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Abstract

This paper discusses the design of Clyde, an autonomous house robot. Clyde’s goal is to

explore its world and survive in a cluttered home environment. The robot perceives its
surroundings using an array of inexpensive sensors including five forward-looking

infrared proximity sensors, an integral bump sensor, wheel encoders, and a compass. The
robot has several behaviors that enable it to explore a hostile environment. Clyde can
avoid obstacles, escape from corners, beconfeustrated, andmigrate in a particular

direction. The robot uses a combination of subsumption and neural-net based
architectures to arbitrate between these different behaviors.



Executive Summary

Clyde is an autonomous house robot that | designed to explore its surroundings and
survive in a cluttered home environment. The robot has a round platform with a dome-
like shell that serves as an integral bump sensor. The platform has two drive wheels and
atail-skid. Clydeiscontrolled by a 68HC11 microprocessor running compiled C
software. The robot perceives its surroundings using an array of inexpensive sensors
including five forward-looking infrared proximity sensors, eight bump sensors, two wheel

encoders, and a compass.

The robot has several behaviors that enable it to explore a hostile environment. Clyde
can avoid obstacles, escape from corners, become frustrated, detect motor stalls, and
migrate in aparticular direction. The robot uses a combination of subsumption and

neural-net based architectures to arbitrate between these different behaviors.

For the most part, Clyde was successful in his role as a house robot. The robot’s robust
bump sensor design and maneuverable platform allow it to navigate through cluttered
environments. The neural net obstacle avoidance and migrate behaviors also work fairly
well. The motor stall detection behavior has mixed results. The routine will detect most
stalls and wheel slippage, but it sometimes triggers falsely and occasionally does not

trigger at all. Overall, Clyde is a successful robot with the potential for future expansion.



Introduction

This paper is about Clyde, an autonomous house robot. Clyde’s purpose is to explore its
world and survive in the cluttered environment that we humans call home. This is not as
simple as it may sound. Although the living room or kitchen of an average home may
seem comfortable and secure to human eyes, mobile robots see a world full dangerous
obstacles. Chair legs, clothes on the floor, and stairs can be serious hazards to an
unsuspecting robot. Clyde’s goal is to navigate through such an environment without

getting trapped or stuck on any obstacles.

The robot requires several major components in order to accomplish its mission. First of
all, Clyde needs a mobile platform capable of navigating through a crowded room. The
robot must also have motors to propel itself and sensors to detect its environment. In
order to explore a room, Clyde needs behaviors to avoid obstacles and find unknown
territory. Finally, the robot needs a method to integrate all of these components into one

useful system.

In this report, | will describe the mechanical, electrical, and behavioral systems that
enable Clyde to survive in a complex environment. | will first introduce the robot’s
design at a system level, and then describe each of Clyde’s subsystems. Finally, I will

discuss each of Clyde’s behaviors and evaluate the robot’s performance.



Integrated System

Hardware

| chose to use a 68HC11E9 microprocessor as the controller for the robot. | used a
standard Motorola EVBU board with Novasoft's ME11 kit, which adds 32k of RAM,
motor drivers, and several I/O ports to the system. | designed a battery-backup circuit for

the 32k RAM which is described in Appendix B.

Software

| wrote the robot’s software in C using the ICC11 compiler. In addition to Clyde-specific
code, | wrote several general libraries that can be used for other applications. This
includes routines for multi-tasking, time-keeping, motion control, shaft encoders, IR

sensors and bump sensors.

System Overview

Clyde’s control system has four main components: sensory input, behavioral desires,
behavioral arbitration, and motor actuation. The robot's sensors are sampled by calling
the sampleSensors() function, which takes readings from the sensors and updates the
global sensor output variables. Clyde’s behavioral desires are generated by several
behavior functions which are called in the main program loop. Each behavior gives its

opinion on what the robot’s forward speed and turn rate should be, based upon the current



sensor values. These opinions are then combined by the behavioral arbitrator. For most

of the behaviors, the arbitrator consists of aneural net that sums up the opinions from

each sensor and chooses the most popular course of action. A few behaviors use a
subsumption arbitrator in which a higher priority behavior completely takes control from

the lower level behaviors. Finaly, after the behaviors have been arbitrated, the
motionControl() routine updates the robot’s forward speed and turn rate. This routine

also smooths the motor response and performs motor speed calculations.

Neural Net

The object avoidance and migrate behaviors are combined using a very simple neural net
system. Each behavior has one or more neurons that give opinions on what the robot’s
current speed and turn rate should be. The robot has five possible forward speeds (fast,
medium, slow, very slow, and reverse), and five possible turn rates (hard left, soft left,
straight, soft right, and hard right). Each neuron in the net gives an opinion on each one
of these possible speeds and turn rates. The benefit of this system is that the system
designer can consider each neuron’s opinion independently, and then the neural net will
combine all the opinions together and arbitrate between them. Figure 1 shows an

example of how the opinions for an IR proximity sensor are determined.

Figure 1: Neural Net Transfer Functions
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As one can see from the Figure 1, the opinions for this neuron are dependent upon the

amount of IR reflection. When no reflection is detected, the neuron has no opinion on the

robot’s movement, which allows other neurons to control the robot’s turn rate. As the IR
reading increases, however, this neuron gives stronger opinions about where it would like
to turn and where it does not want to turn. Since this is a left IR sensor, as the IR reading

increases, the robot will tend to turn right in order to avoid the approaching object.

After the opinions for each neuron have been generated, the neuron’s opinions are
multiplied by an associated weight factor. This factor allows the system designer to give
certain behaviors more influence over the robot’s behavior. For example, the bump
sensor neurons have a greater weight than the IR sensor neurons. After this step, the
weighted opinions on each subject are added together, and the speed and turn rate with

the highest opinions are selected to control the robot.

Mobile Platform

The robot chassis is one of the most important features of a mobile robot. The chassis
serves as the “body” for the robot, allowing the machine to interact with its environment.

Clyde must be able to explore and navigate through a cluttered and changing
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environment, so the platform must be very maneuverable. The robot must also be able to
survive collisions with obstacles, and not get stuck by running over small objects on the

floor. This means that the design must be as robust as possible.

In order to satisfy these objectives, | chose to use around platform with two drive wheels

and atail-skid. A sketch of the platform is shown in Figure 2. One benefit of this chassis
design is that the robot can spin in place with very little possibility of bumping into an

object during aturn. This makes the robot very maneuverable in tight situations. The

platform is 10 %2 inches in diameter, and made out of 1/4 inch thick birch plywood. The

plywood is strong, light weight, and very easy to work with.

Figure 2: Mobile Robot Platform /\h /ﬂ\
Bottom and Side Views 0 O O [
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The platform has two holes for mounting the wheels and drive motors. The two drive

motors are modified model airplane servos that turn 3-inch rubber wheels. | mounted the
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modified servos such that the bottom of the servos are flush with the bottom of the main
platform. This configuration alows as much ground clearance as possible without
anything protruding below the platform that will cause the robot to get stuck on small
objects. Since the robot rides fairly low to the ground, | decided to use atail-skid instead
of arear caster wheel. Thetail-skid, which | constructed from half of a ping-pong ball, is

simple, light weight, and effective.

The most interesting feature of thisrobot platform is the outer shell which servesasa
bump sensor. The outer shell is alarge plastic bowl which encloses the entire robot. A
wire frame supports this dome, which pivots on a single screw at the top of the robot. |
mounted ten keyboard switches around the perimeter of the lower platform. When the
robot bumps into an object, the shell tilts, and some of the switches are depressed. The
goal of thisshell isto detect a collision, no matter what part of the robot bumps into an

obstacle.

Actuation

Drive Motors

The main actuators used on Clyde are the drive motors. The drive motors must provide
adequate torque to maneuver the robot, have alow power consumption, and also have an
acceptable top-end speed. In addition to these performance requirements, the motors

must also be durable enough to sustain constant use and stresses on the gear train.
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The motors used in model-airplane servos meet these requirements, and aso have other
desirable qualities. The servo motors are small, efficient, and durable. They also provide
enough torque and speed for use on small robots. The best features of these motors,
however, are the internal gearing, the ease of mounting, and their low price. These
motors have been used with much success on many robots created in previous intelligent

machine courses.

I modified two servos for continuous rotation using a technique demonstrated by Scott
Jantz, one of the lab assistants. This process involved cutting the gear-stops on the
internal gears, and then removing all of the electronics from the inside the servos. After
this step, | soldered the servo connector wires directly to the motors. The two motors are
driven by a SN754410 motor driver chip on the ME11 expansion board. The
microprocessor can control the speed and direction of each motor by sending pulse-width
modulated (PWM) and select signals to the motor drivers. | used Professor Doty’s

motor.c library file to drive the motors in my ICC11 programs.

