
University of Florida
Department of Electrical and Computer

Engineering

EEL 5666
Intelligent Machines Design Laboratory

Fall 1996

“Fizgig”

Elizabeth Thiel

Prof. Keith L. Doty

December 15, 1996

2

Table of Contents

I. Abstract…………………………………………………….3
II. Executive Summary………………………………………4
III. Introduction………………………………………………..5
IV. Integrated System…………………………………………5
V. Mobile Platform……………………………………………6
VI. Actuation……………………………………………………6
VII. Sensors……………………………………………………..7
VIII. Behaviors…………………………………………………..8
 Collision Avoidance………………………………………………8
 Collision Detection (Bumper)……………………………………8
 Predator Detection……………………………………………….9
 Hide………………………………………………………………..9
IX. Experimental Layout and Results……………………..9
X. Conclusion………………………………………………..10
XI. Documentation……………………………………………11
XII. Appendix…………………………………………………..12
 GIMPY3.C………………………………………………………..12
 RUN.C…………………………………………………………….15
 HIDE.C……………………………………………………………17
 FIZGIG.C…………………………………………………………19

Abstract

3

 The goal of this project was to design an autonomous prey robot capable of
avoiding collisions, detecting collisions, detecting motion, and seeking out dark
areas to hide. The robot also had to be small enough to be able to get captured
by a larger predator robot. This paper details the design of the robot platform,
the sensors used, and the behaviors created using the sensors and
programming. It discusses each sensor type and the circuits needed to connect
them to the robot.
The behaviors are integrated into one working system using programming code
in C language (shown in the appendix).

Executive Summary

4

 This project entailed the design and construction of an autonomous,

mobile robot, capable of reacting to its environment.

 The first stage of the project involved developing a collision avoidance

behavior. The prey robot Fizgig uses IR emitters and detectors to “sense”

objects and react accordingly. The sensors detect oncoming objects and the

collision avoidance program tells the robot which way to turn to get away from

them.

 The second stage involved adding a bumper system. This bumper assists in

object detection. If the robot is incapable of reacting quickly enough through IR,

the bumper created by a series of switches is triggered, and the robot backs up

and turns away.

 The third stage was concerned with motion detection. Fizgig uses a

pyrosensor to detect humans and robots. Since this is a prey robot, when it

senses something it jerks back and tries to run away.

 The last stage of behavior development involved getting the robot to hide.

When it was running away, it would look for a dark area using collimated

Cadmium Sulfide photocells. When it senses darkness, it thinks it is hidden from

view and it stops for a few seconds. Then, it thinks the coast is clear and it

proceeds to move around as usual.

 Finally, the last stage involved integrating all the behaviors so it could move

around and react accordingly.

Introduction

5

 The goal of this project was to design an autonomous mobile prey robot. The

robot must be capable of avoiding obstacles, detecting the predator robot, and

hiding from the predator after it has been detected.

 The robot “Fizgig” uses a single-chip board to control all of its sensors and

behaviors. The size of the board allows the design of the robot to be small,

making it an ideal prey. The predator is much larger with a claw mechanism that

is the size of the prey. This allows it to trap the prey. The prey is a little faster

than the predator, giving it one advantage to get away from the predator.

Integrated System

 The sensors and behaviors of the robot are all controlled by the

microprocessor. The following diagram shows the different types of sensors, the

behaviors that use them, and their integration into a system controlled by the

microprocessor.

Infrared
Emitters and

Detectors

Cadmium
Sulfide

Photocells

Pyrosensor

Switches

Collision
Avoidance

Collision
Detection

Running
Away

Hiding

68HC11E2
Motorola

Microprocessor

Figure 1.

6

 The diagram shows that there is a different type of sensor for each behavior

the robot exhibits. All the sensors are controlled by the microprocessor and the

behaviors are determined by the programs written in C.

Mobile Platform

 The design of the platform is a very simple design. It is a 5” diameter circle

with an inch cut off on opposite sides to make the wheels fit closer to the body.

This also makes the robot more compact and circular. The back has a caster to

give it balance. There is a small box built on the top of the platform that holds

the battery pack, and the microprocessor sits on the lid of the box. Figure 2

shows the platform layout with the battery box. There is also a small second

platform which holds all the infrared emitters.

Actuation

 The robot uses a single-chip board by Novasoft Mekatronics© designed for

the Motorola MC68HC11E2 chip. The only actuation is the two wheels of the

robot. The wheels’ speed and direction are controlled by two Aristo-craft Tracker

Battery
Box

Robot
Platform

Figure 2.

