
Simulating Basic Flock Behaviors Using Simple
Autonomous Agents

Iván Zapata

EEL 5666: Intelligent Machine Design Lab

Dr. Keith L. Doty

TA: Scott Jantz

12/9/96



EEL5666: Intelligent Machine Design Iván Zapata
Final Report - 12/9/96 Dr. Keith L. Doty

2

Table of Contents

Abstract ............................................................................................................................... 3
Executive Summary ............................................................................................................ 4
Introduction ......................................................................................................................... 5
Integrated System ................................................................................................................ 6
Mobile Platform .................................................................................................................. 7
Actuation ............................................................................................................................. 7
Sensors .............................................................................................................................. 11

Infrared Emitters and Detectors: .................................................................................... 11
Working Principles and implementation .................................................................... 12

Bump sensors ................................................................................................................. 13
Behaviors........................................................................................................................... 14

Object avoidance............................................................................................................ 14
Robot Following ............................................................................................................ 15
Speed Regulation ........................................................................................................... 16
Collision Detection ........................................................................................................ 16

Conclusion......................................................................................................................... 18
Appendix ........................................................................................................................... 19

Figures............................................................................................................................ 19
Source Code ................................................................................................................... 20

Motor driver routine: servotj.c.................................................................................... 20
Infrared system driver: irtj.c ....................................................................................... 23
Main program: chase5.c.............................................................................................. 26



EEL5666: Intelligent Machine Design Iván Zapata
Final Report - 12/9/96 Dr. Keith L. Doty

3

Abstract
This paper is on research done for the EEL5666: Intelligent Machine Design
Laboratory course at the University of Florida.  The first objective of this research
was to build an autonomous agent platform that would be very simple at the hardware
level, but would still provide all the functionality of larger scale, more hardware-
intensive robots.    The second objective of this project was to use several of these
robots to simulate flock behaviors.



EEL5666: Intelligent Machine Design Iván Zapata
Final Report - 12/9/96 Dr. Keith L. Doty

4

Executive Summary
The basic platform for each robot is a Novasoft Talrik JuniorTM body.  On this platform

are mounted an M68HC11E2 processor, two motors, and a sensor suite including infrared

detectors, emitters, and bump switches.  There is no control hardware for either the

motors or any of the sensors, rather, all of the robot’s systems are directly controlled by

the microprocessor.  Reducing the amount of hardware in this fashion greatly minimizes

the construction of the robot,  which was one of the primary goals of this project.

However, simplifying the hardware means that the robot’s software must be more

sophisticated, since it must deal with every aspect of operation of every subsystem.  The

author developed software drivers to control the motors and sensor systems, to the point

where each robot was able to navigate any given space while avoiding obstacles.  After

this point, the robots could be programmed to seek each other and follow each other.  The

robots could essentially travel as a pack, with the leading robot deciding where the pack

will go.



EEL5666: Intelligent Machine Design Iván Zapata
Final Report - 12/9/96 Dr. Keith L. Doty

5

Introduction
The two main goals of this project were first to develop a robot that would be very simple

to build, and then to program several of these robots to act as a ‘flock’.  Three robots took

part in this research, Huey, Dewey, and Louie.  The basic robot design contains a very

minimal amount of hardware: all components such as motors and sensors are directly

connected to the robot’s processor.  No extra hardware is used to drive, control, or

modulate any external system.  Because of the reduction in hardware, the software that

controls these robots has to keep close control of every aspect relating to every

subsystem, as well as to assure that no subsystem interferes with another.  The basic flock

behavior desired from the robots was for them to be able to travel as a group, and to be

able to control the speed and “tightness” at which the group is traveling.  The robots were

able to recognize each other by detecting each other’s  infrared signature, so each robot

would follow any infrared bursts that were not its own.  While traveling as a group, each

robot is able to recognize whether there are other robots in front or behind, and with this

information the robot can change its speed to allow robots to catch up to him or to pull

away.



EEL5666: Intelligent Machine Design Iván Zapata
Final Report - 12/9/96 Dr. Keith L. Doty

6

Integrated System
One of the goals of this project was to produce somewhat complex behaviors from a very

simple robot, for which reason the Talrik Junior TM (TJ) platform is the basis for all three

robots.  The TJ body was designed by Dr. Keith Doty with the intention of building a

fully autonomous robot which would require an absolute minimum amount of hardware.