Sensors

In order for a robot to navigate and interact with other objects, the robot must have some
sense of its environment. Clyde perceives his surroundings using an array of inexpensive
sensors. These sensors include infrared proximity sensors, an integral bump sensor,

wheel encoders, and a compass.
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Infrared Proximity Sensors

Clyde has five forward-looking infrared proximity sensors which serve as the robot’s
“eyes.” Clyde uses these sensors to detect approaching objects and avoid collisions. The
five sensors are mounted in a radial pattern on the inside of the robot’s shell, which has
holes for each of the sensors. This configuration protects the sensors from collisions and

provides a wide field of view in front of the robot.

Each sensor consists of a 40kHz modulated infrared LED and a Sharp GP1U58Y infrared
detector. The emitters are controlled and modulated by an output latch on the ME11
expansion board. Each emitter is columnated in a black tube to prevent IR leakage from
saturating the detectors. | modified the Sharp IR detectors to output analog voltages, as
described in lab, and then connected the output of these sensors to the analog inputs of
the 68HC11. |then wrote ICC11 routines to sample and normalize the readings from the

SEensors.

Bump Sensor

Bump sensors are used to detect when the robot has collided with an obstacle and needs
to change course. Ideally, most objects will be detected with infrared proximity sensors
before a collision occurs, but in an unpredictable environment, bump sensors are a
necessity. Since bump sensors are essentially the “last line of defense” for detecting
obstacles, | wanted the Clyde’s sensor to be very reliable. The resulting design was the

pivoting shell configuration described in timebile platform section of this report.
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| placed eight SPST keyboard switches around the perimeter of the robot and interfaced
them to the micro-controller using a 74HC374 8-hit latch. One terminal of each switchis
grounded, and the other terminal is connected to one of the eight latch inputs. | used 10k
pull-up resistors on each of the latch inputs. The latch isread as a memory-mapped input
at address $4000 by using the Y 1 line on the ME11 expansion board as a chip enable for
the latch. Datais clocked into the latch by the 6BHC11 E-clock. The schematic for the

bump sensor interface is shown in Figure 3.

Figure 3: Bump Sensor Interface
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The bump sensor can be polled by a single software read from memory address $4000.
Each bit of the data byte corresponds to the state of a bump switch. The switches are
active low, so adata value of $FF means that no switches are being depressed. | wrote a
set of generic ICC11 functions that allow a user to sample the latch value and determine
which bump sensors are active. | also wrote a specific routine for Clyde’s bump sensor

configuration that allows the robot to determine the direction of the collision.
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Shaft Encoders

Clyde uses a pair of shaft encodersto measure the rotation of the drive wheels. These
encoders allow the robot to determine distance it has traveled, the number of degreesit
has turned, and the current speed of each wheel. Clyde uses thisinformation to measure

forward movement, perform precise rotation, and to determine if the motors have stalled.

The shaft encoders sense wheel rotation by measuring the amount of infrared light
reflected off striped cut-outs glued each wheel. The cut-outs are circular pieces of poster-
board with 16 alternating black and white stripes painted like pie dices. | glued a cut-out
on the outside of each wheel, and then mounted Sharp 2L01 infrared emitter/detector
pairs about a centimeter away from each cut-out. | used a 470 ohm current-limiting
resistor on the infrared emitter and a 1k resistor on the collector of the detector. | then
used a 74HC14 Schmitt-trigger inverter to convert the signalsto 0 - 5V square waves.
The 68HC11 then uses input capture lines IC2 and 1C3 to detect the transitions between

the black and white stripes. The schematic for this circuit is shown in Figure 4.

Figure 4: Shaft Encoder Circuit
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| wrote an ICC11 library to interpret the data from the shaft encoders. The library
includes an initialization routine to set up the system, two interrupt service routines to
process the encoder data, and several other functions that allow the user to read, reset, and

turn off the encoders.

Compass

Clyde has a compass for measuring rotational motion. This sensor is useful for
navigation and calibration purposes. Clyde uses the compass to migrate in a particular
direction, to determineif heistrapped, and to detect excessive whedl dippage. The
compass, which was designed by myself and Kevin McFarlin, uses an optical encoder
from a PC mouse to measure the rotation of afloating magnet. The designisvery

compact and inexpensive. The details of the compass design are shown in Appendix A.

Behaviors

Object Avoidance Behaviors

IR Avoidance

Clyde uses hisfive infrared proximity sensors to avoid the large obstacles he encounters.

Each sensor has a corresponding neuron in the robot’s neural net that gives an opinion on
what it thinks the robot’s current speed and turn rate should be. If a proximity sensor
senses a high level of IR reflection, the sensor’s neuron wants the robot to slow down and

steer away from the approaching object. The opinions from each neuron are all added
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into the neural net, and then the turn rate and speed with the highest opinions are selected

to control the robot.

Delta IR Avoidance

In addition to responding to the magnitude IR reflection, Clyde also responds to a change
in IR reflection on any one sensor. Each proximity sensor has another neuron that gives
an opinion based upon the changein IR reflection since the last sample time. This set of

opinions causes Clyde to react more quickly to objects when traveling at full speed.

Bump Avoidance

When Clyde’s IR sensors fail to detect an object, he must use his bump sensors to
navigate around the obstacle. Just like the IR sensors, each bump sensor has a neuron
that gives an opinion on the robot’s speed and turn rate. The bump sensor opinions,
however, have a much greater weight than the IR sensors in the neural net. This allows

the bump sensors to have priority over the proximity sensors when a bump has occurred.

Escape Corner Behavior

With only the neural-net based object avoidance, Clyde can function very well under
most conditions. Unfortunately, there are a few situations that cause Clyde to get trapped.
One of these situations arises when Clyde is facing a dark (non IR-reflective) corner.

Since the IR sensors sense no reflection, only the bump sensors have an opinion. This

18



causes the robot to bump on the right side, then on the left side, then on the right side...
etc. This is where thescape corner behavior comes in. If Clyde encounters the situation
described above, when he bumps on the right side for the second time in the same
location, he will turn right instead of left. This causes the oscillation to be broken, and

Clyde can escape.

Frustrated Behavior

Occasionally, other situations arise where Clyde oscillates or “freezes” and no collisions
occur. Thdrustrated behavior allows Clyde to escape from these scenarios as well.
When Clyde notices that he has not made much forward progress over a long period of
time, and that his heading is approximately the same, Clyde get “frustrated” with his
progress and turns a random amount. This action usually “frees” Clyde from his trapped

condition, and he can continue exploring.

Motor Stall Detection Behavior

There are some very low objects that Clyde’s bump sensors cannot detect. This includes
clothing, tools, and other small objects that may be lying on the floor of a typical home.
When Clyde encounters one of these objects, the robot may pass over it, the wheels may
get stuck and stop turning, or Clyde might get stuck on top of the object, causing a wheel
to spin freely. The latter two cases could be very bad situations where the robot is
trapped forever. Theall detection behavior is designed to detect either of these

situations and allow Clyde to escape.
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When awheel spinsfreely, the motor speed is faster than normal for a given motor duty
cycle. When awhesl is stuck, the speed islower than expected. The stall detection
behavior takes advantage of thisinformation, and compares the speed of each wheel to an
expected speed for the current duty cycle. If the actual speeds are not close to the
expected speeds, Clyde will stop, move backwards, and then turn. The difficulty with
this scheme isin determining what the expected speeds should be. Idedly, the robot
would adaptively change these values to account for different environments, but currently

Clyde only calibrates the table on startup.

Performance

Mechanical

The mechanical design of the robot worked very well. The most impressive part of this

design isthe integrated bump sensor. The sensor consistently detects collisionsin the

“real world” environment of my cluttered room. The outer shell also provides good
protection for the microprocessor and its sensors. A standard robot would much more
vulnerable to damage in an unpredictable environment. The shell design does have some
disadvantages, however. Mounting the IR sensors, power switches, and serial connector
iIs much more involved than on the standard type robot. The enclosed design also cuts
down on the space available to mount sensors and other components. In spite of these

deterrents, | believe this design is a very good option for “real world” robots.
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Electrical

All of the sensors on the robot proved to be effective. The keyboard switches worked
very well as bump sensors. The switches are cheap, fairly sensitive, and very durable.
The compass worked well when mounted on the robot, and seemed to be repeatable (see
Appendix A). The shaft encoders were also very consistent and reliable. | did not do any
detailed mapping using the encoders, but | suspect that they would work fairly well for
this purpose. The IR sensors worked well, except for some infrared |eakage between the
emitters and detectors that caused the ambient readings to rise above the normal values.
My battery back-up circuit performed flawlessly throughout the semester. | never had to

reload a program due to memory corruption.

