
Hacking the HERO:
Development of a Game-Playing Robot

Drew Bagnell

EEL 5666

Dr. Keith L. Doty

TA: Scott Jantz

Final Report, 12/9/96

EEL 5666 Drew Bagnell

Final Report Dr. Keith L. Doty

2

ABSTRACT 4

EXECUTIVE SUMMARY 5

INTRODUCTION 6

INTEGRATED SYSTEM 6

MOBILE PLATFORM 7

Mobile Chassis 8

Propulsion 8

SENSOR/ACTUATOR SUITE 9

Sharp IR Sensors 9

Sound detection and location system 9

Audio Record/Playback system 12

LOCOMOTION 13

Stepper Hardware 13

Stepper Software 15

Stepper Position Sensor 16

Motor Hardware 17

Motor Control Software 18

BEHAVIORS 18

Reset Stepper 19

Collision Avoidance 19

EEL 5666 Drew Bagnell

Final Report Dr. Keith L. Doty

3

Phonotaxis 19

Phonophobia 19

Sound generation 19

“Marco! Polo!” 19

“Spurned” 20

Arbitration System 20

CONCLUSION 20

WORKS CITED 21

APPENDIX A- SOFTWARE 22

dday.c 22

step.c 31

motor.c 34

EEL 5666 Drew Bagnell

Final Report Dr. Keith L. Doty

4

Abstract

This paper is on the design and construction of an autonomous robotic platform for

EEL5666 - Intelligent Machine Design Lab at the University of Florida. The goal of the

project was to create a robust robotic platform to implement a game-playing autonomous

agent. The agent, named Marco, says the word “Marco” and the person playing with the

robot replies “Polo”. The robot attempts to locate the person from the noise they make.

The first critical goal was to development of the robotic platform. The mechanics of the

robot were developed from a Heathkit HERO. The author developed motor and stepper

control circuitry and software to implement the agent. The author also developed the

required sound generation and sound localization circuitry. Finally, the author developed

the code necessary to implement the central behavior. The elements of this paper describe

the hardware and software systems developed to attain this goal.

EEL 5666 Drew Bagnell

Final Report Dr. Keith L. Doty

5

Executive Summary

The motivation for this project was the creation of an autonomous agent capable of

playing a game. In particular, the robot is designed to simulate the children’s game

“Marco, Polo”. The agent says “Marco!”, and listens for a response (“Polo!”) from the

other player. The robot then tries to find the other player.

The development of a robust platform was critical for successful completion of this

project. The chassis and motors of the robot came from a Heathkit HERO robot. The

electronics to drive the mechanics were developed specifically for this project.

The autonomous agent has a complete sensor suite consisting of four analog IR sensors,

two sound intensity sensors, and a stepper limit switch compose the sensor suite of the

robot. The development of the “ears” of the robot, the sound intensity sensors, was

essential to the implementation of the game playing behavior. .

The “brain” of the agent is a memory and I/O expanded MC68HC11E9 evaluation board

from Motorola. The software, including both drivers and behavior code is written entirely

in the Image Craft ‘C’ compiler for the HC11. Includes a master process that occurs at a

regular interval to insure consistency in sensor reading and actuation. A variety of

behaviors are implemented in a subsumption architecture. The following simple

behaviors are implemented: phonotaxis, phonophobia, collision avoidance, and resetting

the stepper. Finally, the composite behaviors of playing the game “Marco Polo”, and

feeling “spurned” were generated from the other behaviors.

EEL 5666 Drew Bagnell

Final Report Dr. Keith L. Doty

6

Introduction

The autonomous agent Marco was designed around the theme of game playing robot. All

the systems incorporated within the robot are necessary to the fulfill this aim. The agent is

designed to play a variation on a children’s game called “Marco, Polo.” In this game, two

players are in a confined area. One player, the “seeker”, and in this case the robot, is

blinded (in this model the robot has no complex vision system, and is effectively blind

already). The seeker says “Marco” and the other player(s) must respond by saying “Polo”.

From the reply, the seeker tries to find the other player or players.

Integrated System

The robot's hardware systems are integrated as depicted in Figure 1. A “master task”

clocked off of the output

compare hardware of the

HC11 reads the sensor suite,

can arbitrate process, and

determines the next action of

the actuators.

Figure 1: Autonomous agent Marco (top view)

EEL 5666 Drew Bagnell

Final Report Dr. Keith L. Doty

7

The sensor values are stored in a sensor blackboard that the behaviors have access to. The

arbitration of behaviors is determined from a rule-based subsumption architecture.

Further, the “master task” implements a smoothing function on the motor so that is not

forced to rapidly and instantaneously change direction

Each of the behaviors is described more completely starting on page 18. All of the

software running on the agent, including behaviors and driver code is written for the

ImageCraft HC11 ‘C’ compiler. [7]

Mobile Platform

Power and MCU Systems

Power to the robot is provided by two onboard lead-acid gel-cell batteries connected in

series, providing 12V at 5Ah. The batteries provides both drive motor and MCU power

(via a voltage regulator). The batteries can be recharged through a set of jacks mounted

on the side of the robot. The battery power provides several hours of charge.

HC11

Stepper

Driver

Motor Driver

Audio

Playback

System

Stepper Limit

Switch

Infrared

Detectors

Sound Sensors

Infrared

Emitters

Figure 2: Block Diagram of Agent’s Hardware

EEL 5666 Drew Bagnell

Final Report Dr. Keith L. Doty

8

At the heart of Marco is a MC68HC11E9 microcontroller that has been expanded with a

Novasoft ME11 and MSX11 sensor board. These boards provide expanded memory,

expanded analog input capabilities of the microprocessor, and memory mapped I/O.

Mobile Chassis

Marco is based mechanically on a Heathkit HERO robot, his chassis and motors having

come from one. He measures 15’’ x 14’’ at his widest points and stands 14.5’’ high

without his “ear” sensors. The robot has three ground contacts in a tripod arrangement.

The single front wheel is driven by a DC motor and turned directionally by a stepper

motor.