An M68HC11E2 micro-controller is the brain of each robot, directly controlling all robot

behaviors and subsystems.  There are only two types of sensors on each TJ:  40kHz

infrared detectors and bump sensors, however, these sensors are shared by several

subsystems and behaviors.  Below (Figure 1: Functional Block Diagram) is a

block  diagram showing the relationships between the robot’s behaviors and sensors.

Object Avoidance

Following

Speed Regulation

Collision Detection

IR emitters

IR detectors

Bumper

HC11

Figure 1: Functional Block Diagram



EEL5666: Intelligent Machine Design Iván Zapata
Final Report - 12/9/96 Dr. Keith L. Doty

7

Mobile Platform
The robot platform is a Talrik JuniorTM body, which consists of a rectangular body with a

disk-shaped top (see Figure 2: TJ body).  The platform is designed to hold two motors

and a single chip computer board

(Novasoft MSCC11).  The two motors

are lined up along the robot’s center,

so the robot can essentially spin in

place.  The body also has a

compartment for six AA size

batteries.

Actuation
The only type of actuation present in each robot are two servo motors for locomotion.

Since one of the specifications of this project was to have a minimal amount of hardware,

servo motors were preferable to regular DC motors for control purposes.  DC motors

would have required some type of motor driver hardware, since the microprocessor could

not possibly supply enough current to drive the motors.  Servo motors, on the other hand,

do not require any type of driver, they are controlled with a TTL-level signal, and drain

power directly off a power supply.  Servo motors, however, are usually used in

applications that require precision within a limited range of motion, so they must be

slightly modified so that they can provide an unlimited range of motion. Motion control

in a servo is usually accomplished as follows:  a periodic signal is sent to the servo’s

circuitry, telling it where to move within its range of motion (about 180 degrees).  The

Figure 2: TJ body



EEL5666: Intelligent Machine Design Iván Zapata
Final Report - 12/9/96 Dr. Keith L. Doty

8

servo’s shaft will turn to that position and stay there as long as the same signal keeps

being fed to the servo.  If the signal changes, the shaft will turn to the position specified

by the new signal.  If no signal is given, the servo won’t move at all.  The servo circuitry

always knows the position of the shaft through a feedback potentiometer.  The

potentiometer is coupled to the servo’s output gear, so that at different positions, the

potentiometer will have different resistance.  Another characteristic of the servo that is

very useful is that it moves at different speeds according to the change of position desired.

For instance, if the servo is at 0o, and it is given a signal to go to 180o, it will begin

turning at a maximum speed, and as the destination point is approached, speed decreases

until it reaches zero.  With these principles of operation in mind, consider modifying the

servo in the following manner: de-couple the feedback potentiometer from the output

gear so that the gear can turn without moving the potentiometer’s shaft, then turn the

potentiometer shaft to its middle position, and remove any hardware that keeps the servo

from turning 360o (in this case, a small stop on one of the gears - see Appendix for

Figure).  By leaving the potentiometer in its center position, the servo circuitry will

always behave as though the servo were in its center position.  Therefore, if a signal is

sent to the servo telling it to move to its center position, the circuitry will think that the

shaft already is at the center position, so the motor will not move.  If a signal is given to

the servo telling it to move to one of its extremes (0 or 180 degrees), the circuitry will

start turning the motors toward that position, but since the potentiometer is no longer

attached to any moving parts, it keeps telling the circuitry that the servo is in its center

position, so the motor will keep on turning at full speed.   Also, if a signal is given to the

servo to move to a point close to its center position, it will turn very slowly toward that



EEL5666: Intelligent Machine Design Iván Zapata
Final Report - 12/9/96 Dr. Keith L. Doty

9

position.  In this manner, the servo motor can be used just like a DC motor, but without

the need for motor drivers.  The three-pin connectors from the servo motors were

connected to ground, V+ (power supply voltage ~7.2V), and an output pin from the

HC11.  The servos used in these robots are rated at 5V for supply power, so supplying

them with 7.2 volts created some problems.  The most evident of these problems is an

unstable region of operation when the motor is told to go at a certain speed.  Within a

speed range, and in only one direction, the motor vibrates pretty hard.  I am not certain of

the cause of this odd behavior, it may have something to do either with the motor’s

brushes, or the servo circuitry.