Behavioral

In most situations, Clyde’s obstacle avoidance was fairly good. Clyde’s IR sensors do not
always detect dark objects, but the bump sensors detect these objects and allow the robot
to continue. As mentioned in thehaviors section, the object avoidance occasionally

fails and Clyde gets trapped. Fortunately,ftiistrated andescape behaviors usually

allow Clyde to get out of these situations. Sometimes these behaviors may cause Clyde to

look confused, but they usually succeed in allowing Clyde to escape these traps.

The motor stall detection behavior has demonstrated limited success. Currently, Clyde is

able to detect most stall conditions, but sometimes the behavior triggers falsely, and
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sometimes it does not detect stalls. The main difficulties with this behavior are creating
the table of expected speeds (which changes with battery voltage), and avoiding false

triggering when the motors are changing speeds.
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Conclusion

For the most part, Clyde was successful in hisrole as a house robot. Heisableto
navigate through most indoor environments without much difficulty. In very cluttered
areas, Clyde sometimes becomes confused, but he rarely gets trapped or stuck on top of

an obstacle.

The bump sensor design is one of Clyde’s best features, allowing him to survive in
environments where other robots may fail. The neural net system also worked very well,
and produced some very interesting and complex behaviors. The object avoidance and
migrate behaviors integrated well with the neural net, but was very difficult to integrate

the other behaviors using the neural net. Because these behaviors require complete
control of the robot for an extended period of time, | had to use the subsumption form of
arbitration with these routines. The only behavior that | am not really satisfied with is the
stall detection behavior. | believe this idea has promise, but it probably needs an adaptive

algorithm to calibrate itself.
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Appendix A: Compass Sensor Design

Introduction

The objective of this sensor design is to provide an accurate method for monitoring robot
rotation. There are existing sensors for this purpose such as rate gyros and digital
compasses. However, these sensors are expensive -- in the range of $100. The sensor
design addressed in this report -- adigital compass -- is about one-tenth of the cost of a
typical market sensor. Furthermore, because the digital compass will be implemented on
arobot, the design needs to be compact. This can accomplished by mounting the sensor
in a 35 mm film canister with the interface circuitry on a two inch by one inch printed

circuit board.

The digital compass design was realized by hacking an inexpensive Logitech PC mouse.
The hack alows the use of a precision slotted wheel encoder to monitor the orientation of
arare earth magnet which is suspended in a35 mm film canister. Another useful feature
of the PC mouse hack is the serial interface with the microprocessor. Only one dataline

Isrequired to transmit data to the 68HC11.
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Sensor Description

Mechanical Design

The physical design of the digital compassis light-weight and compact. The magnet and
bobber assembly is contained in a 35 mm film canister. A diagram of the sensor is shown
in Figure 1. Two rare earth magnets are epoxied to alead donut, and this lead donut
attaches to the bottom of the fishing bobber. The slotted encoder wheel then attaches to
the top of the bobber and projects through the lid of the film canister. A lower and upper
guide are necessary to center the bobber and the encoder wheel. These guides also serve
to restrict any movement perpendicular to the axis of the assembly. The lower guideis
fashioned from hard plastic and has a hole in its center to align the needle projecting from
the underside of the bobber. The upper guide -- not shown in Figure 1 -- isaguide from
the inside of the mouse housing. This guide fits the shaft of the encoder wheel. A second

compass was designed using a needle shaft and a dlightly different upper guide.
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Figure 5: Compass Mechanical Design
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On one corner of the PC mouse printed circuit board, an IR emitter/detector pair extends
from the board. The IR emitter/detector pair was cut away from the printed circuit board.
Then the pair was positioned on the lid of the film canister and in-line with the slots on
the encoder wheel. Hot glue held the IR emitter detector pair in place and wires were

soldered onto the pair to connect it with the original PC mouse printed circuit board.

Microprocessor Interface
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The compass uses the electronics from a Microsoft two button mouse to communicate

with the Motorola 68HC11 microprocessor via the processor’s Serial Communications
Interface (SCI) system. The serial interface makes this sensor very simple to interface,
and very universal. The compass was designed for use with a M68BHC11 microprocessor,
but it can be interfaced to almost any computer system that has an asynchronous serial

port.
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Serial Protocol

A standard two button mouse uses the serial transmission protocol shown in Figure 2.
Each mouse transmission consists of a series of three data bytes that tell the amount and
direction of rotation for each of the mouse’s two encoder wheels. The mouse only

transmits data when movement or a button action has been detected.

Figure 6: Mouse Transmission Protocol

M crosoft Mouse Operation
Serial UART:. 1200 baud, data=7, stop=1, parity=none

Mouse Protocol of Transm ssion
bit: 7 6 5 4 3 2 1 O
byte 1 (sync) 0 1 L Ry7 y6 X7 X6
byte 2 (dX) 0 0 x5 x4 x3 x2 x1 xO0
byte 3 (dY) 0O O0y5vy4 y3y2yly0
Notes: - all dx, dy, are two’ s conpl enent binary

number s
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The 68HC11 does not directly support the mouse’s “7N1” serial protocol, so the SCI
interface uses an “8N1” protocol instead. Fortunately, this protocol mismatch works just

fine, and bit 8 of each data byte is always received as a logic “1”".

Hardware Interface

The mouse transmits data using RS-232 voltage levels, so we used the MC145407 RS-
232 driver/receiver on the Motorola EVBU board for voltage level conversion. The

EVBU board uses one driver for serial transmission, and one receiver for serial reception.
We placed a mechanical switch in series with the RS-232 receive line so that the user
may select the source of the signal entering the 68HC11 SCI receive pin. The switch
selects either the compass or the EVBU DB25 connector, which is used for PC

communication.

The microprocessor also needs to supply power to the mouse hardware. The mouse uses
two RS-232 lines (one +10 V, and one -10 V) as power supplies. We used the two
unused line drivers on the MC145407 chip to provide these voltage levels. A block

diagram of the hardware interface is shown in Figure 3.
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Figure 7: Hardware Interface for Compass Electronics

BEEHC 11 RS—232 Driver/Receiver Mouse Circuitry

Fower + 100

+5 Fower — 104
0
501 Receive Line AQQ Dato Cut

Ground

Software Interface

The software interface for the compass consists of an initialization routine for enabling
the compass, an interrupt service routine for handling the incoming data, and an output
variable that contains the current heading. The initialization routine configures the SCI
system to interrupt the processor on each incoming data byte. This means that no polling
isrequired, and the processor will only be interrupted when the compass heading
changes. Theinterrupt service routine (ISR) keeps track of which data byte is being
processed and reads the data byte from the SCI port. The ISR then does some bit
manipulation to piece together the change in heading information, and then calcul ates the

new compass orientation.
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Experimental Procedure

We tested the compass by rotating it to severa headings and measuring the error in the
compass readings. This was done by marking headings on atest stand, rotating the
compass to each heading, and recording the compass reading. This allowed usto

determine the average errors for each heading orientation.

We then tested the compass for cumulative error by rotating the compass many
revolutionsin one direction. We also checked the compass for tilt error, although we did

not do aformal experiment.

Results

The data from the compass tests are shown in Tables 1 and 2. Figures 4 and 5 show plots
of the average error in the compass reading for each test heading. The compass seemed
to have alarge error at some orientations. The cause of this error could be a slight
compass tilt, or some magnetic attraction, but we are not certain. The smaller errorsin
most of the readings are due to friction or encoder resolution (about 2 degrees per pulse

of the encoder).
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Table 1: Compass #1 Test Data

Actual Heading [Trial 1 |Trial 2 |Trial 3 |Trial 4 | Avg. Error
0 358 0 358 0 1
30 24 24 21 26 6.25
60 59 51 53 53 6
90 90 80 80 78 8
120 120 101 103 101 13.75
150 147 130 143 130 12.5
180 178 176 172 176 4.5
210 218 206 206 206 3
240 247 239 237 239 3
270 273 270 268 266 2.5

300 302 298 302 300 1.5
330 331 331 333 331 1.5
360 358 0 0 358 1




Figure 8: Compass #1 Error Plot
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Table 2: Compass#2 Test Data

Actual Heading | Trial 1 | Trial 2| Trial 3 | Trial 4 | Trial 5| Trial 6 | Avg. Error
0 0 0 358 358 358 348 3
30 28 32 26 30 30 28 1.33
60 67 63 65 67 70 65 5
90 99 105 95 105 95 99 8.17
120 128 132 124 130 126 122 5.67
150 151 160 151 162 155 149 4.83
180 178 187 183 189 180 178 3.5
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Figure 9: Compass #2 Error Plot
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The compass showed no cumulative error over many rotations, so it worked well in this

respect. The compass has avery large error when it istilted from vertical, so thisisa
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great consideration in mounting and using the compass. The compass also uses very

strong magnets, so it must be mounted away from any type of ferrous materials.