(top view)

7

D3-410 servo motors. They were hacked in a method discovered by Scott Jantz

and Ivan Zapata. This hack removes a piece which generally moves the setting

of the potentiometer. The potentiometer is then manually set at the middle

resistance where the motor stops turning. This can be done using the program

MOTION.C written by Ivan Zapata. Also, one of the motors was connected in

reverse. This was just a coincidence, but proved to be extremely helpful in

programming. Both motors could be given the same commands to go forward or

reverse. Usually, they have to be given opposing commands in order for the

robot to go forward or reverse.

Sensors

 Fizgig uses four types of sensors: infrared emitters and detectors, switches,

Cadmium Sulfide photocells, and a pyrosensor (heat sensor).

 Fizgig uses two Sharp 32.75kHz IR detectors on the bottom of the platform

for collision avoidance. There are eight emitters arranged in a circle on the

second platform above the microprocessor. This creates a beacon which will

allow the predator to track the prey.

 There are three switches located on the front edge of the platform that serve

as a bumper. They are connected in series and the robot is programmed to

backup and turn when either one of them is closed.

 Fizgig uses a motion detector purchased at Lowe’s. I hacked a Motion

Activated Twin Floodlight Kit Model MS35 by Regent Lighting Corporation. I

removed the AC to DC transformer and associated circuitry so that it could be

connected to the board. I determined where the power, ground, and output

8

were, and connected them to the board. The output was connected to an analog

port.

 Finally, the robot also has two Cadmium Sulfide photocells located on the

right and left front of the platform. They are connected using a simple voltage

divider circuit with a 15kÒ resistor each.

Behaviors

 Fizgig exhibits four distinct behaviors: collision avoidance, collision detection,

predator detection, and hiding.

Collision Avoidance

 The collision avoidance behavior uses the IR emitters and detectors to avoid

objects. When the robot detects an object or wall, it is programmed to react

accordingly. The program GIMPY3.C (found in the appendix) is for collision

avoidance. The program also allows the emitters to be modulated for 32.75kHz

instead of the usual 40kHz. This program was written by Ivan Zapata and

proved useful for my project. The predator robot uses 40kHz IR, but tracks

32.75kHz IR. This allows the predator’s collision avoidance not to be confused

with the prey, and to keep the tracking system completely independent.

Collision Detection (Bumper)

 Included in the program GIMPY3.C is the bumper programming. The

program simply tells the robot to backup and turn whenever either one of the

three switches is closed.

Predator Detection (Run Away)

9

 Experimentation allowed me to determine the approximate threshold of the

pyrosensor and write the program RUN.C (in the appendix). When there was no

motion, the sensor gave an analog reading of about 110. The program causes

the robot to jerk back whenever it detects anything above 106. Then, it turns

“nervously” trying to get away.

Hide

 The program HIDE.C compares the analog returns of the two Cadmium

Sulfide photocells and tells Fizgig to go in the direction of the lowest reading.

The robot is trying to seek out a dark area in the room in order to hide. When

the two readings are below a certain threshold the robot thinks it is in a hiding

spot and stops. It waits for a few seconds and then proceeds to move around

again.

 FIZGIG.C is the program in the appendix which integrates all of the

behaviors.

 The robot moves around avoiding objects and using the bumper when

necessary. If it detects any motion, human or robotic, it jerks back and turns

looking for a place to hide. When it finds the dark spot, it stops for a few

seconds. Then, it comes out of hide mode and continues using collision

avoidance and the bumper until it senses motion again.

Experimental Layout and Results

 When I was trying out the HIDE.C program I had to change the thresholds

several times in order to get it to work properly. Sometimes it would react to

10

anything, including walls. It was difficult to get it right because the robot is

moving, therefore, everything around it is also in motion.

 The program FIZGIG.C worked really well. The behaviors were integrated

and the robot reacts accordingly. I can easily adjust the sensitivity of the robot in

the program if necessary.

Conclusion

 The goal of this project was to create an autonomous prey robot capable of

detecting a predator robot, hiding and avoiding obstacles. The project worked

really well without requiring complicated circuitry.

 Creating predator/prey environments can allow us to study the effects of

chemicals and other harsh changes on the environment. This is only a simple

predator/prey project, but we can design more complicated systems as needed.

11

Documentation

[1] Fred Martin, The 6.270 Robot Builder’s Guide, MIT Media Lab, Cambridge,
 MA, 1992.

[2] Joseph Jones & Anita Flynn, Mobile Robots: Inspiration to Implementation,
 A.K. Peters Publishers, Wellesley, MA, 1993.

[3] Pattie Maes, Designing Autonomous Agents: Theory and Practice from
 Biology to Engineering and Back, MIT Press, Cambridge, MA, 1990.

12

Appendix

 The program GIMPY3.C is for collision avoidance and the bumper system.