Software control of the servos was regulated by one of the HC11’s output compare

timers, and was interrupt-driven.  The signal fed to each servo must be periodic, with a

Motor Speed vs. Duty Cycle
for 5V pow er supply

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

2000 2200 2400 2600 2800 3000 3200 3400 3600 3800 4000

Num ber of E-clock cycles

A
n

g
u

la
r 

sp
ee

d
 (

re
v/

se
c)

Figure 3: Motor Speed vs. Signal Duty Cycle (5V supply)



EEL5666: Intelligent Machine Design Iván Zapata
Final Report - 12/9/96 Dr. Keith L. Doty

10

frequency of 50Hz, and a duty cycle ranging from 5% to 10%.  A single output compare

produces a 100Hz signal which is in fact the two motor signals shifted by 180o.  Two bits

from one of the HC11’s output ports (Port B)  control the two motors.  As Figure 3:

Motor Speed vs. Signal Duty Cycle (5V supply) and Figure 4: Motor Speed vs. Signal

Duty Cycle (7.2V supply) show, the speed of each motor depends on the duty cycle of the

control signal sent to that motor.  On these two figures, speeds caused by duty cycles

between 5% (2000 clock cycles) and 7.5% (3000 clock cycles) are in the

counterclockwise direction, and speeds corresponding to  7.5% - 10%  duty cycles are

clockwise. Figure 4 Figure 4: Motor Speed vs. Signal Duty Cycle (7.2V supply)shows

that when the 7.2 power supply is driving the servos, their speed response is different..

While the speed curves in Figure 3 have a downward curvature, the curve in Figure 4 has

an upward curvature, which means that a higher voltage supply slightly alters the motor’s

Motor Speed vs. Duty Cycle
for 7.2V pow er supply

0

0.2

0.4

0.6

0.8

1

1.2

1.4

2000 2100 2200 2300 2400 2500 2600 2700 2800 2900 3000

Num ber of E-clock Cycles

A
n

g
u

la
r 

sp
ee

d
 (

re
v/

se
c)

Figure 4: Motor Speed vs. Signal Duty Cycle (7.2V supply)



EEL5666: Intelligent Machine Design Iván Zapata
Final Report - 12/9/96 Dr. Keith L. Doty

11

speed response.  Also, the higher voltage causes the motor to behave erratically at a

certain range of speeds, in Figure 4 this range is between 2700  and 2900 clock cycles

Sensors

Infrared Emitters and Detectors:
IR-based sensors form the bulk of each TJ’s sensory suite.  Infrared emitters and detectors

are used by several systems such as collision and object avoidance, recognition of other

robots,  “following” behavior, and speed regulation, all of which will be explained later.

All infrared-light detectors on the robots respond to 40kHz modulated IR light, which

results in the need for some type of current modulation.  Usually, simple hardware such

as a 555 timer or counters are very effective at modulating current through an infrared

LED for this type of applications, but, in the spirit of cutting down on hardware, each TJ

drives all LED’s directly with the HC11 microprocessor.  Such a task presents a very

relevant timing issue: can the HC11 provide a 40kHz signal without disturbing any

processes that may be running?  A 40kHz square wave has a period of 25µs, but that

period includes an “on” time (when the signal is high) and an “off” time (signal is low),

which means that an action must occur every 12.5µs.  It is impossible for the HC11 to

produce interrupts that fast, which means that if the modulating signal is going to be

produced by the processor, all other processes must be put on hold.  If the HC11 is going

to be producing the 40kHz signal, the processor must produce the signal in such a way

that other processes are not kept from functioning properly.  A solution to this problem is

to produce the IR signal in short, regular bursts, leaving enough time for other processes

to proceed normally.



EEL5666: Intelligent Machine Design Iván Zapata
Final Report - 12/9/96 Dr. Keith L. Doty

12

Working Principles and implementation
One of the basic assumptions of this method is that producing a short burst of infrared

light will allow the IR detector to provide reliable, repeatable data, just as well as a

continuous beam of IR would.  In order to check this assumption, the voltage vs. time

response of  one of the detectors being used is the first factor to be considered.

The type of sensor used for this research was a Sharp GP1U58, modified to produce an

analog voltage output, rather than a digital output (see “Sensor Hack…”- Doty, de la

Iglesia).  Because of capacitive effects from the sensor’s output stage, the voltage on the

sensor’s output pin follows a charge curve which is relatively slow.  From the time the

Figure 5 Voltage Response of Sharp IR Sensor



EEL5666: Intelligent Machine Design Iván Zapata
Final Report - 12/9/96 Dr. Keith L. Doty

13

sensor first detects IR light, it takes about 50 ms for its output to reach a peak value (In

Figure 5 about 2.49 V).  What this time means is that if only a short IR burst is to be

fired, to achieve the sensor’s full reading the duration of the burst must be at least 50 ms.