Conclusion

The digital compass design yielded mixed results. The design was successful in severa

areas. The design was inexpensive — approximately $12 — and very compact. The
compass was also easy to interface with the microprocessor and required minimal
processing time. However, the compass had some problems with accuracy. This was
largely due to friction on the compass guides and imprecise assembly techniques. The
performance could be improved with a more refined upper guide design and the use of
precision tools to construct the sensor. Although we did not meet our design goals in

terms of accuracy, the digital compass should still be useful in many applications.
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ICC11 Compass Interface Routine

/**************************************************************************/

/* Conpass |Interface Routines

*/

/**************************************************************************/

/* dobal Qutput Variables

/* Current Heading

unsi gned i nt headi ng=0;

/* Current Speed

int speed = O;

/* Current data byte

i nt byt eNunber=1;

/* CQurrent Pul se Count

i nt pul seCount =0;

/* Pul ses per conpass revol ution

pul sesPerRev = 172;

/* Initialization Routine

*/

*/

*/

*/

*/

*/

*/

*/
*/
*/

*/

*/

*/

*/
*/

*/
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| *
voi d initConpass()

{
/* Initialize variables

byt eNunber = 1,

pul seCount =0;

headi ng = 0;
/* Set up serial port
BAUD = Baud1200;
SCCR1 = Prot 8N1;
SCCR2= Pol I T_IntR

#define SCl _I SR conpassl SR
#pragnma i nterrupt_handl er conpassl SR

voi d conpassl SR(voi d)

{

/* Check if we have an incom ng data byte

if (SCSR & RDRF)

{

/* Change in headi ng
static char dx=0;

Read i ncom ng data byte
inByte = SCDR,

/*
char

/* Process current data byte
switch (byteNunber)

{

case 1 :

dx = (inByte & 0x03) << 6;

*/

*/

*/

*/

*/

*/

*/
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/*

/*

br eak;
case 2 :
dx = dx + (inByte & Ox7F);
pul seCount = pul seCount + dx;
i f (pul seCount < 0)
pul seCount = pul sesPerRev + pul seCount;
else if (pul seCount > pul sesPerRev-1)
pul seCount = pul seCount - pul sesPer Rev;
speed = -dx;
br eak;
case 3 :
br eak;
defaul t:

br eak;

Updat e byte counter
byt eNunber ++;
if (byteNunber>3 || byteNunber < 1)
byt eNunber = 1;

}
el se
{
Clear interrupt flag
int inByte = SCDR;
b

*/

*/

/**************************************************************************/

/* Conpass Test Program

*/

/**************************************************************************/

*/
*/
*/

*/
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/* Test Routine

i nt ol dPul ses;

/* Set up conpass and enable interrupts
i ni t Conpass();
printf("The Conpass is ready...\n");
I'NTR_ON() ;

/* Continuously Display Conpass Data
ol dPul ses=pul seCount ;
whi | e( 1)
{
whi I e (ol dPul ses == pul seCount)
{}

ol dPul ses=pul seCount ;
headi ng = 360 - (unsigned int)(pul seCount+1)*360/ pul sesPer Rev;
printf("%l %\ n", heading, speed);

#i ncl ude "vectorsl.c"

*/
*/

*/

*/

41



Appendix B: Battery Back-up Circuit

| designed a battery back-up circuit for the 32k RAM on ME11 expansion board. The
initial design for this circuit came from aNew Micros Inc. (NMI) 68BHC11 board. |
modified this circuit to suit my needs and match the partsthat | had available. Thefinal

circuit | used (see Figure B-1) looks quite a bit different from the original NMI circuit.

Figure B-1: Battery Back-up Circuit
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My back-up circuit uses two power supply busses. one for the 32k RAM, and one for the
main 68HC11 circuitry. When the main 5V supply is powered by the voltage regulator,
the RAM power is supplied via a diode connected to this supply. When the main power
supply drops below about 4V, the low-voltage inhibit (LV1) chip on the 68HC11 board
holds down the reset (RST) linelow. Since the output of the 3-input NAND gate goes
high when this occurs, the contents of the 32k RAM will not be destroyed by random

memory writes as the battery voltage drops. When the main power supply drops below
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about 3V, the RAM power will be supplied by the 3V back-up power supply through a
second diode. When the main power supply voltage drops low enough that the NAND
gate can no longer operate, the chip enable of the RAM will be held high by a 4.7k pull-
up resistor. Inorder for thislast condition to occur, an LSTTL NAND gate must be used
instead of an HCMOS chip. This hasto do with the output resistance of the chips when

no power supply is applied.



Appendix C: Main Program Code

/**************************************************************************/

/**************************************************************************/

/* */
/* Robot Program */
/* */
/* Features: |R Magnitude Obstacle Avoi dance (Neural Net) */
/* Delta IR ostacl e Avoi dance (NN) */
/* Bunp Sensor Obj ect Avoi dance (NN) */
/* Frustrated Behavi or (Subsunption) */
/* Escape Behavi or (Subsunpti on) */
/* Headi ng Seek Behavi or (NN) */
/* Headi ng Repel Behavi or (NN) */
/* */

IR AR R R R RS SRR R R R R Ry

IR R R RS SRR R R R R R R ARy

/* ________________________________________________________________________ */
/* Include files */
/* ________________________________________________________________________ */

#i ncl ude <mul ti Tsk. h>
#i ncl ude <tinekeep. h>
#i ncl ude <serio. h>

#i ncl ude <notcontr. h>

#i ncl ude <neural.c>

#i ncl ude <function. h>

#i ncl ude "sensors.c"

#i ncl ude "nnconfig.c"

#i ncl ude "nove. c"
/* ________________________________________________________________________ */
/* Defines */



#defi ne not or Ti nreConst ant 4

#def i ne not or Sanpl i ngPeri od 50

AR R R AR EEE LR EEEEEEEEEEEE SRR EEEEEEEEEEEEE SRR EEEEEEEERY

/* */
/* IR Opinions */
/* */

/* Description: Sets neural net opinions for obstacle avoi dance based on */
/* the magni tude of the readings for each IR sensor. */
/* */

/**************************************************************************/

voi d set!|rQpinion()

{

/* ________________________________________________________________________ */
/* Variabl es */
/* ________________________________________________________________________ */

int subject;

int irlndex;
/* ________________________________________________________________________ */
/* Set IR nmagnitude opinion for each turn rate subject */
/* ________________________________________________________________________ */

for (subject=0; subject<nuniTurnSubjects; subject++)

{
for (irlndex=0; irlndex<num R, irlndex++)
{
turnQpi ni on[ subj ect] += irTurnWeight[irlndex] *
pwii near (ir[irlndex],irTurnTF[irlndex][subject], 100);
b
b

/* ________________________________________________________________________ */
/* Set IR nmagnitude opinion for each speed subject */
/* ________________________________________________________________________ */

for (subject=0; subject<nunBpeedSubjects; subject++)

{

for (irlndex=0; irlndex<num R, irlndex++)
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speedQOpi ni on[ subj ect] += irSpeedWei ght[irl ndex]

*

pwLi near (ir[irlndex],irSpeedTF[irlndex][subject], 100);

/**************************************************************************/

/*

/* Delta IR Opinions

/*

/* Description: Sets neural net opinions for obstacle avoi dance based on

/*
/*

the change in the readings for each IR sensor.

*/
*/
*/
*/
*/
*/

/**************************************************************************/

voi d setDel talrOpinion()

/*
/*

/*
/*
/*

{

int subject;

int

for (subject=0;

{

i rlndex;

for

{

subj ect <nunilur nSubj ect's; subj ect ++)

(irlndex=0; irlndex<num R, irlndex++)

t ur nQpi ni on[ subj ect]

+= del tal r TurnWei ght [ i r| ndex]

*

*/
*/
*/

*/
*/
*/

pwii near (del tal Rl irlndex],deltalrTurnTF[irlndex][subject]

,100);
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________________________________________________________________________ */
Set delta IR opinion for this speed subject */
________________________________________________________________________ */
for (subject=0; subject<nunBSpeedSubjects; subject++)
{
for (irlndex=0; irlndex<num R; irlndex++)
{
speedOpi ni on[ subj ect] += deltal rSpeedWei ght[irlndex] *
pwLi near (del tal R i rlndex], del talrSpeedTF[irlndex][subject]
, 100);
H
b
}

/**************************************************************************/

s
s
s
s
s
s

Bunp Opi ni ons

Description: Sets neural net opinions for obstacle avoi dance based on

t he bunmp sensors.