Propulsion

The combination of DC motor and stepper allow the robot a great deal of flexibility and

smoothness. Marco is capable of forward and backward motion, and of spinning on his

axis. This makes possible escape from tight quarters. Furthermore, the agent is quite fast,

reaching speeds of approximately 1mi/hr. The design and realization of a system for

locomotion was an involved and critical part of this project.

EEL 5666 Drew Bagnell

Final Report Dr. Keith L. Doty

9

Sensor/Actuator Suite

Sharp IR Sensors

Marco has a battery of 4 analog-

modified Sharp IR sensors

mounted facing to the front of the

robot on the front bumper (Figure

3.) These pick up reflections from

the four 40-KHz modulated IR

LED’s mounted on the platform.

The four LED’s are connected in

series and driven from a latch on

the ME11.

This sensor arrangement provides

necessary information about nearby

objects critical to the

implementation of a collision

avoidance behavior. This is the

method used throughout the EEL

5666 class, and has proven quite

successful. Given reasonable

constraints on the size of the

objects (must be higher than the

bumper of the robot, and of

significant size) and reflectiveness

of the objects, the agent is capable

of detecting obstacles with more than enough time to prevent collisions. The primary

actuation/arbitration routine reads these sensors on a regular basis (every 32ms) and

stores the result in a “sensor blackboard” that all behaviors have access to.

Sound detection and location system

Figure 3: Autonomous agent (front view)

showing IR emitter/detector pairs, ear

sensors(blue bloxes), and speaker(white box).

EEL 5666 Drew Bagnell

Final Report Dr. Keith L. Doty

10

As the primary behavior of this robot is a variation of phono-taxis, is is necesssary for the

robot to both detect the presence of sound, and to directionalize the sound. A number of

techniques were considered for this. First, a pattern recognition technique wherein the

agent would find the peak of incoming signals and then calculate time differences

between the arrival of the peak to sensors at different locations on the robot body was

considered. This algorithm proved to be extremely processor intensive, and the author

thought would be difficult to implement successfully using an HC11.

Ultimately, a simpler, more biologically-based, and in some regards more elegant

approach was considered that would simply hold the peak value of two sensors mounted

on the right and left sides of the agents and compare intensity differences. This was

implemented using analog circuitry. Each ear circuit is essentially an amplifier and peak

rectifier[9] that provides as output a slowly time-varying voltage from 0 to 2.5 volts that

is a representation of the intensity of the signal. The lower the voltage the greater the

intensity of the peak value of the sound heard. The outputs of these circuits are fed into

PE4 and PE5 of the HC11 were they are converted to digital representations. The

implemented software successively reads the analog ports over a period of time, usually

approximately 2 seconds. It stores the smallest value (greatest intensity) for both the left

A1

MICROPHONE

3

2
1

4
11

U1A

LM324

5

6
7

U1B

LM324

10

9
8

U1C
LM324

12

13
14

U1D

LM324

R2

22K
R3

22k

R11
22k

R12
22k

R16

33k

C1

10uF

R1
2.2k

R5

50k

R4 50k

R8

1k

R9

1k

R10

10k

C2

.0068uF

D4
DIODE

D5

DIODE

R15

RES1

R13

1k C5
10uF

R7

100k

C4

.1uF

+5

+5
+5 +5

+5
+5

GND
GND

GND

GND

GND

+5

GND

GND

GND

R18

660k

R19
RES1

R20
RES1

GND

+5

C3

10uF

VGRD

VGRD

VGRD
R14

1k

VGRD

R17

33k

VGRD

1
2
3

JP1

HEADER 3 GND

+5

OUT

OUT

Figure 4: Peak detect and hold schematic for "ear" sensors

EEL 5666 Drew Bagnell

Final Report Dr. Keith L. Doty

11

and right sensors. From this Marco can determine the approximate location of the loudest

sound source.

The circuit boards are mounted on a soft, sound absorbent foam to minimize vibration

due to the motion of the platform. The circuit board are then mounted in blue plastic

boxes that help to directionalize the

sound

The author did encounter some

problems in the development of the

sensor. First, noise was a significant

problem. High frequency noise on

signals from the microphone was

effectively eliminated with a low-pass

filter having a corner at 10kHz. The

mike also generated a large amount of

low frequency noise. This was reduced

through a small coupling capacitor

(high pass). The net effect of the circuit

is to act as a bandpass in the

approximate frequency spectrum of

voice.

Another problem was the very large

dynamic range of the sounds

encountered. The gain of the amplifiers

were empirically chosen to provide the necessary sensitivity to be able to localize sound.

However, very loud sounds, like claps close to the robots ears saturate the amplifiers and

the agent is unable to tell where the sound originated.

Given sounds of moderate intensity, however, the robot is generally quite successful in

determining which side the sound is coming from.

Figure 5: Oscilloscope output from "ear"

circuit. Author is saying the word "test".

Horizontal axis is time (ms) Vertical axis is

voltage (V) .

EEL 5666 Drew Bagnell

Final Report Dr. Keith L. Doty

12

Audio Record/Playback system

The design goal of the agent required the development of a system that would allow the

device to say the word “Marco”. A simple circuit using an ISD1000A Voice Recording

and Playback chip (similar to those used in certain answering machines) allows the robot

to play back a recorded voice. The circuit has been simplified for the purposes of this

robot. Since only two samples are needed, the address lines of the chip are all grounded

except A6, which is driven off a latch on the sensor board. After recording a sample, the

circuit is switched into playback mode. The chip enable input is driven off a bit of a latch

mapped at 0x6000. When a behavior requires the robot to play back a noise it simply

toggles this bit low (sending a short duration, active low pulse) and the chip plays the first

message recorded in memory. This circuit also makes future expansion relatively easy.

Another memory mapped latch could be added that would allow all the address bits to be

changed. Then more samples, up to a total of 20 seconds of recording, could be played

back for different events. The setup also allows the chip to be recorded while plugged

into the robot.