If the burst were shorter than 50 ms, the voltage on the detector’s output would only

partially climb the curve in Figure 5, giving a value lower than the detector’s peak value.

However, assuming that the burst will always last the same amount of time, the voltage

output of the sensor would in fact be repeatable and reliable, albeit not ‘correct’ for the

amount of IR light being detected.  A single burst of IR light will certainly not cause the

detector to reach full voltage, however, periodic bursts will cause the detector to slowly

climb the charge curve until it eventually reaches the peak value.

The software implementation of this method consists of letting an output compare timer

produce the IR burst every 20ms, and immediately taking analog readings.  These

readings are stored in a global array, and this array is not modified until the next time the

LED’s are fired.  Each time a program reads the global array, it will get the last valid

detector value.

Each TJ has 3 infrared LED’s mounted on its body: 2 facing forwards and one facing

back.  The function of the back LED is to make the robot visible to other robots which

may be following behind.  The LED’s are wired so that they can be turned on all at the

same time or only the back one be turned on.  There are also 2 infrared detectors facing

forward at a slightly outward angle and one facing back on each robot.

Bump sensors



EEL5666: Intelligent Machine Design Iván Zapata
Final Report - 12/9/96 Dr. Keith L. Doty

14

Each robot is equipped with a bumper that lets the robot know when it has run into an

object or when something has run into the robot.  The circuitry for the bump sensor is

extremely simple:  when the robot is bumped, one of three switches will be closed.  These

switches are connected to an input port on the HC11 with a pull-down resistor, so that

when one of the switches is closed, the input pin will go high.  Implementing this system

in software is as simple as polling the input bit, so that when it goes high, the robot will

react accordingly.

Behaviors

Object avoidance
Object avoidance relies on the front IR LED’s and detectors to detect obstacles in the

robot’s path.  Object avoidance is the state in which the robot is most of the time.  When

there is an obstacle in front of the robot, the IR light will bounce off and be perceived by

the detectors.  The algorithm I used for object avoidance follows the Braitenburg method

of each motor being controlled by a single sensor.  To explain this in one sentence, each

detector’s output was normalized by the program to correspond to a motor speed.  This

can be accomplished very easily by finding the detector’s full range of output values (in

this case, 84 to 118), determining the range of motor speeds from full forward to full

backward (2000 to 4000), and finding a linear relationship between the two.  This means

that when a detector gets a minimum reading (84), the robot assumes there was nothing in

front, and the motor corresponding to that detector moves at full forward speed.  When a

detector gets a maximum reading (118), the corresponding motor turns at full reverse

speed.  All detector values in between these maximum and minimum are normalized to

motor speeds between full reverse and full forward.  One problem with this method is the



EEL5666: Intelligent Machine Design Iván Zapata
Final Report - 12/9/96 Dr. Keith L. Doty

15

“Braitenburg Trap” when both detectors read a value corresponding to zero motor speed,

and the robot does not move.  To make up for this, the robot has a “boredom” response,

so that if the both motors have stayed at a very low speed for a certain period of time, the

robot will charge whatever is in front.  The reason why the robot will charge, is because

Braitenburg traps can be flat walls, a corner, or a very narrow corridor.  If the trap

presented to the robot is one of the first two, the robot would ram the wall or corner, and

its bump sensors will tell it to turn around and leave.  However, if the trap happened to be

a very narrow pass, the robot will charge, and if it doesn’t hit anything after a specified

period of time, it will resume obstacle avoidance behavior.

Robot Following
Each TJ will periodically (almost twice a second) look for another TJ.  To look for

another TJ, the robot turns off its front IR emitters, waits for the infrared detectors to

discharge (~100 ms), and then takes a reading from the detectors.  If the detectors read

anything besides a minimum, the light going into the detectors must be coming from

another robot, so the TJ goes into robot following mode.  In robot following mode, the

two front LED’s are off, only the back LED is on, and this is done for two reasons.  First,

if the front IR emitters were to go on, the robot could not differentiate between its own

light and the one coming from the robot in front.  Also, if all LED’s were turned off while

the TJ was following, no other TJ’s could follow it, so the back LED must be left on.  To

determine which way to turn, the robot will take readings from both sensors and take one

of the following courses of action:  if one reading is higher than a certain threshold, and

the other is below, the robot will turn toward the side receiving more IR light. If the

readings are close and both above another, lower, threshold, the robot will go straight



EEL5666: Intelligent Machine Design Iván Zapata
Final Report - 12/9/96 Dr. Keith L. Doty

16

ahead, and if both readings are both below this second threshold, the robot will assume it

has lost the other TJ, give up following  and return to object avoidance.