*/
*/
*/
*/
*/
*/

/**************************************************************************/

voi d set BumpQpi ni on()

/*
/*

/*
/*
/*

{

int subject;

i nt bunpl ndex;

Adj ust notor tine constant so robot reacts quickly when bunp occurs

if (anyBunmp())
set Mot or TC( 1) ;
el se

set Mot or TC( not or Ti nreConst ant ) ;

*/
*/
*/

*/
*/
*/
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/* ________________________________________________________________________ */
/* Set opinions for each bunp sensor on each turn rate subject */
/* ________________________________________________________________________ */

for (subject=0; subject<nunmlurnSubjects; subject++)

{
for (bunpl ndex=0; bunpl ndex<nunBunp; bunpl ndex++)
{
turnQpi ni on[ subj ect] += bunmpTur nWéi ght [ bunpl ndex] *
bunp[ bunpl ndex] * bunpTur nOpi ni on[ bunpl ndex] [ subj ect];
h
H
% il */
/* Set opinions for each bunp sensor on each speed subj ect */
% il */

for (subject=0; subject<nunBpeedSubjects; subject++)

{
for (bunplndex=0; bunpl ndex<nunBunp; bunpl ndex++)
{
speedQpi ni on[ subj ect] += bunpSpeedWei ght [ bunpl ndex] *
bunp[ bunpl ndex] * bunpSpeedOpi ni on[ bunpl ndex] [ subj ect];
b
b

/**************************************************************************/

/* */
/* Seek Headi ng Opi nion */
/* */
/* Description: Sets neural net opinions that cause the robot to seek */
/* t he heading specified by the seekDirection paraneter. */
/* */

/**************************************************************************/
voi d set SeekHeadi ngOpi ni on(int seekDirection)

{
int diff = headi ngDi ff(getHeading(), seekDirection);
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turnQpi ni on[ hardLeft] += headi ngSeekTur nWi ght *

pwLi near (di ff, headi ngSeekHL, 180) ;

turnQpi ni on[ soft Left] += headi ngSeekTur nWéi ght *

pwLi near (di ff, headi ngSeekSL, 180) ;

turnQpi ni on[ strai ght] += headi ngSeekTur n\Wi ght *

pwLi near (di ff, headi ngSeeksS, 180) ;

turnQpi ni on[ sof t R ght] += headi ngSeekTur nWéi ght *

pwLi near (di ff, headi ngSeekSR, 180) ;

turnQpi ni on[ hardRi ght] += headi ngSeekTur nWéi ght *

pwLi near (di ff, headi ngSeekHR, 180) ;

/**************************************************************************/

/*
/* Frustrated Opinion

/*

/* Description: If not much forward notion is detected in a certain

/* period of tine, the robot get frustrated and spins
/* a random anount .
/*

*/
*/
*/
*/
*/
*/
*/

/**************************************************************************/

int ol dLeftCount, ol dRi ght Count;
unsigned int |astFrustratedTi me=0;

int |astFrustHeading;

voi d set FrustratedQpi ni on()

if (getMlliseconds() - lastFrustratedTi me > 16000)

{

int leftD stance = getEncoder(left)

ol dLeft Count ;

*/
*/
*/

*/
*/
*/
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int rightDi stance = get Encoder(right) - ol dRi ght Count;

printf("l %d r % \n",leftDistance,rightDi stance);

if ( abs(leftDistance + rightDistance) < 160 &&

abs(headi ngDi f f (get Headi ng(), | ast Frust Headi ng)) < 70)

printf("l’mfrustrated!\n");

halt();
del ay(1000);
spin(left, randon( 135, 225));
hal t();
h

ol dLeft Count = get Encoder(left);

ol dRi ght Count = get Encoder (right);

| ast FrustratedTine = getM | liseconds();

| ast Frust Headi ng = get Headi ng();

/**************************************************************************/

/* */
/* Escape Qpi nion */
/* */

/**************************************************************************/

/* ________________________________________________________________________ */
/* Private Variables */
/* ________________________________________________________________________ */

i nt bunpRel eased;
i nt | astBunpHeadi ng, | astBunpHeadi ng2;
unsi gned int |astBunpTine, |astBunpTine2, |astBunpAngle;

int escaping;

voi d set EscapeQpi ni on()

{
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/* Variabl es */
/* ________________________________________________________________________ */
int diff;
i nt bunpAngl e;

escaping = 0;
if (anyBunp() == 0)
bunpRel eased = 1;
if (anyBunp() && bunpRel eased==1)
{
i nt bunpHeadi ng;

hal t ();

bunpAngl e = get BunpAngl e();
bunpHeadi ng = get Headi ng() + bunpAngl e;

i f (bunpHeadi ng > 359)
bunpHeadi ng = bunpHeadi ng - 360;
else if (bunpHeading < 0)
bunpHeadi ng = bunpHeadi ng + 360;

printf("hdg: % % % \'n", bunpHeadi ng, | ast BunpHeadi ng, | ast BunpHeadi ng2) ;

printf("time: % % % \n",getMI1liseconds(), | astBunpTi ne, | ast BunpTi ne2) ;

printf("bunpAngle: % hdgD ff: %

\n\ n", bunpAngl e, headi ngDi f f (bunpHeadi ng, | ast BunpHeadi ng) ) ;

/* if (getMlliseconds() - lastBunpTinme < 6000
&& abs(headi ngDi f f (bunpHeadi ng, | ast BunpHeadi ng)) <= 45
&& abs(bunpAngl e- | ast BunpAngl e) <= 45 )

escaping = 1;
printf("l’mescaping!'\n\n");
i f (bunpAngle > 0)

spin(left, randon{60, 180));
el se

spin(right, random(60, 180));
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*/
if (getMIliseconds() - |astBunpTine2 < 10000
&& abs(headi ngDi f f (bunpHeadi ng, | ast BunpHeadi ng2)) < 20)
{
escaping = 1;
printf("l’mescaping!'\n\n");
i f (headi ngDi f f (bunpHeadi ng, | ast BunpHeadi ng) > 0
&& (bunpAngl e<=90 && bunpAngle >= -90) )
spi n(right, randon( 45, 225));
else if (headingD ff(bunpHeadi ng, | ast BunpHeadi ng) > 0
&& (bunmpAngl e>90 || bunpAngle < -90) )
spi n(l eft, randon( 45, 225));
el se if (headi ngDi ff (bunpHeadi ng, | ast BunpHeadi ng) < 0
&& (bunpAngl e<=90 && bunpAngle >= -90) )
spin(l eft, random(45, 225));
el se if (headi ngDi ff (bunpHeadi ng, | ast BunpHeadi ng) < 0
&& (bunmpAngl e>90 || bunpAngle < -90) )
spin(right, random(45, 225));
b
| ast BunpAngl e = bunpAngl e;
| ast BunpTi ne2 = | ast BunpTi n®;
| ast BunpHeadi ng2 = | ast BunpHeadi ng;
| ast BunpTime = getM 1 1iseconds();
| ast BunpHeadi ng = bunpHeadi ng;
bunpRel eased = 0;
b
}

/**************************************************************************/

/* */
/* Stall Opinion * [
/* */

/**************************************************************************/

int speedbDuty[] =
{ o 0o
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10,
20,
30,
40,
50,
60,
70,
80,
90,
100,

Cal i

brate the stall speed array

void calibrateStall ()

{

int

i, l,r,11,r1;

notor (1 eft, 0);

nmot or (ri ght, 0);

for

{

(i=0; i<=6; i++)

nmotor (I eft, 10%i);

nmot or (ri ght,-10*i);
del ay(1000);

| = get Encoder (Il eft);

r = get Encoder (right);

del ay(5000);
notor (Il eft, 0);

nmot or (ri ght, 0);

|1 = getEncoder (left);
rl = getEncoder(right);

speedDut y[ i ndexMatri x2(speedDuty, i, 1)]

del ay(9000);

= (11-1)/5;
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for (i=0; i<=10; i++)
{
printf(" % | %, %
\n",i,elementMatrix2(speedDuty, i, 0), el ement Matri x2(speedDuty,i,1));

}s
}
/* ________________________________________________________________________ */
/* Monitor Mdtors for stall condition */
/* ________________________________________________________________________ */

int |astStall Headi ng=0;

unsigned int lastStall Time = 0;

voi d stall Detect()