The speaker outputs of the chip provide a signal that is load enough to drive an 8 ohm

speaker, but it is typically not loud enough and tends to distort the sample. Thus, the

Figure 6: Circuit used for Audio Record/Playback. (ISD1000A Databook, 1992).

EEL 5666 Drew Bagnell

Final Report Dr. Keith L. Doty

13

output of the chip on the agent is taken to a 386-based audio amplifier that drives a

speaker. This proved more than loud enough, and prevents the distortion of the signal.

Locomotion

The front wheel is rotated by a stepper motor through a gear train that increases the

motor’s torque, and is driven with a DC motor. The stepper is bolted onto the base of the

chassis of the robot.

Stepper Hardware

The stepper motor is best though of as

an electric motor without a

commutator. The rotor is made of a

permanent magnetic material, and the

windings of the electromagnets are all

in the stator. The particular stepper in

this autonomous agent has a very

common wiring scheme [Figure 1].

To make the motor turn, the coils must

be excited in a particular sequence.

One sequence turns it clockwise, and

the sequence in reverse turns it

counterclockwise. Since the motor is

stepped at essentially audio frequencies, the author concluded the microcontroller on the

autonomous agent would only be moderately loaded by interrupt required to do the

stepping. This decision allows for great flexibility in controlling the stepper, as different

sequences and different speeds are easily implemented.

Some hardware was necessary to interface the microcontroller to the stepper. First, a

74HC574 latch is mapped using the ME11 expansion board to the memory location

0x6000. This latch holds the last value written. The lower four bits of the latch are used

for the stepping. Each of these lower four output bits connects through a 1kohm resistor

to the base of a TIP100 NPN transistor. These transistors are actually high-current

Darlington pairs, with protection diodes built in to handle the large back electromotive

force generated when the coils are turned off. The center tap of the coils is pulled to 12

volts, and the emitter of each transistor is grounded.

Figure 7: 4 phase stepper [1]

EEL 5666 Drew Bagnell

Final Report Dr. Keith L. Doty

14

NPN

MOTOR STEPPER
+12

1k

NPN

1k

NPN

1k

N

1k

Figure 8: Stepper Controller. Inputs are driven from lower bits of latch.

When a latch output is at logic zero, zero volts at the transistor base put the transistor in

the cutoff mode of operation, and no current flows through the coil. When the latch

output is at logic one, five volts is applied at the base-emitter junction, and the transistor

enters saturation, and current flows through the coil. The current drawn by the coil,

assuming the stepper is not stalled is approximately 400mA.

This approach is simple, but has a couple of drawbacks. The first is that there is no

current limiting on the coil, other than its own internal resistance. Testing demonstrated

that leaving a coil on for 15 minutes made it noticeable hot, but did no permanent

damage. Another problem is related to the speed of operation. The time to energize the

coil for a given voltage is a function of the series inductance-resistance time constant τ=

L/R. By adding a small value resistance in series with the coil, one can lower this time

constant, and hence raise the maximum operating speed of the stepper.

Adding resistance is inefficient in that more of the power delivered by the source is

converted to heat, and both efficiency and overheating are concerns on the autonomous

agents. Further, the coil has less current through it, and consequently generates less

torque. Evaluation of the performance of the circuit without inline resistance suggested

that it was fast enough, and generated a reasonable amount of torque. However, if

performance must be increased, other techniques that involve intelligently applying

higher voltages for shorter periods of time can maintain a high torque and increase speed,

at a minimal cost in efficiency. The only drawback is circuit complexity and cost.

EEL 5666 Drew Bagnell

Final Report Dr. Keith L. Doty

15

Stepper Software

The job of the stepping software driver is quite simple to describe. It must take as

an input the number of steps to make, and output the appropriate bit patterns to the

memory mapped latch, with due pauses in between updates. I am aware of three bit

patterns that will step a motor of the type diagrammed above. The two more common

stepping patterns are listed below. The first energizes a single coil at a time, while the

second energizes two coils at a time. The second pattern provides approximately 40%

more torque, but requires twice the power [1]. In the autonomous agent the author

implemented, the first pattern generated enough torque for the smooth surface it was

being run on, and concerns of power consumption and coil-winding overheating were

deemed more pressing than torque. If the surface to be run on changes to a higher friction

one like carpeting, the pattern can easily be adjusted. There is also a less common pattern

that generates only slightly more torque at the price of three coils being active at once.

The stepper driver was implemented as an interrupt service routine written in ICC11. The

driver is clocked off of Output Compare 3. Every 5mS (a frequency of 200Hz) the driver

interrupts the processor. The driver maintains a number of global variables. The first is

one called LATCH6000, which is simply the bit pattern currently loaded into the

memory-mapped latch. This is maintained in a variable because the latch can not be read

back: reading memory location 0x6000 returns 0. All operations are performed on the

global variable and then the new value of LATCH6000 is written to 0x6000. The other

globals maintained are the current location of the stepper (variable STEP) and the

location the stepper should be moving towards (NEXT_STEP), and finally where within

the step the motor is (which of the four bit patterns) (SUBSTEP). The location of the

wheel facing forward is defined as STEP=5000, and counterclockwise is referenced in the

positive direction.

Normal High Torque
Winding 1a 1000100010001000 1100110011001100

Winding 1b 0010001000100010 0011001100110011

Winding 2a 0100010001000100 0110011001100110

Winding 2b 0001000100010001 1001100110011001

Figure 9: Winding bit patterns [1]

EEL 5666 Drew Bagnell

Final Report Dr. Keith L. Doty

16

The bit patterns are picked deliberately in the order required such that if the software asks

the stepper to change direction in mid-step, it will not lose a step. Even if this were to

happen, it would result in a loss of at most one step, and assuming a random direction, the

resulting loss of step should be the same as the “random-walk” problem— the differential

from true position goes as the root of n, where n is the number of times a step is lost.

With steps as small (well under a degree) as they are, this problem should be negligible .