If the robot’s bumper is activated during the ‘following’ behavior, it will assume it has hit

the robot it was following, and will reduce the speed at which it was following.  This

behavior proved to be harder than anticipated, especially because the hacked IR detectors

were not always matched, that is, they produced slightly different outputs.  To solve this

problem, I used the brute force method of testing detector pairs until I found a pair that

was very close.

Speed Regulation
At regular time intervals, the robot will “look back” by reading its third IR detector to see

if any other robots are following.  Each TJ will only look back after it has traveled in a

straight line for a given amount of time, that way it will know it is not looking at an

obstacle it may have just avoided.  If the TJ determines that another robot is, in fact,

following, it will slightly reduce speed and allow the other robot to catch up to him.

When the TJ is hit from behind by the other robot, it will resume normal speed.  This

behavior was added to keep the robots traveling in a tight pack.

Collision Detection
The collision detection behavior/system is connected to all other behaviors.  During

collision avoidance, when a front bump is detected, the robot will back up, turn for a

random amount of time, then resume collision avoidance.  During the ‘following’

behavior, if a front bump is detected, the robot knows it has caught up to the robot in



EEL5666: Intelligent Machine Design Iván Zapata
Final Report - 12/9/96 Dr. Keith L. Doty

17

front.  Finally when a robot has determined that another TJ is following it, it will slow

down until it feels a bump from the back, then resume normal speed.



EEL5666: Intelligent Machine Design Iván Zapata
Final Report - 12/9/96 Dr. Keith L. Doty

18

Conclusion

This project established the feasibility of building a simple robot which contains no

circuitry besides a microcontroller chip, in this case, an M68HC11E2.  All three robots

successfully followed each other and traveled in a straight line, although this behavior

proved to be more complex than expected.  With a more sophisticated sensor suite, the

group behavior could be greatly enhanced to include elements such as more advanced

robot to robot communication, and the completion of complex group goals.  The

‘following’ behavior is very effective, but could definitely be improved to provide a

smoother response.  After using the motor and infrared driver routines which I wrote, I

am convinced that those could also be optimized either by translating them directly to

assembly language, or by finding tighter algorithms that are as effective.  Code size was

an issue to keep in mind throughout this project, since the E2 microcontroller has only 2K

of EEPROM and 256 bytes of RAM on board.



EEL5666: Intelligent Machine Design Iván Zapata
Final Report - 12/9/96 Dr. Keith L. Doty

19

Appendix

Figures

The figure to the left shows how to modify servo

motors so that they can be operated as regular DC

motors.



EEL5666: Intelligent Machine Design Iván Zapata
Final Report - 12/9/96 Dr. Keith L. Doty

20

Source Code

Motor driver routine: servotj.c
/* servotj.c

• Written by Isaac Green for MIL (Dr. K. Doty, Director)
• The servo’s use OC4 and OC5.  This module was written for the
• Thomas robot, with hopes of extending it for general use in the
• furture.
• Started : 13 OCT 1995 change OC5 to OC1 for Talrik robot

November 2, 1996:

Modified code to utilize a single OC interrupt.  OC2 will control the

timing for both servo motors, and PORTB will provide the I/O pins for

the PWM signals.  This code is intended for use with a Talrik Jr using

a single chip computer board (MSCC11).  Changes by Ivan Zapata

*/

/**************** Includes **************************************/
#include <hc11.h>
#include <mil.h>

/**************** Constants *************************************/
#define PERIOD 40000
#define HALFPERIOD 20000

#pragma interrupt_handler servo_hand
void servo_hand();

unsigned width[2], current_width;
char signal_state;
char servomask[2];

/* current_width was added in case width[] is changed while the signal is

being produced, which produces abnormal (shaking) behavior in the servos

*/

void init_servos(void)