{
/* ________________________________________________________________________ */
/* Execute this section once every 2 seconds */
/* ________________________________________________________________________ */
if (getMlliseconds() - lastStallTinme > 2000)
{
/* int |eftChange = get Encoder(left) - |astlLeftPul ses;

int rightChange = getEncoder(right) - |astRightPul ses;
i nt encoder Degrees = (| eftChange - rightChange) *
360 / pul sesPer Tur nRev;

if (abs(getSpeed(left)-getSpeed(right)) > 20 &&
abs(headi ngDi f f (get Headi ng(), ol dHeadi ng)) < 5)
*
/

get AvgDut y(l eft);

nt |duty

int rduty = get AvgDuty(right);

int |dutyl get A dAvgDut y(l eft, 0);

int rdutyl = getd dAvgDuty(right, 0);

int tabl eLspeed = pwLi near (abs(Il duty), speedDuty, 100);



int tabl eRspeed = pwlLi near (abs(rduty), speedDuty, 100) - 1;
int tabl eLspeedl = pwlLinear (abs(|dutyl), speedDuty, 100);
int tabl eRspeedl = pwlLi near (abs(rdutyl), speedDuty, 100) - 1;

int | speed = abs(get Speed(left));

int rspeed abs(get Speed(right));

int | speedl = abs(getd dSpeed(left,0));

int rspeedl = abs(getd dSpeed(right,0));

int leftStall = abs(lspeed-tablelLspeed) > 2 &&
abs(| speedl-tabl eLspeedl) > 2 &&
abs(lduty-1dutyl) <= 10;

int rightStall = abs(rspeed-tabl eRspeed) > 2 &&

abs(rspeedl-tabl eRspeedl) > 2 &&

abs(rduty-rdutyl) <= 10;

if ( (leftstall || rightStall ) && !'anyBunp())
{
hal t ();
printf("Mtors are stalled...\n");
printf("\nleft : % % 9% \n",Iduty,|speed,tablelLspeed);
printf("leftl : %d % % \n",Idutyl,|speedl,tablelLspeedl);
printf("right : %d % % \n",rduty,rspeed,tabl eRspeed);
printf("rightl: %d % % \n",rdutyl, rspeedl,tabl eRspeedl);
rev();
del ayCondi ti onFal se(randon( 2000, 4000), *anyBunpNow) ;
hal t ();
spin(l eft, randon{( 45, 135));
b
| ast St al | Headi ng = get Headi ng();

lastStall Tine = getM11iseconds();

/**************************************************************************/

/* */
/* Neural Net Opinions */
/* */

/**************************************************************************/
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unsigned int et;

unsigned int ol dt;

voi d get Opi ni onsProcess()

{

/*

whi |
{

e(1)

et = getMIliseconds() - oldt;

oldt = getMIliseconds();

sanpl eSensors();

setlrQpinion();

setDel tal rOpinion();

set SeekHeadi ngQpi ni on(0); */

set EscapeQpi ni on();

set Frustrat edQpi nion();

stal | Detect();

if (escaping == 0)

set BunmpQpi ni on() ;

neur al Net () ;

not i onControl ();

/**************************************************************************/

/* Display Debugging infornation

*/

/**************************************************************************/

voi d display()

{
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whi | e(1)
{
printf("et: % ",et);
printf("left : %d % %
", get AvgDuty(l eft), get Speed(l eft), pwLi near (abs(get AvgDuty(left)), speedDuty, 100));
printf("right: % o %
\n", get AvgDuty(ri ght), get Speed(ri ght), pwLi near (abs(get AvgDuty(ri ght)), speedDuty, 100));
b

/**************************************************************************/

/* Robot Test Program */

/**************************************************************************/

mai n()

{

/* Set up serial port for output */
i nitSerial (BAUD_1200, PROT_8NL1, POLLED_TRANSM T) ;
printf("Ready...\n");

/* Initialize I/O devices */
i ni t Ti neKeeper ();
initMiltiTasking(RTI _32ms);

initSensors();

/* Initialize Control Processes */
i ni t MotionControl (notorTi neConst ant, 200) ;

i ni tNeural TF();

/* calibrateStall();*/

/* startProcess(*noti onControl Process, 1);*/
/* start Process(*stal | Detect Process, 1);*/
/* start Process(*display, 1);*/

/* startProcess(*noti onControl Process, 1);*/

start Process(*get Qpi ni onsProcess, 4);
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/* Main Program Loop
*/
not i onCont r ol Process();

/* get Opi ni onsProcess(); */
whi |l e(1)
{

/* del ayCondi ti onFal se(4000, *anyBunpNow) ; */

fwd() ;
del ay(5000);

hal t();
del ay(1000);

rev();

del ay(4000);

hal t();
del ay(1000);

}s

#i ncl ude <vectors.c>

/**************************************************************************/

/* */
/* Sensor System */
/* */

/**************************************************************************/

/* ________________________________________________________________________ */
/* 1ncl udes */
/* ________________________________________________________________________ */
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#i ncl ude
#i ncl ude
#i ncl ude

#i ncl ude

<

<

Ir.c>

bunp. c>

<conpass. h>

<encoders. h>

/* Del ay between sensor readings in mlliseconds

#defi ne sensor Sanpl eRate 100

/* Nanes of

#def i
#def i
#def i
#def i
#def i

ne

ne

ne

ne

ne

IR Sensors
farRight 0
near Ri ght 1
center 2
nearLeft 3

farLeft 4

/* Nanes of Bunp Sensors

#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i

ne

ne

ne

ne

ne

ne

ne

ne

ri ght Rearl nner 0
ri ght RearQuter 1
ri ght FrontQuter 2
ri ght Frontlnner 3
| eft Front | nner 4
| eft FrontQuter 5
| eft RearQuter 6

| ef t Rear I nner 7

voi d initSensors()

{

initlR(5 112, 128, 100, Ox1F);

i nitBunp(8);

i ni t Conpass();

*/
*/
*/

*/

*/

*/
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i ni t Encoders();

voi d sanpl eSensors()

{
sanpl el R();

sanpl eBunp() ;

voi d sanpl eSensor sProcess()

{
whi | e( 1)
{
sanpl eSensors();
del ay(sensor Sanpl eRat e) ;
b
}
/2

i nt get BunpAngl e()
{

i nt bunpAngl e=0;

if (bunp[rightFrontlnner] && bunp[leftFrontlnner])

bunpAngl e = 0;

else if (bump[rightFrontlnner] && bunp[rightFrontQuter])

bunpAngl e 45;

else if (bump[leftFrontlnner] && bunp[leftFrontQuter])

bunpAngl e - 45;

else if (bump[rightFrontQuter] && bunp[rightRearQuter])

*/
*/
*/

*/
*/
*/

*/
*/
*/
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bunpAngle =  90;

else if (bump[leftFrontQuter] && bunp[leftRearCQuter])
bunpAngle = - 90;

else if (bunmp[rightRearQuter] && bunp[rightRearlnner])
bunpAngl e = 135;

else if (bunp[leftRearQuter] && bunp[leftRearlnner])
bunpAngle = - 135;

else if (bump[rightRearlnner] && bunp[leftRearlnner])
bunpAngl e = 180;

else if (bunmp[rightFrontlnner])
bunpAngle =  22;

else if (bunp[leftFrontlnner])
bunmpAngle = - 22;

else if (bunp[rightFrontQuter])
bunpAngle = 67,

else if (bunp[leftFrontQuter])
bunpAngle = - 67,

else if (bunp[rightRearCQuter])
bunpAngl e = 112;

else if (bunp[leftRearCQuter])
bunpAngle = - 112;

else if (bunp[rightRearlnner])
bunpAngl e = 157;

else if (bunp[leftRearlnner])
bumpAngle = - 157;

return bunpAngl e;

/**************************************************************************/

s
s
s
s

Movenent Routi nes

*/
*/
*/
*/

/**************************************************************************/

/* I ncludes
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#i ncl ude <encoders. h>

#i ncl ude <motcontr. h>

i nt pul sesPer Spi nRev = 45;
unsi gned int maxTi mePer Spi nRev = 12000;

void spin(int direction, int degrees)
{
i nt del taPul ses;
i nt dLeft Pul ses=0;

i nt dRi ght Pul ses=0;

/* Save current wheel position
int startlLeftPul ses = get Encoder (left);

int startR ghtPul ses = get Encoder (right);

/* Set maximumturn tine
unsi gned int nmaxTurnTi ne = maxTi mePer Spi nRev / 360 * degrees;

unsigned int startTinme = getMIliseconds();

/* Cal cul ate nunber of pul ses needed on each wheel for this turn

del taPul ses = degrees * pul sesPer Spi nRev / 360;

/* Initiate Turn
if (direction == left)
set Desi redTur nRat e( - 30) ;
el se
set Desi redTur nRat e( 30) ;
set Desi redSpeed(0) ;

*/

*/
*/
*/

*/
*/
*/

*/

*/

*/

*/



/* Turn until robot has rotated desired anount

whil e( abs(dLeftPul ses) < deltaPul ses &&

abs(dRi ght Pul ses) < deltaPul ses &&

getM11iseconds()

dLeft Pul ses = get Encoder (| eft)

dRi ght Pul ses = get Encoder (ri ght)

