(0);
 X_IR2 = analog(1);
 L_IR = analog(2);
 R_IR = analog(3);

/* If forward sensors blocked, Holly must find new direction of travel. */
 if(((X_IR1>IR_thresh)||(X_IR2>IR_thresh)))
 {
/* Shut motors off to avoid jamming motors in opposite direction. */
 coast();
 delay(del_s);

/* If right and left sensors, also blocked, stop immediately.
 Then rotate in search mode to find open area. */
 if((L_IR>IR_thresh) && (R_IR>IR_thresh))
 {
 full_stop();
 if(L_IR >= R_IR) search_right();
 else search_left();
 }

/* If at least one of the right or left sensors picks up an open area,
 turn away from obstacle ahead. */
 else
 {
 if(L_IR >= R_IR) turn_right();
 else turn_left();
 }
 }

/* After taking care of short range avoidance, turn on long range. */
 cannon_pulse();

/* Scan routine directs Holly to quickly move toward open areas */
 scan();

/* After clearing all obstacles, a quick forward burst to keep things going. */
 forward();
 delay(del_f);
 coast();
 delay(del_s);
 }
}

/* Forward and reverse motor control routines */

50

void full_forward()
{
 motor(0,100);
 motor(1,100);
 speed+=2;
}

void forward()
{
 motor(0,50);
 motor(1,50);
 speed++;
}

void coast()
{
 motor(0,0);
 motor(1,0);
 delay(del_s);
}

void full_reverse()
{
 motor(0,-100);
 motor(1,-100);
 speed-=2;
 if(speed < 0) speed = 0;
}

void reverse()
{
 motor(0,-50);
 motor(1,-50);
 speed--;
 if(speed < 0) speed = 0;
}

void full_stop()
{
 while(speed>0)
 {
 full_reverse();
 delay(del_f);
 }
 speed = 0;
}

void rotate_left()
{
 motor(0,50);

51

 motor(1,-100);
}

void rotate_right()
{
 motor(0,-100);
 motor(1,50);
}

void turn_left()
{
 motor(0,100);
 motor(1,0);
 delay(del_t);
 rotate_right();
 delay(del_c);
 coast();
 delay(del_s);
}

void turn_right()
{
 motor(0,0);
 motor(1,100);
 delay(del_t);
 rotate_left();
 delay(del_c);
 coast();
 delay(del_s);
}

void dampen()
{
 int x, del_d = 5;
 for(x=0; x<del_d; x++)
 {
 motor(0,-100);
 motor(1,-10);
 delay(del_d);
 coast();
 delay(del_d);
 motor(0,-10);
 motor(0,-100);
 delay(del_d);
 }
}

void oscillate()
{
 int y, del_o;
 for(y=0; y<=del_s; y++)
 {

52

 motor(0,100);
 motor(1,0);
 delay(del_o);
 coast();
 delay(del_o);
 motor(0,0);
 motor(1,100);
 delay(del_o);
 }
}

/* Search routines cause Holly to go into a controlled rotation,
 looking for an open area toward which to move. */

void search_left()
{
 while(((X_IR1>IR_thresh)||(X_IR2>IR_thresh)))
 {
 rotate_left();
 delay(del_r);
 X_IR1 = analog(0);
 X_IR2 = analog(1);
 L_IR = analog(2);
 R_IR = analog(3);
 timer++;
 if(timer == 5)
 {
 while(timer>0)
 {
 rotate_right();
 del_r;
 timer--;
 }
 }
 }
 while(timer>0)
 {
 rotate_right();
 del_r;
 timer--;
 }
}

void search_right()
{
 while(((X_IR1>IR_thresh)||(X_IR2>IR_thresh)))
 {
 rotate_right();
 delay(del_r);
 X_IR1 = analog(0);
 X_IR2 = analog(1);
 L_IR = analog(2);
 R_IR = analog(3);
 timer++;

53

 if(timer == 5)
 {
 while(timer>0)
 {
 rotate_right();
 del_r;
 timer--;
 }
 }
 }
 while(timer>0)
 {
 rotate_left();
 del_r;
 timer--;
 }
}

/* cannon_pulse routine turns on the IR cannon for approximately 100 ms,
 takes an IR reading, and then shuts the cannon off.
 This pulsing prevents the LEDs from burning out. */

void cannon_pulse()
{
 ADDR7 = 0x02;
 delay(del_s);
 IR_cannon = analog(4);
 ADDR7 = 0xF8;
}