EEL5666: Intelligent Machine Design Iván Zapata
Final Report - 12/9/96 Dr. Keith L. Doty

21

/* This routine initalizes the servos. */
{

INTR_OFF();

  CLEAR_BIT(TCTL1,0xC0);          /* Interrupt will not affect OC2 pin
*/

  width[0] = width[1] = 0;           /* Set PWM’s to 0 first */
  TOC2 = 0;                     /* First OC2 int will occur at TCNT=0 */

current_width = 0;

  signal_state = 0;             /* Initial state of signals */

  PORTB = PORTB & 0x3F;          /* Motors start turned off */
servomask[0] = 0x40;
servomask[1] = 0x80;

SET_BIT(TMSK1,0x40);         /* Enable OC2 interrupt */

INTR_ON();

}

void servo(int index, unsigned newwidth)
/* Sets a servo to a certain pulse width */
{

/*  if (index)

width[1] = newwidth;

else

width[0] = newwidth;*/

asm(“ldab %index \n”

“asrb \n”
“ldy #_width \n”
“aby \n”
“ldd %newwidth \n”
“std 0,Y”);

}

void servo_hand ()

{
char odd;
int index;
unsigned int pwidth;

/*
signal_state = 0  -> Turn on servo0
signal_state = 1  -> Turn off servo0



EEL5666: Intelligent Machine Design Iván Zapata
Final Report - 12/9/96 Dr. Keith L. Doty

22

signal_state = 2  -> Turn on servo1
signal_state = 3  -> Turn off servo1

*/

signal_state &= 0x03;         /* Only use last 2 bits */
index = signal_state;
asm(“ldaa %index \n”

“lsra \n”
“staa %index”);

odd = signal_state & 0x01;

pwidth = *(width+index);

if ((pwidth == 0)&&(!(odd)))

  {

TOC2 += HALFPERIOD;

signal_state++;
  }

else

  {

if (!(odd))

TOC2 += pwidth;

else if (odd)

TOC2 += PERIOD - current_width;

PORTB ^= *(servomask+index);

current_width = pwidth;
  }

signal_state++;

/* Signal 0 will go on bit 6 of PortB, and Signal 1 will be bit 7 */

CLEAR_FLAG(TFLG1,0x40);          /* Clear OC2I flag */

}



EEL5666: Intelligent Machine Design Iván Zapata
Final Report - 12/9/96 Dr. Keith L. Doty

23

Infrared system driver: irtj.c
#include <hc11.h>
#include <mil.h>
#include <analog.h>

/* irmod2() modulates PORTB, bit 0 at 40kHz */

#define PERIOD 40000

#pragma interrupt_handler irread;
void irread();

int analog_value[8], current_mode, discharge_count;

/* void init_ir()

Will initialize the interrupt-driven ir readings for TJ.  OC3 will be used for timing control

*/

void init_ir()

{
int i;

INTR_OFF();

for (i = 0; i < 9; i++)

analog_value[i] = 0;

current_mode = 0;          /* Fire IR LED’s before reading port */

discharge_count = 0;

TOC3 = 10000;

CLEAR_BIT(TCTL1, 0x30);  /* Interrupt will not affect OC3 pin */

SET_BIT(TMSK1, 0x20);    /* Turn on OC3 interrupt */

INTR_ON();

}

void discharge()

{

discharge_count = 7;



EEL5666: Intelligent Machine Design Iván Zapata
Final Report - 12/9/96 Dr. Keith L. Doty

24

analog_value[7] = 0;
analog_value[6] = 0;

}

void ir_mode(int mode)

{
current_mode = mode;

}

int ir_value(int num)

{
int i;
i = analog_value[num];
return i;

}

/* irmod2() modulates PORTB, bit 0 at 40kHz */
void irmod2()
{
  asm(“ldaa    #1\n”
      “ldy    #255\n”         /* 2*(# of IR pulses) */
      “staa    4100\n”);        /* 4100 = Port B */
  asm(“loop : ldaa 4100\n”     /* 4 cycles - necessary */
      “eora #1\n”               /* 2 cycles - necessary */
      “staa 4100\n”           /* 4 cycles - necessary */

“nop\n”
“nop\n”
“nop\n”               /* 8 cycles */
“next : nop”);

  asm(“dey\n”                         /* 4 cycles - necessary */
      “bne loop”);                    /* 3 cycles - necessary */