}s

/* Stop turning

set Desi redTurnRat e(0) ;

voi d fwd()

{
set Desi redSpeed(30);
set Desi redTur nRat e(0) ;

void rev()

{
set Desi redSpeed(-30);
set Desi redTur nRat e( 0) ;

/* Halt Routine

void halt()

- startTime <= maxTurnTine )

start Left Pul ses;

- startRi ght Pul ses;

*/

*/

*/
*/
*/

*/
*/
*/

*/
*/
*/
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set Desi redSpeed(0) ;

set Desi redTurnRat e(0) ;

[ X o o e o o e e o e L b e h e o e e e e o e o e e e e e e e e e e e eemieo—aao-
/* Defines
e
/* Turn Rate Defines

#define straight 0

#define hardLeft 1

#define softlLeft 2

#define softRight 3

#defi ne hardRi ght 4
/* Speed Defines

#define medium 0

#define slow 1

#define verySl ow 2

#define fast 3

#define reverse 4
[ X o o e o e e e e e e e f e e e e e e e e e e e e e e e e e e e e e e e e e e e eemmem—aao

*/
*/
*/

*/
*/
*/

*/

*/

/* Opinion Transfer Function Arrays

int * irTurnTF[ maxNum R] [ maxNumTur nSubj ect s] ;

int * irSpeedTF[ maxNum R] [ maxNuntSpeedSubj ect s] ;



int irTurnWeight[maxNum R];

int irSpeedWei ght [ maxNum R];

int * deltalrTurnTF[ maxNum R] [ maxNumTur nSubj ect s] ;
int * deltalrSpeedTF[ maxNum R] [ maxNunSpeedSubj ect s] ;
i nt del talrTurnWei ght [ maxNum R} ;

i nt del talrSpeedWei ght [ maxNum R} ;

i nt bunpTur nOpi ni on[ maxNunBunp] [ maxNumTur nSubj ect s] ;

i nt bunpSpeedOpi ni on[ maxNunBunp] [ maxNunSpeedSubj ect s] ;
i nt bunpTur n\Wéi ght [ maxNunBunp] ;

i nt bunpSpeedWei ght [ maxNunBunp] ;

i nt headi ngSeekTur n\éi ght ;

/**************************************************************************/

/* */
/* Initialize Neural Net Variables and Opinion Transfer Functions */
/* */

/**************************************************************************/

voi d initNeural TF()

{
int i;

/* ________________________________________________________________________ */
/* Set up neural net variables */
/* ________________________________________________________________________ */
/* Set the nunber of subjects for each neural net

nunifur nSubj ects = 5;

nunBpeedSubj ects = 5;
/* Set the turn rates for each turn subject

t ur nMagni tude[ hardLeft] = -35;

turnMagni tude[ softLeft] -15;

t ur nMagni t ude[ st rai ght] 0;

turnMagni tude[ soft R ght] = 15;



/*

Set the forward speeds for each speed

Set

Set

turnMagni t ude[ hardRi ght] = 35;

speedMagni tude[fast] = 50;
speedMagni t ude[ medi unj = 30;
speedMagni t ude[ sl ow] = 20;
speedMagni t ude[ verySl ow] = 10;

speedMagni t ude[ reverse] = -15;

neural net turn weights for each neuron

irTurnWeight[farlLeft] = 1,

i r Tur n\i ght [ near Left] = 3;
i r Turn\Wei ght[center] = 6;

i r Tur n\i ght [ near Ri ght] = 3;
irTurnWeight[farRi ght] = 1;

del tal r TurnWei ght[farLeft] = 1;
del tal r Tur nWei ght [ near Left] = 3;
del tal r TurnWei ght[center] = 6;
del tal r TurnWei ght [ nearRi ght] = 3;
del tal r TurnWei ght[farRi ght] = 1;

bunpTur nWei ght [ ri ght Rear I nner] = 10;
bunpTur nWei ght [ ri ght RearQuter] = 10;
bunpTur nWei ght[ri ght FrontQuter] = 15;
bunpTur nWei ght[ri ght Front I nner] = 15;
bunpTur nWei ght [ | eft Front | nner] = 15;
bunpTur nWei ght [l eft Front Quter] = 15;

bunpTur nWeéi ght [ | ef t Rear Qut er ] 10;

bunpTur nWei ght [ | ef t Rear I nner] = 10;

headi ngSeekTur nWi ght = 5;

neural net speed weights for each neuron

subj ect

*/
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i r SpeedWei ght[farLeft] = 1;

i r SpeedWei ght [ near Left] = 1,
i r SpeedWei ght[center] = 1;

i r SpeedWei ght [ near Ri ght] = 1;
i r SpeedWei ght[farRight] = 1;

del tal r SpeedWei ght[farLeft] = 4;
del t al r SpeedWei ght [ near Left] = 4;
del t al r SpeedWi ght[center] = 4;
del t al r SpeedWeéi ght [ near Ri ght] = 4;
del tal r SpeedWei ght [farRi ght] = 4;

bunpSpeedWei ght [ ri ght Rear I nner] = 10;
bunpSpeedWei ght [ ri ght Rear Quter] = 10;
bunpSpeedWei ght [ ri ght Front Quter] = 15;
bunpSpeedWei ght [ ri ght Front | nner] = 15;

bunpSpeedWei ght[ 1l eft Front I nner] = 15;
bunpSpeedWi ght[l eft FrontQuter] = 15;
bunpSpeedWei ght[ | eft RearQuter] = 10;

bunpSpeedWei ght[ | eft Rear I nner] = 10;

/*
/*
/*

/*

Create transfer functions for IR neurons

Turn rate transfer functions

rTurnTF[farLeft][hardLeft]=ranpNegl00;
rTurnTF[farLeft][softLeft]=ranpNeg75;
rTurnTF[farLeft][strai ght]=ranpNeg50;
rTurnTF[ farLeft][softRi ght] =peak60t 080;

r TurnTF[ far Left] [ har dRi ght] =peak80t 0100;

r TurnTF[ near Left] [ hardLeft] =r anpNeg75;
r TurnTF[ near Left] [ soft Left] =r anpNeg100;

r TurnTF[ near Left] [ strai ght] =ranpNeg75;

r Tur nTF[ near Left] [ sof t Ri ght] =peak40t 060;

r Tur nTF[ near Lef t] [ har dRi ght ] =peak60t 0100;

*/
*/
*/

*/
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/*

r TurnTF[ cent er] [ hardLeft] =peak50t 0100;
rTurnTF[ center][softLeft]=ranpNeg75;

r TurnTF[ cent er] [ strai ght]=ranpNegl100;

r TurnTF[ center] [ sof t Ri ght] =r anpNeg75;

r Tur nTF[ cent er] [ har dRi ght ] =peak50t 0100;

r Tur nTF[ near Ri ght] [ har dLeft] =peak60t 0100;
r Tur nTF[ near Ri ght] [ soft Lef t] =peak40t 060;
r Tur nTF[ near Ri ght] [ strai ght] =r anpNeg75;

r Tur nTF[ near Ri ght] [ sof t Ri ght] =r anpNeg100;
r Tur nTF[ near Ri ght] [ har dRi ght] =r anpNeg75;

r TurnTF[ f ar Ri ght] [ har dLeft] =peak80t 0100;
r TurnTF[ far Ri ght] [softLeft] =peak60t 080;
r TurnTF[ f ar Ri ght] [ strai ght] =r anpNeg50;

r TurnTF[ f ar Ri ght] [ sof t Ri ght] =r anpNeg75;
r TurnTF[ f ar Ri ght] [ har dRi ght] =r anpNeg100;

Speed transfer functions

r SpeedTF[ farLeft][fast]=peakOt 0l0;

r SpeedTF[ f ar Lef t] [ nedi uni =peak10t 030;

r SpeedTF[ farLeft] [ sl ow] =peak30t 060;

r SpeedTF[ farLeft][verySl ow =peak60t 080a;

r SpeedTF[farLeft][reverse] =peak80t 0100a;

r SpeedTF[ near Left] [ f ast] =peak0Ot 010;

r SpeedTF[ near Lef t] [ nedi uni =peak10t 030;

r SpeedTF[ near Left] [ sl ow] =peak30t 060;

r SpeedTF[ near Left] [ ver ySl ow] =peak60t 080a;

r SpeedTF[ near Left] [rever se] =peak80t 0100a;

r SpeedTF[ center] [ fast] =peak0t 010;

r SpeedTF[ cent er] [ medi unj =peak10t 030;

r SpeedTF[ cent er] [ sl ow] =peak30t 060;

r SpeedTF[ cent er] [ verySl ow] =peak60t 080a;

r SpeedTF[ cent er] [ rever se] =peak80t 0100a;