A more serious problem is that under the circumstance that NEXT_STEP and STEP are

equal (that is, the motor need not move) the driver turns all the coils off. This keeps

power consumption down, and minimizes the heating effect on the stepper. The motor’s

holding torque with no current applied is quite low however. I have successfully run the

autonomous agent on a smooth floor for 10 minutes with no measurable loss in step

position, but further tests need to be conducted. Furthermore, the problem may be much

worse on a surface of higher friction.

Stepper Position Sensor

A stepper, unlike a servomotor, is run without any feedback circuitry. This can be

problematic in two instances. First, when the autonomous agent is initialized, the starting

position of the stepper is unknown. Furthermore, the potential exists for the motor to lose

steps (two such circumstances are described above), and this cannot be detected.

The author decided that hand-centering the wheel, each time the agent needed to be run

was unacceptable. The solution to both problems involves closing the feedback with a

limit switch.

A micro-switch is mounted on the underside of the robot, such that when the agent turns

its wheel approximately 80 degrees (135 steps) from the center in the positively

referenced direction(counterclockwise), it closes the switch. This switch is wired such

that when closed it grounds the second bit of Port E of the HC11.

To solve the initialization problem, a routine reset_stepper() was written that simply

moves the stepper counterclockwise, and then checks this switch. If the switch is closed,

the stepper is stopped, and its current location is defined as 135 steps greater than the

center position. Finally, the stepper is told to go the center location. The code to do this

follows:

int
reset_stepper() {

 int bump_switch;

 do {
 bump_switch=analog(1);

EEL 5666 Drew Bagnell

Final Report Dr. Keith L. Doty

17

 /*write_int(bump_switch);*/
 NEXT_STEP=STEP+2;
 while(STEP!=NEXT_STEP){} /*wait for hardware to catch up....*/
 }while(bump_switch > 80)

 INTR_OFF();
 STEP=5135;
 NEXT_STEP=5000;
 INTR_ON();

 while(STEP!=NEXT_STEP){} /*wait for hardware to catch up....*/

 return(0);
}

Because the possibility of lack of synchronization between stepper and software, due to

collision or rough surfaces, a behavior is implemented that resets the stepper on a regular

basis. This subsumes other behaviors and occurs approximately once a minute. The

necessary frequency of resets is obviously a function the robot is running in, and will be

fine-tuned to match that.

Motor Hardware

The front wheel of the autonomous agent is driven with a DC motor mounted through a

gearbox to the wheel. The motor is designed to be run with at 24 volts. Experiments

showed, however, that it runs with very acceptable performance at 12 volts. This DC

motor must be run in both directions and must be interfaced to the microcontroller. The

power is delivered to the motor load with an integrated circuit H-bridge, the Motorola

3008. The 3008 can handle up to 16 amps continuous current (well above the peak draw

of this DC motor), and provides internal diode protection to prevent back EMFs from

destroying the MOSFET driving the circuit. A circuit was constructed based on one

designed by Erik de la Iglesia in his design for the autonomous submarine project. This

design is robust, in its inclusion of photo-transistors to isolate logic and power, and in its

guaranteeing that both gates on a side of the bridge can never be on. It is also very

efficient in terms of components as some of the selection and inversion logic is

implemented in the opto-isolators. The opto-isolators also force a gate delay between

turning on the gates on a side of the bridge. This keeps the bridge from shorting to ground

for even the nanoseconds of switching time of the FETs.

The inputs to this circuit are a direction and an enable bit. These bits are written to at bits

5 and 6 of the latch memory mapped at 0x6000. The software takes care not to interfere

with the bits dedicated to the stepper.

EEL 5666 Drew Bagnell

Final Report Dr. Keith L. Doty

18

MOSFET N MO

MOSFET P MO

+12

motor

V?

OPTOISO1

V?

OPTOISO1

OPTOISO1

OPTOISO1

+12

+12

+12

+12

V?

+5

+5

A

B

D

C

A

C

D

B

1

2
3

74LS00

1

2
3

74LS00

1

2
3

74LS00

EN

DIR

EN

DIR

Figure 10: DC motor controller hardware (modified from design by E. de la Iglesia)

Motor Control Software

The motor driver software is very similar to that written in for the Talrik motors. Pulse-

width modulation of the enable bit is accomplished through Output Compare 3. The

motor is run at frequency of 30.52 Hz (the rollover rate of free running counter). Interface

to the interrupt service routine is provided through a duty-cycle global variable. A routine

motor() is written as user-level code that accepts as input the pulse-width in percentage,

and the direction (as the sign of the percentage). The motor() routine also directly writes

the direction bit at 0x6000. In this implementation, motor() is only directly addressed by

the arbitration/actuation process. This allows control of actuation to remain solely in the

domain of the master process, and makes smoothing the commands sent to the motor

much more simple.

Behaviors

A number of simple behavior routines were written to take advantage of the sensors and

actuators implemented on the agent. Two compound behaviors, “Marco, polo” and

“Spurned” were also implemented.

EEL 5666 Drew Bagnell

Final Report Dr. Keith L. Doty

19

Reset Stepper

This simple behavior stops forward motion, and then moves the stepper until it hits a

limit switch in its fully counter-clockwise position. It then returns the stepper back to the

center position. This behavior happens on a regular basis (approximately once every 2

minutes). Also, if the limit switch is pressed, the robot will reset the stepper as this should

not occur during normal running of the agent. This is the most fundamental behavior as it

success is critical to nearly all the other behaviors.

Collision Avoidance

This behavior is the essential element of the robots self-preservation instinct. This

behavior overrides the others except for the stepper resetting behavior. The behavior is

simple and implemented using switching functions. The author hopes to improve the

implementation using a dynamics algorithm similar to that of dynam11.

Phonotaxis

When this behavior is activated the robot tries to head in the direction of the loudest

sound it detects. It samples both the right and left ear quickly for approximately 2

seconds, and then heads in the direction of the loudest returned noise. If neither noise is

louder than a threshold it does not change course, and is they are approximately equal in

intensity in continues to go straight.