/*
 GIMPY.C
 11.28.96
 This program was written for a Talrik Junior platform in order to
 achieve collision avoidance. Ivan Zapata
 Modified for Fizgig by Elizabeth Thiel.
*/

#include <servotj.h>
#include <hc11.h>
#include <mil.h>
#include <irtj.h>
#include <analog.h>
#include <vectors.h>

#define ZEROL 3000 /* Servo signals */
#define ZEROR 3000
#define FORWL 2000
#define FORWR 2000
#define BACKL 3500
#define BACKR 3500
#define RVOFF 6148
#define LVOFF -498
#define SENSORMIN 85
#define SENSORMAX 118
#define LEFT_SERVO 0
#define RIGHT_SERVO 1

void turn(void);

int main(void)
{
 int rval, lval, rv, lv;
 int motion;
 int scared;
 int i;

 scared=0;

 init_servos();
 init_analog();
 init_ir();

13

 ir_mode(3);

 DDRC = 0x02; /* PORTC is input except for bit 2*/

 while(1)
 {

/* servo0 = left, servo1 = right */
/* PE6 is on the right, PE7 is on the left */

 rval = ir_value(6); /* Get sensor readings */
 lval = ir_value(7);

 if (rval < SENSORMIN) rval = SENSORMIN;
 if (lval < SENSORMIN) lval = SENSORMIN;

 rv = (rval << 5) + LVOFF; /* Calculate indexes */
 lv = (lval << 5) + LVOFF;

 if (scared==1)
 {

 servo(RIGHT_SERVO, rv); /* Set actual servo speed */
 servo(LEFT_SERVO, lv);

 if(PORTC & 0x20)
 {
 servo(LEFT_SERVO, BACKL);
 servo(RIGHT_SERVO, BACKR);
 for(i = 0; i < 25000; i++);
 turn();
 }

 motion = analog(2); /* Get sensor readings */

 if ((motion < 108) && (scared==0))
 {
 scared=1;
 servo(RIGHT_SERVO, 4000);
 servo(LEFT_SERVO, 4000);
 for (i=0;i<25000;i++);
 servo(RIGHT_SERVO,2000);
 servo(LEFT_SERVO,4000);
 for (i=0;i<25000;i++);

14

 servo(RIGHT_SERVO, 2000);
 servo(LEFT_SERVO, 2000);
 }

 for(i = 1; i < 2500; i++);

 }
}

void turn()
{
 int i;
 unsigned rand;

 rand = TCNT;

 if (rand & 0x0001)
 {
 servo(RIGHT_SERVO, FORWR);
 servo(LEFT_SERVO, BACKL);
 }
 else
 {
 servo(RIGHT_SERVO, BACKR);
 servo(LEFT_SERVO, FORWL);
 }
 for (i = 0; i < rand; i++);
}

15

 The program RUN.C is for motion detection.

/*
 RUN.C
 12.11.96
 This program was written for Fizgig in order to
 detect the predator.
 */

#include <servotj.h>
#include <hc11.h>
#include <mil.h>
#include <irtj.h>
#include <analog.h>
#include <vectors.h>

#define ZEROL 3000 /* Servo signals */
#define ZEROR 3000
#define FORWL 2000
#define FORWR 2000
#define BACKL 4000
#define BACKR 4000
#define RVOFF 6148
#define LVOFF -498
#define SENSORMIN 85
#define SENSORMAX 118
#define LEFT_SERVO 0
#define RIGHT_SERVO 1

void turn(void);

int main(void)
{
 int rval, lval, rv, lv;
 int motion;
 int i;

 init_servos();
 init_analog();

 servo(RIGHT_SERVO,2000);

16

 servo(LEFT_SERVO,2000);

 while(1)
 {

/* servo0 = left, servo1 = right */
/* PE6 is on the right, PE7 is on the left */
/* Right = 3 Left =1 */

 motion = analog(2); /* Get sensor readings */

 if (motion <106)
 {
 servo(RIGHT_SERVO, 4000);
 servo(LEFT_SERVO, 4000);
 for (i=0;i<25000;i++);
 servo(RIGHT_SERVO,2000);
 servo(LEFT_SERVO,4000);
 for (i=0;i<25000;i++);
 servo(RIGHT_SERVO, 2000);
 servo(LEFT_SERVO, 2000);
 }

 for(i = 1; i < 2500; i++);

 }
}

17

 The program HIDE.C is to run and hide in a dark area.