/* Scan routine determines the range ahead to the nearest obstacle,
 Combines with speed information to determine behavior.
 The more open the space, the faster Holly goes,
 unless already moving too fast, at which point Holly stabilizes. */

void scan()
{
 if(speed<thresh_speed)
 {
 if(IR_cannon > LIR_short) reverse();
 else if(IR_cannon > LIR_med) coast();
 else if(IR_cannon > LIR_long) forward();
 else full_forward();
 }
 else if(speed<top_speed)
 {
 if(IR_cannon > LIR_short) full_reverse();
 else if(IR_cannon > LIR_med) reverse();
 else if(IR_cannon > LIR_long) coast();
 else forward();
 ADDR7 = 0xF9;
 }
 else
 {

54

 if(IR_cannon > LIR_med) full_reverse();
 else reverse();
 }
 delay(del_f);
 if(speed < thresh_speed) oscillate();
 else dampen();
 coast();
 delay(del_s);
}

/* Delay routine takes an input in terms of number of timer overflows.
 Delay variables determine how much time is wasted in this loop.
 Used to leave motors or IR on for given amounts of time. */

void delay(int num)
{
 int bs = 0;
 while(num >= 0)
 {
 while((TFLG2 & 0x80) != 0x80)
 {
 bs++;
 }
 TFLG2 = 0x80;
 num--;
 }
}

55

/* Appendix B: Movement Control Test Code */
/***
* EEL5666 Intelligent Machines Design laboratory, Fall 1996
* Programmer: Aamir Qaiyumi
• Description: Move forward, then Stop
***/

#include <mil.h>
#include <hc11.h>
#include <motor.h>
#include <analog.h>

void forward();
void coast();
void full_rev();
void delay(int num);

void main()
{

/* Delay variables in clock cycles are used to time power to the motors.
 del_f is for forward power, delay_r is for reverse power.
 del_t is a time increment for turning or rotating in either direction.
 del_s is a switching delay between forward and reverse power,

 and for pulsing on long-range IR.
 del_c is a time increment for countering the rotation in either direction. */

int del_f=120,del_r=120,del_s=3,del_d=10,del_t=20,del_c=20;

init_motors(); /* initialize motors */
init_analog(); /* initialize IR system */

forward();
delay(del_f);
coast();
delay(del_s);
full_rev();
delay(del_r);
coast();
delay(del_f);

coast();
while(1) delay(del_d);

}

void forward()
{

motor(0,50.0);
motor(1,50.0);

}

void coast()
{

motor(0,0.00);
motor(1,0.00);

}

56

void full_rev()
{

motor(0,-100.0);
motor(1,-100.0);

}

void delay(int num)
{

int bs = 0;
while(num >= 0)
{

while((TFLG2 & 0x80) != 0x80)
{

bs++;
}
TFLG2 = 0x80;
num--;

}
}

57

/* Appendix B: Movement Control Test Code */
/***
* EEL5666 Intelligent Machines Design laboratory, Fall 1996
* Programmer: Aamir Qaiyumi
• Description: Rotation function.
***/

#include <mil.h>
#include <hc11.h>
#include <motor.h>
#include <analog.h>

void coast();
void rotate_right();
void rotate_left();
void delay(int num);

void main()
{

/* Delay variables in clock cycles are used to time power to the motors.
 del_f is for forward power, delay_r is for reverse power.
 del_t is a time increment for turning or rotating in either direction.
 del_s is a switching delay between forward and reverse power,

 and for pulsing on long-range IR.
 del_c is a time increment for countering the rotation in either direction. */

int del_f=45,del_r=60,del_s=3,del_d=10,del_t=20,del_c=20;

init_motors(); /* initialize motors */
init_analog(); /* initialize IR system */

rotate_right();
delay(del_r);

coast();
delay(del_s);

rotate_left();
delay(del_c);

coast();
while(1) delay(del_d);

}

void coast()
{

motor(0,0.00);
motor(1,0.00);

}

void rotate_left()
{

motor(0,25.0);
motor(1,-100.0);

}

58

void rotate_right()
{

motor(0,-100.0);
motor(1,25.0);

}

void delay(int num)
{

int bs = 0;
while(num >= 0)
{

while((TFLG2 & 0x80) != 0x80)
{

bs++;
}
TFLG2 = 0x80;
num--;

}
}

59

/* Appendix B: Movement Control Test Code */
/***
* EEL5666 Intelligent Machines Design laboratory, Fall 1996
* Programmer: Aamir Qaiyumi
• Description: Turns the hovercraft 30 degrees.
***/