Phonophobia

This behavior is the dual of the previous behavior. It is implemented to simulate

biological behavior. The agent moves away from loud noises.

Sound generation

In this simple behavior the robot is “bored” and plays backs the recorded sound in its

sound chip.

“Marco! Polo!”

EEL 5666 Drew Bagnell

Final Report Dr. Keith L. Doty

20

This behavior is in a fact the integration of two distinct behaviors. The first is that of the sound

generation. The robot turns on its sound chip and plays back the recorded message. It then

executes the phonotaxis behavior and heads for the loudest source of sound, making the

assumption that the sound is its partner in the game replying “Polo”. In this way the robot plays

the game “Marco, polo.”

“Spurned”

This is also a compound behavior. If the agent does not get an audible response to its

“Marco, polo” behavior it will try again 3 times. After that, the robot becomes “spurned”

and activates the sound generation saying “No Marco for you!”. Then the agent uses a the

behaviors phonophobia and collision avoidance to stay away from sound and objects.

Arbitration System

The robot stays in collision avoidance during most of its running time. This gives a

preference for moving forward. The robot resets is stepper on a regular basis, and in

response to the limit switch on the stepper closing. Other behaviors are entered as a

function of time: the robot will begin playing “Marco, polo” for a period of time, and then

will switch to “spurned”.

Conclusion

The development of Marco has reached the stage where it satisfies the criterion set forth

in the EEL 5666 syllabus. The robot has a complement of 3 sensors: analog IR detectors,

analog sound detectors, and a stepper limit switch. Further, it has 3 actuators: audio

playback, DC motor driver hardware and software, and stepper driver hardware and

software. Finally, seven behaviors have been successfully implemented on the platform:

collision avoidance, phonotaxis, phonophobia, sound generation, “Marco, polo!”,

“spurned”, and resetting the stepper.

A number of improvements could be made to the hardware of the robot. First, a more

complete array of IR detector/emitter pairs should be placed on the robot and integrated

into the behaviors. These should be mounted to keep the robot from hitting its top,

particularly the ears, on low hanging surfaces. It would also be advantageous to mount

additional sensors in such a way as to see obstacles below the bumper, and to detect drop-

offs in the surface ahead of the agent. A bump-sensor should also be implemented to

EEL 5666 Drew Bagnell

Final Report Dr. Keith L. Doty

21

allow the agent to detect non-reflective surfaces, and to implement learning algorithms

for collision avoidance.

The code written for the agent is not yet fully mature. It could be improved in a number of

ways. First, the motor control and collision avoidance routines could be improved to take

advantage of the work done by Dr. Keith Doty and Scott Jantz in non-linear dynamics

control of small autonomous agents. Further, the arbitration network could be improved

by the integration of the neural network work of Lee Rossey and Pedro Kulzar. Also,

implementing a simple local mapping algorithm would dramatically increase the

sophistication of the agents game playing abilities. The robot should be able to maneuver

around an obstacle in its path to reach it partner in the game.

Works Cited

[1] Douglas Jones. Control of Stepping Motors, a tutorial.

http://www.cis.uiowa.edu. 1995

[2] Erik de la Iglesia. Final Report: R2, Real Time Contouring.

IMDL Final papers, http://www.mil.ufl.edu. 1995

[3] M68HC11 Reference Manual

Motorola 1991

[4] MC68HC11E9 Technical Data

Motorola 1991

[5] High-Speed CMOS Data

Motorola 1993

[6] Paul Horowitz and Winfield Hill. The Art of Electronics. Cambridge University

Press, 1989.

[7] Barbara Webb, “Using robots to model animals: a cricket test” from Robotics and

Autonomous Systems 16, 1995

[8] Chirstina J. Willrich, ImageCraft 68HC11 C Compiler and REXIS User Manual.

ImageCraft, 1995.

* Special thanks to Iván Ricardo Zapata, and Christopher Beatty for being the

voices of Marco.

EEL 5666 Drew Bagnell

Final Report Dr. Keith L. Doty

22

Appendix A- Software

dday.c

/* Next working version of MARCO-POLO playing routine for robot */
/* This is avoid9*/
/* D-day version */

#include <serial.h>
#include "step.c"
#include <motor.h>
#include <analog.h>

#define IR *(unsigned char *)0x7000
/*extern unsigned char LATCH6000;*/

char clear[]={0x1b,0x5B,0x32,0x4A,0x04}; /* clear screen */
char place[]={0x1b,’[’,’2’,’;’,’2’,’H’};

int left_ir,right_ir;
int next_speed=50,current_speed=0;
int main_counter;
int limit_switch=0;

extern int STEP;

/*Prototypes*/
int phonophobia(void);
void avoid(void);
void init_arbitrator();
void arbitrator(void);
int game(void);
int msleep(int tenths_of_seconds);
#pragma interrupt_handler arbitrator

int
main(void) {

int
i,avoid_counter,DONE_PLAYING,SPURNED,spurned_start_time,spurn_counter;

init_serial();
init_analog();
init_stepper();
init_motors();

/*clear SPURNED*/
SPURNED=0;
spurn_counter=0;

/*turn off latch*/
LATCH6000 |= 0X40;

EEL 5666 Drew Bagnell

Final Report Dr. Keith L. Doty

23

/*make 4000 latch 0’s*/
ADDR4=0;

/*turn ir on*/
IR=0xff;

 /* required initialization */
reset_stepper();

 write("stepper reset");
 init_arbitrator();
 write("arbitrator initialized");

 /* Run behaviors forever */
 while(1){

/*Check if limit switch... highest priority behavior*/
 if(limit_switch) {

 write("resetting stepper!");
 msleep(30);

 reset_stepper();
 limit_switch=0;
 }

 if((main_counter % 5000) == 0) {
 reset_stepper();

 limit_switch=0;
 }

if(!SPURNED) {
write("not spurned!\n");
/* Start playing game */

 DONE_PLAYING=0;
 spurn_counter=0;

do{
write("playing game!\n");