/* total = 25 cycles = 40 kHz*/

asm(“ldaa 4100”);              /* Clear Port B - Turn LEDs off */

asm(“anda #254”);

asm(“staa 4100”);

}

/* irmod3() modulates PORTB, bit 1 at 40kHz */
void irmod3()
{
  asm(“ldaa    #3\n”
      “ldy    #255\n”         /* 2*(# of IR pulses) */
      “staa    4100\n”);        /* 4100 = Port B */
  asm(“loop : ldaa 4100\n”     /* 4 cycles - necessary */
      “eora #3\n”               /* 2 cycles - necessary */
      “staa 4100\n”           /* 4 cycles - necessary */

“nop\n”
“nop\n”
“nop\n”               /* 8 cycles */
“next : nop”);

  asm(“dey\n”                         /* 4 cycles - necessary */



EEL5666: Intelligent Machine Design Iván Zapata
Final Report - 12/9/96 Dr. Keith L. Doty

25

      “bne loop”);                    /* 3 cycles - necessary */
/* total = 25 cycles = 40 kHz*/

asm(“ldaa 4100”);              /* Clear Port B - Turn LEDs off */

asm(“anda #253”);

asm(“staa 4100”);

}

/*Calls the modulator and then reads the analog ports */

/* Care should be taken since it also kills interrupts

for that period of time*/

/* irread() is the interrupt handler */

void irread()

{
if ((!(current_mode))&&(!(discharge_count)))

irmod2();

else if ((current_mode)&&(!(discharge_count)))

irmod3();

analog_value[7] = analog(7);
analog_value[6] = analog(6);

if (discharge_count)

  {
discharge_count = discharge_count - 1;
analog_value[7] = 0;
analog_value[6] = 0;

  }

TOC3 += PERIOD;

CLEAR_FLAG(TFLG1, 0x20);

}



EEL5666: Intelligent Machine Design Iván Zapata
Final Report - 12/9/96 Dr. Keith L. Doty

26

Main program: Chase9.c

/*
  10.28.96
  This program was written for a Talrik Junior platform in order to
  achieve collision avoidance. Ivan Zapata
 */

#include <servotj.h>
#include <hc11.h>
#include <mil.h>
#include <irtj.h>
#include <analog.h>
#include <vectors.h>

#define ZEROL  3000   /* Servo signals */
#define ZEROR  3000
#define FORWL  2250
#define FORWR  3500
#define BACKL  3500
#define BACKR  2400
#define RVOFF 6148
#define LVOFF -498
#define SENSORMIN 85
#define SENSORMAX 118
#define LEFT_SERVO 0
#define RIGHT_SERVO 1
#define SELF  0
#define OTHER 1
#define ATTENTIONSPAN 5
#define BACKTH1 100
#define BACKTH2 88

void turn(void);
void follow(void);
void catch_up(void);

char backpeak, followed, bored, lastback;
int vdec, straight, rv, lv;

int main(void)
{
  int rval, lval, attentionflag;
  int trapped;

  int i, j;
  char c;

  init_servos();



EEL5666: Intelligent Machine Design Iván Zapata
Final Report - 12/9/96 Dr. Keith L. Doty

27

  init_analog();
  init_ir();
  ir_mode(SELF);

  DDRC = 0x02;           /* PORTC is input except for bit 2*/

  backpeak = 0;
  followed = 0;
  lastback = 0;
  bored = 0;
  vdec = 0;
  straight = 0;
  trapped = 0;

  attentionflag = ATTENTIONSPAN;

  while(1)
  {

/* servo0 = left, servo1 = right */
/* PE6 is on the right, PE7 is on the left */

    rval = ir_value(6);              /* Get sensor readings */
    lval = ir_value(7);

    if (rval < SENSORMIN) rval = SENSORMIN;
    if (lval < SENSORMIN) lval = SENSORMIN;

    rv = -(rval << 5) + RVOFF;    /* Calculate indexes */
    lv = (lval << 5) + LVOFF;

    catch_up();

    servo(RIGHT_SERVO, rv);            /* Set actual servo speed */
    servo(LEFT_SERVO, lv);

    attentionflag--;

    if(PORTC & 0x20)
    {
      servo(LEFT_SERVO, BACKL);
      servo(RIGHT_SERVO, BACKR);
      for(i = 0; i < 25000; i++);
      turn();
      ir_mode(SELF);
    }

    if (!(attentionflag))
    {
      discharge();
      ir_mode(OTHER);