#include <mil.h>
#include <hc11.h>
#include <motor.h>
#include <analog.h>

void forward();
void coast();
void full_rev();
void reverse();
void rotate_right();
void rotate_left();
void turn_right();
void turn_left();
void delay(int num);

void main()
{

/* Delay variables in clock cycles are used to time power to the motors.
 del_f is for forward power, delay_r is for reverse power.
 del_t is a time increment for turning or rotating in either direction.
 del_s is a switching delay between forward and reverse power,

 and for pulsing on long-range IR.
 del_c is a time increment for countering the rotation in either direction. */

int del_f=30,del_r=60,del_s=3,del_d=10,del_t=15,del_c=15;

init_motors(); /* initialize motors */
init_analog(); /* initialize IR system */

forward();
delay(del_f);
coast();
delay(del_s);
turn_right();
delay(del_t);
coast();
delay(del_s);
rotate_left();
delay(del_c);
coast();
delay(del_s);
forward();
delay(del_f);
coast();
full_rev();
delay(del_r);

60

coast();
while(1) delay(del_d);

}

void forward()
{

motor(0,50.0);
motor(1,50.0);

}

void coast()
{

motor(0,0.00);
motor(1,0.00);

}

void full_rev()
{

motor(0,-100.0);
motor(1,-100.0);

}

void rotate_left()
{

motor(0,100.0);
motor(1,-100.0);

}

void rotate_right()
{

motor(0,-100.0);
motor(1,100.0);

}
void turn_right()
{

motor(0,100.0);
motor(1,00.0);

}
void turn_left()
{

motor(0,00.0);
motor(1,100.0);

}
void delay(int num)
{

int bs = 0;
while(num >= 0)
{

while((TFLG2 & 0x80) != 0x80)
{

bs++;
}
TFLG2 = 0x80;
num--;

}
}

61

/***
* EEL5666 Intelligent Machines Design laboratory, Fall 1996
* Programmer: Aamir Qaiyumi
* Description: ‘Wiggles’ the robot to dampen angular momentum.
***/
#include <mil.h>
#include <hc11.h>
#include <motor.h>
#include <analog.h>

void coast();
void right_rev();
void left_rev();
void wiggle();
void delay(int num);

void main()
{

/* Delay variables in clock cycles are used to time power to the motors.
 del_f is for forward power, delay_r is for reverse power.
 del_t is a time increment for turning or rotating in either direction.
 del_s is a switching delay between forward and reverse power,

 and for pulsing on long-range IR.
 del_c is a time increment for countering the rotation in either direction. */

/* int del_f=30,del_r=75,del_s=20,del_d=10,del_t=15,del_c=15,del_w=30; */

init_motors(); /* initialize motors */
init_analog(); /* initialize IR system */

while(1)
{

ful_rev();
}

}

void forward()
{

motor(0,50.0);
motor(1,50.0);

}

void coast()
{

motor(0,0.00);
motor(1,0.00);

}

void left_rev()
{

motor(0,-100.0);
motor(1,-10.0);

}

void right_rev()

62

{
motor(0,-10.0);
motor(1,-100.0);

}

void wiggle()
{
int del_s=3,del_l=5;

left_rev();
delay(del_s);
coast();
delay(del_l);
right_rev();
delay(del_s);
coast();
delay(del_s);

}

void delay(int num)
{

int bs = 0;
while(num >= 0)
{

while((TFLG2 & 0x80) != 0x80)
{

bs++;
}
TFLG2 = 0x80;
num--;

}
}

63

/***
* EEL5666 Intelligent Machines Design laboratory, Fall 1996
* Programmer: Aamir Qaiyumi
* Description: Tests the IR Cannon by firing a 100 ms pulse and taking a reading. It then
* outputs the value to the terminal.
***/

#include <mil.h>
#include <hc11.h>
#include <serial.h>
#include <analog.h>

void delay(int num);

void main()
{

 int reading;

 init_serial();
 init_analog();

 ADDR7 = 0xFA; /* turn on IR emitters */
 TFLG2 = 0x80;
 delay(3);
 reading=analog(4);
 ADDR7 = 0x00; /* turn off all IR emitters */
 write("Bazooka Sensor: ");
 write_int(reading);

}

void delay(int num)
{
 int bs = 0;
 while(num >= 0)
 {
 while((TFLG2 & 0x80) != 0x80)
 {
 bs++;
 }
 TFLG2 = 0x80;
 num--;
 }
}