 DONE_PLAYING=game();
 if(!DONE_PLAYING) spurn_counter++;
 if(spurn_counter > 3) {
 DONE_PLAYING=1;

SPURNED=1; write("spurned has been set!\n");
/*INTR_OFF();*/
ADDR4=0x40;
/*Have robot speak */
LATCH6000 &= 0xbf;
ADDR6=LATCH6000;
msleep(2); /*width of pulse*/
LATCH6000 |= 0X40; /*bring latch back

high*/
ADDR6 = LATCH6000;
ADDR4=0x00;
write("survived thus far\n");
/*INTR_ON(); */

 }
}while(!DONE_PLAYING);

write(clear);

 /*Otherwise perform collision avoidance behavior */
 write("game collision avoidance\n");
 avoid_counter=main_counter;
 while(main_counter < avoid_counter + 50) {

EEL 5666 Drew Bagnell

Final Report Dr. Keith L. Doty

24

 avoid();
 }

}

else /*robot has been snubbed */ {
write("robot feeling snubbed");
spurned_start_time = main_counter;
while((spurned_start_time + 600) > main_counter) {

if((left_ir > 104) || (right_ir > 104)) {
avoid();
write("avoiding stuff in snubbed behavior\n");

}
else {

phonophobia();
write("feeling phonophobic\n");

}
}
SPURNED=0;

}

 }
 return(0);
}

void
init_arbitrator() {

INTR_OFF();
/* Set OC4 PSUEDO vector to stepper_ISR */

*(unsigned char *)(0x00d6)= 0x7e;
 *(void(**)())0x00d7 = arbitrator; /*MUST go with OC4*/

/* Initialize globals */
main_counter=0;
left_ir=largest(analog(2),analog(6));
right_ir=largest(analog(3),analog(7));
next_speed=50;

/* Enable OC4*/
 SET_BIT(TMSK1,0x10);

INTR_ON();

}

void
arbitrator(void) {

 int limit_switch;

 /*clear flag*/

EEL 5666 Drew Bagnell

Final Report Dr. Keith L. Doty

25

 CLEAR_FLAG(TFLG1,0x10);

/*Update analog sensors*/
left_ir=largest(analog(2),analog(6));
right_ir=largest(analog(3),analog(7));

/*Update motors*/
current_speed=(next_speed+current_speed)/2;

 motor(current_speed);

/*Update counter*/
main_counter++;

 /* Check stepper*/
 ADDR4=0x00; /* CDS 2 cells, reset switch */
 if(analog(1) > 80) limit_switch=1;

return;
}

int
largest(int value1,int value2) {
 if(value1 > value2) return value1;
 else return value2;
}

void
avoid(void) {

if((left_ir > 125) || (right_ir > 125)) {
direction(5050);
next_speed=-50;

}
else {

 if((left_ir < 107) && (right_ir < 107)){
 /* go mostly foward */

 next_speed=50;
 if(left_ir > (right_ir +3)) direction(4970);

else if(right_ir > (left_ir+3)) direction(5030);
else direction(5000);

}

 /*condition that theres stuff in front of him on both
sides*/

 if((left_ir >= 114) && (right_ir >= 114)) {
direction(5070);
next_speed=-50;

 }

else if((left_ir >= 107) && (right_ir >= 107)) {
/* chill for a moment */
if(STEP != 5120) next_speed=0;
msleep(6);

 direction(5120);

EEL 5666 Drew Bagnell

Final Report Dr. Keith L. Doty

26

 next_speed=30;
}

if((left_ir >= 107) && (right_ir < 107)) {
 /*try going right*/

 direction(4900);
 next_speed=30;
 }

if((left_ir < 107) && (right_ir >= 107)) {
 /*try going left*/
 direction(5100);
 next_speed=30;

}
}

}

/*sleep routine in approximately 100ms increments*/
int
msleep(int tenths_of_seconds) {
 int temp;
 temp=main_counter;
 temp+=3*tenths_of_seconds;
 while(main_counter <= temp) { /* chilling */ }
 return(0);
}

int
game(void) {
 int low_analog4,low_analog5,current_analog4,current_analog5,i;

/* clear low readings */
low_analog4=low_analog5=255;

/* stop motors */
next_speed=0;

 direction(5000);

write(clear);
write("MARCO!!!!\n");

/*Have robot speak */
LATCH6000 &= 0xbf;
ADDR6=LATCH6000;
msleep(2); /*width of pulse*/
LATCH6000 |= 0X40; /*bring latch back high*/
ADDR6 = LATCH6000;

IR=0x00;

 msleep(17); /*wait 1sec or so until done speaking*/

/*Turn interrupts off... absolutely necessary, or reading are too
low!?! */

 INTR_OFF();

EEL 5666 Drew Bagnell

Final Report Dr. Keith L. Doty

27

/*Sample*/
for(i=0;i<10000;i++){

current_analog4=analog(4);
current_analog5=analog(5);

if(current_analog4 < low_analog4){
low_analog4=current_analog4;

}

if(current_analog5 < low_analog5) {
low_analog5=current_analog5;

}

}

 IR=0xff; /*Turn IR back on*/
 INTR_ON(); /*Restore interrupts*/

/*Establish the direction the sound came from, then turn towards
it*/

if(((low_analog5 < 110) || (low_analog4 < 110)) && ((low_analog5
>= 2) || (low_analog4 >= 2))) {

/*Output his readings*/

write("Right ear minimum: ");
write_int(low_analog4);
write("\nLeft ear minimum: ");
write_int(low_analog5);
write("\n");
msleep(10);

if(low_analog4 < low_analog5) {
write("On my right\n");
if(low_analog4 < (low_analog5 - 25)) {

direction(4940);
write("hard right");
msleep(15);
next_speed=50;
msleep(4);

}
else if(low_analog4 < (low_analog5 - 15)) {

write("med right");
direction(4940);
msleep(15);
next_speed=50;
msleep(4);