/*
 HIDE.C
 12.10.96
 This program was written for Fizgig to be
 able to hide from the predator Pantera.
 */

#include <servotj.h>
#include <hc11.h>
#include <mil.h>
#include <irtj.h>
#include <analog.h>
#include <vectors.h>

#define ZEROL 3000 /* Servo signals */
#define ZEROR 3000
#define FORWL 2000
#define FORWR 2000
#define BACKL 4000
#define BACKR 4000
#define RVOFF 6148
#define LVOFF -498
#define SENSORMIN 85
#define SENSORMAX 118
#define LEFT_SERVO 0
#define RIGHT_SERVO 1

void turn(void);

int main(void)
{
 int rval, lval, rv, lv;

 int i;

 init_servos();
 init_analog();

 servo(RIGHT_SERVO,2000);
 servo(LEFT_SERVO,2000);

18

 while(1)
 {

/* servo0 = left, servo1 = right */
/* PE6 is on the right, PE7 is on the left */
/* Right = 3 Left =1 */

 rval = analog(1); /* Get sensor readings */
 lval = analog(3);

 if (rval > lval)
 {
 servo(RIGHT_SERVO, 2000);
 servo(LEFT_SERVO, 2800);
 }
 if (lval > rval)
 {
 servo(RIGHT_SERVO,2800);
 servo(LEFT_SERVO,2000);
 }
 if ((lval < 60)&&(rval < 60))
 {
 servo(RIGHT_SERVO,3000);
 servo(LEFT_SERVO,3000);
 }

 for(i = 1; i < 2500; i++);

 }
}

19

 The program FIZGIG.C integrates the behaviors: collision avoidance, bumper,

motion detection and hide mode.

/*
 FIZGIG.C
 12.12.96
 This program integrates the collision avoidance, bumper,
 run and hide for the prey robot Fizgig.
*/

#include <servotj.h>
#include <hc11.h>
#include <mil.h>
#include <irtj.h>
#include <analog.h>
#include <vectors.h>

#define ZEROL 3000 /* Servo signals */
#define ZEROR 3000
#define FORWL 2000
#define FORWR 2000
#define BACKL 3500
#define BACKR 3500
#define RVOFF 6148
#define LVOFF -498
#define SENSORMIN 85
#define SENSORMAX 118
#define LEFT_SERVO 0
#define RIGHT_SERVO 1

void turn(void);

int main(void)
{
 int rval, lval, rv, lv,reye,leye;
 int motion;
 int scared;
 int i;
 int j;

 scared=0;

 init_servos();
 init_analog();
 init_ir();

20

 ir_mode(3);

 DDRC = 0x02; /* PORTC is input except for bit 2*/

 while(1)
 {

/* servo0 = left, servo1 = right */
/* PE6 is on the right, PE7 is on the left */

 rval = ir_value(6); /* Get sensor readings */
 lval = ir_value(7);

 if (rval < SENSORMIN) rval = SENSORMIN;
 if (lval < SENSORMIN) lval = SENSORMIN;

 rv = (rval << 5) + LVOFF; /* Calculate indexes */
 lv = (lval << 5) + LVOFF;

 if (scared==1)
 {
 reye = analog(1); /* Get sensor readings */
 leye = analog(3);

 if (reye > leye)
 {
 lv = (lv + 500);
 }
 if (leye > reye)
 {
 rv = (rv + 500);
 }
 if ((leye < 60)&&(reye < 60))
 {
 servo(RIGHT_SERVO,3000);
 servo(LEFT_SERVO,3000);
 for (i=0;i<5;i++)
 for (j=0;j<25000;j++);
 scared = 0;

 }
 }

 servo(RIGHT_SERVO, rv); /* Set actual servo speed */

21

 servo(LEFT_SERVO, lv);

 if(PORTC & 0x20)
 {
 servo(LEFT_SERVO, BACKL);
 servo(RIGHT_SERVO, BACKR);
 for(i = 0; i < 25000; i++);
 turn();
 }

 motion = analog(2); /* Get sensor readings */

 if ((motion < 105) && (scared==0))
 {
 scared=1;
 servo(RIGHT_SERVO, 4000);
 servo(LEFT_SERVO, 4000);
 for (i=0;i<25000;i++);
 servo(RIGHT_SERVO,2000);
 servo(LEFT_SERVO,4000);
 for (i=0;i<25000;i++);
 servo(RIGHT_SERVO, 2000);
 servo(LEFT_SERVO, 2000);
 }

 for(i = 1; i < 2500; i++);

 }
}

void turn()
{
 int i;
 unsigned rand;

 rand = TCNT;

 if (rand & 0x0001)
 {
 servo(RIGHT_SERVO, FORWR);
 servo(LEFT_SERVO, BACKL);
 }
 else
 {
 servo(RIGHT_SERVO, BACKR);
 servo(LEFT_SERVO, FORWL);

22

 }
 for (i = 0; i < rand; i++);
}