EEL5666: Intelligent Machine Design Iván Zapata
Final Report - 12/9/96 Dr. Keith L. Doty

28

      do
      {
         rval = ir_value(6);
      }
      while (rval == 0);
      for(i = 0; i < 6000; i++);
      rval = ir_value(6);
      lval = ir_value(7);

      if ((rval > 98)||(lval > 98))
      {
        follow();
      }

      ir_mode(SELF);
      attentionflag = ATTENTIONSPAN;
  }

  if((rv > 2900) && (rv < 3100) && (lv > 2900) && (lv < 3100))
    trapped++;

  if (trapped > 255)
  {
    trapped = 0;
    ir_mode(OTHER);
  }

  for(i = 1; i < 2500; i++);

  }
}

void catch_up()
{
  int i, j;

    i = ir_value(2);
    if ((i > BACKTH1)&&(!(followed)))
    {
      bored = 0;
      j = 0;
      backpeak = 0;
      while(!(followed)&&(!(bored)))
      {
        servo(RIGHT_SERVO, rv);
        servo(LEFT_SERVO, lv);
        rv--;
        lv++;
        for (i = 0; i < 50; i++);
        j++;



EEL5666: Intelligent Machine Design Iván Zapata
Final Report - 12/9/96 Dr. Keith L. Doty

29

        if (j > 3900) bored = 1;

        if (rv < (ZEROR + 100)) rv = ZEROR+100;
        if (lv > (ZEROL - 100)) lv = ZEROL-100;
        if (PORTC & 0x01) followed = 1;
        lastback = i;

      }
      if (bored) followed = 0;

    }

    i = ir_value(2);
    if (i != lastback)
      lastback -= i;
    if ((i > backpeak)&&(followed))
    {
      backpeak = i;
    }
    else if((lastback > 0)&&(followed))   /* decreasing */
    {
      vdec += 100;
      rv -= vdec;    /* decrease speed */
      lv += vdec;
      if (rv < (ZEROR + 100)) rv = ZEROR + 100;
      if (lv > (ZEROL - 100)) lv = ZEROL - 100;

    }
    else if ((lastback < 0)&&(followed))
    {
      vdec = 0;
    }
    if (i < BACKTH2)
    {
      vdec = 0;
      followed = 0;
    }

    lastback = i;

}

void follow(void)
{
  int r, l, i, j;
 /* int ract, lact, rlast, llast;*/
  SET_BIT(PORTC, 0x02);
  l = ir_value(6);
  r = ir_value(7);

  rv = FORWR;    /* Calculate indexes */
/*  rlast = FORWR;*/
  lv = FORWL;



EEL5666: Intelligent Machine Design Iván Zapata
Final Report - 12/9/96 Dr. Keith L. Doty

30

/*  llast = FORWL; */

  while ((r > 90) || (l > 90))
  {
    if ((l > 110)&&(r < 105))
    {
/*      rv -= (r-l) <<  2;*/
      lv = 3500 - (r >> 5) + 2050;
      rv = FORWR;
    }
    else if ((r > 110)&&(l < 105))
    {
/*      lv += (r-l) << 2 ;*/
      rv = l >> 5;
      lv = FORWL;
    }
    else
   /* if ((r > 110)&&(l > 110))
      if ((r < 110)&&(l < 110))*/
      {
        rv = FORWR;
        lv = FORWL;
      }

    if (rv < ZEROR) rv = ZEROR;
    if (lv > ZEROL) lv = ZEROL;

 /*   ract = rlast + ((rv - rlast) >> 4);
    lact = llast + ((lv - llast) >> 4);*/

    servo(RIGHT_SERVO, rv);
    servo(LEFT_SERVO, lv);

/*    rlast = ract;
    llast = lact;*/

    l = ir_value(6);
    r = ir_value(7);
  }
  CLEAR_BIT(PORTC, 0x02);
}

void turn()
{
 int i;
 unsigned rand;

 rand = TCNT;

 if (rand & 0x0001)



EEL5666: Intelligent Machine Design Iván Zapata
Final Report - 12/9/96 Dr. Keith L. Doty

31

 {
   servo(RIGHT_SERVO, FORWR);
   servo(LEFT_SERVO, BACKL);
 }
 else
 {
   servo(RIGHT_SERVO, BACKR);
   servo(LEFT_SERVO, FORWL);
 }
 for (i = 0; i < rand; i++);
}