}
else if(low_analog4 < (low_analog5 - 7)) {

write("soft right");
direction(4940);
msleep(15);
next_speed=50;
msleep(3);

}
else if(low_analog4 < (low_analog5 - 2)) {

EEL 5666 Drew Bagnell

Final Report Dr. Keith L. Doty

28

write("v soft right");
direction(4970);
msleep(15);
next_speed=50;
msleep(3);

}
return(1);

}

if(low_analog5 <= low_analog4) {
write("On my left\n");
if(low_analog5 < (low_analog4 - 25)) {

direction(5060);
write("hard left");
msleep(15);
next_speed=50;
msleep(4);

}
else if(low_analog5 < (low_analog4 - 15)) {

write("med left");
direction(5060);
msleep(15);
next_speed=50;
msleep(4);

}
else if(low_analog5 < (low_analog4 - 7)) {

write("soft left");
direction(5060);
msleep(15);
next_speed=50;
msleep(3);

}
else if(low_analog5 < (low_analog4 - 2)) {

write("v soft left");
direction(5030);
msleep(15);
next_speed=50;
msleep(3);

}
return(1);

}

}
else return(0);

 }

int
phonophobia(void) {
 int low_analog4,low_analog5,current_analog4,current_analog5,i;

/* clear low readings */
low_analog4=low_analog5=255;

/*Sample*/
for(i=0;i<200;i++){

INTR_OFF();

EEL 5666 Drew Bagnell

Final Report Dr. Keith L. Doty

29

current_analog4=analog(4);
current_analog5=analog(5);

/*Restore interrupts*/
INTR_ON();
if(current_analog4 < low_analog4){

low_analog4=current_analog4;
}

if(current_analog5 < low_analog5) {
low_analog5=current_analog5;

}

}

if(((low_analog5 < 100) || (low_analog4 < 100)) && ((low_analog5
>= 2) || (low_analog4 >= 2))) {

/*Output his readings*/
/*

write("Right ear minimum: ");
write_int(low_analog4);
write("\nLeft ear minimum: ");
write_int(low_analog5);
write("\n");
msleep(10); */

/*same routines as phonotropism, opposite directions*/
if(low_analog4 < low_analog5) {

write("on my right");
if(low_analog4 < (low_analog5 - 25)) {

direction(5060);
/*write("hard left"); */
msleep(15);
next_speed=50;
msleep(4);

}
else if(low_analog4 < (low_analog5 - 15)) {

/*write("med left");*/
direction(5060);
msleep(15);
next_speed=50;
msleep(4);

}
else if(low_analog4 < (low_analog5 - 7)) {

/*write("soft left");*/
direction(5060);
msleep(15);
next_speed=50;
msleep(3);

}
else if(low_analog4 < (low_analog5 - 2)) {

/*write("v soft left");*/
direction(5030);
msleep(15);
next_speed=50;
msleep(3);

EEL 5666 Drew Bagnell

Final Report Dr. Keith L. Doty

30

}
return(1);

}

if(low_analog5 <= low_analog4) {
write("On my left\n");
if(low_analog4 < (low_analog4 - 25)) {

direction(4940);
/*write("hard right"); */
msleep(15);
next_speed=50;
msleep(4);

}
else if(low_analog5 < (low_analog4 - 15)) {

/*write("med right");*/
direction(4940);
msleep(15);
next_speed=50;
msleep(4);

}
else if(low_analog5 < (low_analog4 - 7)) {

/*write("soft right");*/
direction(4940);
msleep(15);
next_speed=50;
msleep(3);

}
else if(low_analog5 < (low_analog4 - 2)) {

/*write("v soft right");*/
direction(4970);
msleep(15);
next_speed=50;
msleep(3);

}
return(1);

}

}

else {

direction(5000);
next_speed=50;
return(0);

}
 }

EEL 5666 Drew Bagnell

Final Report Dr. Keith L. Doty

31

step.c
/**************** Includes **************************************/
#include <hc11.h>
#include <serial.h>
#include <mil.h>

/**************** Constants *************************************/
#define PERIODM 65,500
#define PERIOD_1PC 655
#define ADDR6 *(unsigned char *)(0x6000)

extern unsigned char LATCH6000;

#pragma interrupt_handler stepper_ISR
void stepper_ISR(void);

/* Required global varaibles */

int STEP,NEXT_STEP,SUBSTEP;

/* Stepper code initialization */
int
init_stepper() {

INTR_OFF();

/* Set OC3 PSUEDO vector to stepper_ISR */

*(unsigned char *)(0x00d9)= 0x7e;
 *(void(**)())0x00da = stepper_ISR; /*MUST go with OC3*/

 /* Clear latch and clear memory rememberance of the Latch */
 ADDR6=0;
 LATCH6000=0;

/* Initialize globals */

 STEP=5000;
 NEXT_STEP=5000;
 SUBSTEP=0;

/* Enable motor interrupts on OC3*/
 SET_BIT(TMSK1,0x20);

INTR_ON();

}

/* This next function counts on the analog subsystem to be enabled
 It moves the stepper in the positive (CCW) direction until it
senses the bump
 switch activation. Then it moves the stepper back to the zero
position, calling

EEL 5666 Drew Bagnell

Final Report Dr. Keith L. Doty

32

 5000 zeroed out.
*/

int
reset_stepper() {

 int bump_switch;

 do {
 bump_switch=analog(1);
 /*write_int(bump_switch);*/
 NEXT_STEP=STEP+2;
 while(STEP!=NEXT_STEP){} /*wait for hardware to catch up....*/
 }while(bump_switch > 80)

 INTR_OFF();
 STEP=5135;
 NEXT_STEP=5000;
 INTR_ON();

 while(STEP!=NEXT_STEP){} /*wait for hardware to catch up....*/

 return(0);
}

/* Stepper ISR */

void
stepper_ISR(void) {

TOC3 += 10000; /*next time*/

 /* Clear oc3 flag */

 CLEAR_FLAG(TFLG1,0x20)

if(NEXT_STEP == STEP) {
 LATCH6000 &= 0xf0; /*leave motor the same but kill stepper
driver stuff*/
 ADDR6=LATCH6000;
 }

 if(NEXT_STEP < STEP) { /* going clockwise */

/* Do SUBSTEPping */
 LATCH6000 &= 0xf0; /*Clear only stepping stuff*/

 if(SUBSTEP==1) {

 LATCH6000 |= 2;
 ADDR6=LATCH6000;

 }
 if(SUBSTEP==2) {

 LATCH6000 |= 4;
 ADDR6=LATCH6000;

EEL 5666 Drew Bagnell

Final Report Dr. Keith L. Doty

33

 }
 if(SUBSTEP==3) {

 LATCH6000 |= 1;
 ADDR6=LATCH6000;

 }
 if(SUBSTEP>=4) {

 LATCH6000 |= 8;
 ADDR6=LATCH6000;
 STEP--;
 SUBSTEP=0;
 }

 SUBSTEP++;
 }

 if(NEXT_STEP > STEP) { /* going counterclockwise */

/* Do SUBSTEPping */
 LATCH6000 &= 0xf0; /*Clear only stepping stuff*/

 if(SUBSTEP==1) {

 LATCH6000 |= 8;
 ADDR6=LATCH6000;

 }
 if(SUBSTEP==2) {

 LATCH6000 |= 1;
 ADDR6=LATCH6000;

 }
 if(SUBSTEP==3) {

 LATCH6000 |= 4;
 ADDR6=LATCH6000;

 }
 if(SUBSTEP>=4) {

 LATCH6000 |= 2;
 ADDR6=LATCH6000;
 STEP++;
 SUBSTEP=0;
 }

 SUBSTEP++;
 }

}

int
direction(int step) {
 NEXT_STEP=step;
 return 0;
}

EEL 5666 Drew Bagnell

Final Report Dr. Keith L. Doty

34

motor.c

/* Marco’s Motor Driver Routines
 based loosely on TALRIK routines
 and modified by Drew Bagnell
*/

/**************** Includes **************************************/
#include <hc11.h>
#include <serial.h>
#include <mil.h>

/**************** Constants *************************************/
#define PERIODM 65,500
#define PERIOD_1PC 655
#define ADDR6 *(unsigned char *)(0x6000)

#pragma interrupt_handler motor0
void motor0();

/********************* Data *************************************/
int duty_cycle; /* Specifies the PWM duty cycle for two motors */
unsigned char LATCH6000;

/************** Functions ***************************************/
void init_motors(void)
/* Function: This routine initializes the motors
 * Inputs: None
 * Outputs: None
 * Notes: This routine MUST be called to enable motor operation!
 */

{

 INTR_OFF();

 /* Clear latch and clear memory rememberance of the Latch */
 ADDR6=0;
 LATCH6000=0;

/* Set OC2 and OC3 to output low */
/* SET_BIT(TCTL1,0xA0);
 CLEAR_BIT(TCTL1,0x50);*/

/* Set PWM duty cycle to 0 first */
 duty_cycle = 0;

/* Associate interrupt PSEUDO-vectors with motor routines */
 /* *(void(**)())0xFFE6 = motor0; */
 *(unsigned char *)(0x00dc)= 0x7e; /*MUST go with OC2*/
 *(void(**)())0x00dd = motor0; /*MUST go with OC2*/

/* Enable motor interrupts on OC2*/

EEL 5666 Drew Bagnell

Final Report Dr. Keith L. Doty

35

 SET_BIT(TMSK1,0x40);

/* Specify PD4 and PD5 as output pins.
 * PD4 controls direction of Motor 1 and PD5 the direction of Motor 0.
 */

 /*SET_BIT(DDRD,0x30);*/
 INTR_ON();
}

void motor(int per_cent_duty_cycle)
/* Function: Sets duty cycle and direction of motor specified by index
 * Inputs: index in [0,1]
 * -100% <= per_cent_duty_cycle <= 100%
 * A negative % reverses the motor direction
 * Outputs: duty_cycle[index]
 * 0 <= duty_cycle[index]<= PERIOD (Typically, PERIOD =
65,500)
 * Notes: Checks for proper input bounds
 */
{
 if (per_cent_duty_cycle < 0)
 {
 per_cent_duty_cycle = -per_cent_duty_cycle; /* Make positive */
 /* Set negative direction of motors */
 /* Bit 5 is direction bit */

LATCH6000 |= 0x10;
ADDR6 =LATCH6000;

 }
 else
 {
 /* Set positive direction of motors */

LATCH6000 &= 0xef;
ADDR6 = LATCH6000;

 }

/* At this point per_cent_duty_cycle must be a positive number less
 * than 100. If not make it so.
 */
 if (per_cent_duty_cycle > 100) per_cent_duty_cycle = 100;
 duty_cycle = per_cent_duty_cycle*PERIOD_1PC;

}

void motor0 ()
/* Function: This interrupt routine controls the PWM to motor0 using OC2
 * Inputs: duty_cycle[0] (global)
 * Outputs: Side effects on TCTL1, TOC2, TFLG1.
 * Notes: init_motors() assumed to have executed
 */

{
/* Keep the motor off if no duty cycle specified.*/

 if(duty_cycle == 0)
 {
 CLEAR_BIT(LATCH6000,0x20);
 ADDR6 = LATCH6000 ;

EEL 5666 Drew Bagnell

Final Report Dr. Keith L. Doty

36

}
 else
 if(LATCH6000 & 0x20)
 {
 TOC2 += duty_cycle; /* Keep up for width */
 /* Set to turn off */

CLEAR_BIT(LATCH6000,0x20); /* Set to turn off */
 ADDR6=LATCH6000;
 }
 else
 {
 TOC2 += (PERIODM - duty_cycle);
 /* Set to raise signal */
 SET_BIT(LATCH6000,0x20);

ADDR6=LATCH6000;
 }
 CLEAR_FLAG(TFLG1,0x40); /* Clear OC2F
interrupt Flag */
}