*/
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/*
/*
/*

/*

i r SpeedTF[ near Ri ght] [ f ast] =peak0t 010;

i r SpeedTF[ near Ri ght] [ nedi unj =peak10t 030;

i r SpeedTF[ near Ri ght] [ sl ow] =peak30t 060;

i r SpeedTF[ near Ri ght] [ ver ySl ow] =peak60t 080a;

i r SpeedTF[ near Ri ght] [rever se] =peak80t 0100a,;

i r SpeedTF[ far Ri ght] [ fast] =peakO0t 010;

i r SpeedTF[ f ar Ri ght] [ nedi unj =peak10t 030;

i r SpeedTF[ f ar Ri ght] [ sl ow] =peak30t 060;

i r SpeedTF[ f ar Ri ght] [ verySl ow] =peak60t 080a;
i r SpeedTF[ far Ri ght] [rever se] =peak80t 0100a;

Turn rate transfer functions

del tal r TurnTF[farLeft][hardLeft] =del tal r Tf O;
deltal rTurnTF[farLeft][softlLeft] =del talrTf1;
del tal r TurnTF[ farLeft][strai ght]=ranpNeg50;
del tal r TurnTF[farLeft][softR ght] =peak60t 080;
del tal r TurnTF[ f ar Left] [ har dRi ght] =peak80t 0100;

del tal r TurnTF[ near Left] [ hardLeft] =del tal r Tf 3;
del tal r TurnTF[ near Left] [softLeft] =del tal r Tf 2;
del tal r TurnTF[ near Left] [ strai ght] =ranpNeg75;
del tal r Tur nTF[ near Lef t ] [ sof t Ri ght ] =peak40t 060;

del tal r Tur nTF[ near Lef t ] [ har dRi ght ] =peak60t 0100;

del tal r TurnTF[ cent er] [ har dLef t ] =peak50t 0100;
del tal rTurnTF[ center] [softLeft]=ranpNeg75;
del tal r TurnTF[ center] [ strai ght]=ranpNegl00;
del tal r TurnTF[ center] [ sof t R ght] =ranpNeg75;

del tal r TurnTF[ cent er] [ har dRi ght] =peak50t 0100;

*/
*/
*/

*/
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del tal r Tur nTF[ near Ri ght] [ har dLef t ] =peak60t 0100;
del tal r TurnTF[ near Ri ght] [ sof t Lef t ] =peak40t 060;
del tal r TurnTF[ near Ri ght] [ strai ght] =ranpNeg75;
del tal r TurnTF[ near Ri ght] [ sof t Ri ght] =del tal r Tf 2;
del tal r TurnTF[ near Ri ght] [ har dRi ght] =del t al r Tf 3;

del tal r TurnTF[ f ar Ri ght] [ har dLef t ] =peak80t 0100;
del tal r TurnTF[farRi ght][softLeft] =peak60t 080;
del tal r TurnTF[ f ar Ri ght][strai ght] =ranpNeg50;
deltal rTurnTF[farRi ght][soft Ri ght] =del tal r Tf 1;
del tal r TurnTF[ far Ri ght] [ har dRi ght] =del tal r Tf O;

/* Speed transfer functions

del tal r SpeedTF[farLeft][fast] =peak0t 010;

del t al r SpeedTF[ f ar Lef t ] [ medi unj =peak10t 030;
del tal r SpeedTF[ f arLeft] [ sl ow] =peak30t 060;

del tal r SpeedTF[ f ar Left] [ ver ySlI ow] =peak60t 080a;

del tal r SpeedTF[ far Left] [ rever se] =peak80t 0100a;

del t al r SpeedTF[ near Left] [ f ast ] =peak0t 010;

del t al r SpeedTF[ near Lef t ] [ medi un =peak10t 030;
del t al r SpeedTF[ near Lef t] [ sl ow] =peak30t 060;

del t al r SpeedTF[ near Lef t] [ ver ySl ow] =peak60t 080a;

del t al r SpeedTF[ near Left] [ rever se] =peak80t 0100a;

del tal r SpeedTF[ center] [ f ast] =peak0t 010;

del t al r SpeedTF[ cent er] [ nedi uni =peak10t 030;
del tal r SpeedTF[ cent er] [ sl ow] =peak30t 060;

del tal r SpeedTF[ center] [ ver ySl ow] =peak60t 080a;

del tal r SpeedTF[ center] [rever se] =peak80t 0100a;

del t al r SpeedTF[ near Ri ght] [ f ast] =peak0t 010;

del t al r SpeedTF[ near Ri ght] [ medi unj =peak10t 030;
del t al r SpeedTF[ near Ri ght] [ sl ow] =peak30t 060;

del t al r SpeedTF[ near Ri ght] [ ver ySl ow] =peak60t 080a;

del t al r SpeedTF[ near Ri ght ] [rever se] =peak80t 0100a;



/*
/*
/*

del tal r SpeedTF[ f ar Ri ght][f ast] =peakO0t 010;

del t al r SpeedTF[ f ar Ri ght] [ medi unj =peak10t 030;

del t al r SpeedTF[ f ar Ri ght] [ sl ow] =peak30t 060;

del t al r SpeedTF[ f ar Ri ght] [ verySl| ow] =peak60t 080a;
del t al r SpeedTF[far Ri ght][rever se] =peak80t 0100a;

Set bunp opini ons

Turn Opi ni ons

bunpTur nOpi ni on[ ri ght Rear | nner] [ hardLeft] = 10;
bunpTur nOpi ni on[ ri ght Rear I nner] [softlLeft] = 50;
bunpTur nOpi ni on[ ri ght Rear | nner] [straight] = 40;

bunpTur nOpi ni on[ ri ght Rear I nner] [softRi ght] = -10;

bunpTur nOpi ni on[ ri ght Rear | nner] [ hardRi ght] = -30;

bunpTur nOpi ni on[ ri ght Rear Quter] [ hardLeft] = 20;
bunpTur nOpi ni on[ ri ght Rear Quter] [softlLeft] = 70;
bunpTur nOpi ni on[ ri ght Rear Quter][straight] = -10;
bunpTur nQpi ni on[ ri ght RearQuter] [softRi ght] = -60;
bunpTur nQpi ni on[ ri ght Rear Quter] [ hardRi ght] = -90;
bunpTur nQpi ni on[ri ght Front Quter] [ hardLeft] = 40;
bunpTur nQpi nion[right Front Quter][softLeft] = 90;
bunpTur nQpi nion[ri ght FrontQuter][straight] = -80;

bunpTur nQpi nion[right Front Quter][softRi ght] = -90;

bunpTur nQpi ni on[ ri ght Front Quter] [ hardRi ght] = -100;

bunpTur nOpi ni on[ ri ght Front | nner] [ hardLeft] = 100;
bunpTur nQpi nion[right Front I nner][softLeft] = 50;
bunpTur nQpi ni on[ri ght FrontInner][straight] = -90;
bunpTur nOpi ni on[ ri ght Front | nner] [softRi ght] = -100;
bunpTur nQpi ni on[ ri ght Front I nner] [ hardRi ght] = -80;

bunpTur nOpi ni on[ | eft Front I nner] [ hardLeft] = -80;

*/
*/
*/

*/
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/*

bunpTur nOpi n
bunpTur nOpi n
bunpTur nOpi n
bunpTur nOpi n

bunpTur nOpi n
bunpTur nOpi n
bunpTur nOpi n
bunpTur nOpi n
bunpTur nOpi n

bunpTur nOpi n
bunpTur nOpi n
bunpTur nOpi n
bunpTur nOpi n
bunpTur nOpi n

bunpTur nOpi n
bunpTur nOQpi n
bunpTur nOpi n
bunpTur nOpi n
bunpTur nOpi n

Speed pi ni ons

bunpSpeed i
bunpSpeed Qi
bunpSpeed Qi
bunpSpeedQpi
bunpSpeed Qi

bunpSpeedQpi
bunpSpeed Qi
bunpSpeed Qi
bunpSpeedQpi
bunpSpeed Qi

bunpSpeedQpi

n

n

n

n

n

n

n

n

n

n

n

on[leftFrontlnner][softLeft] = -100;
on[leftFrontlnner][straight] = -90;
on[leftFrontlnner][softRi ght] = 50;
on[leftFrontlnner][hardRi ght] = 100;
on[leftFrontQuter][hardLeft] = -100;
on[leftFrontQuter][softLeft] = -90;
on[leftFrontQuter][straight] = -80;
on[leftFrontQuter][softRi ght] = 90;
on[leftFrontQuter][hardRi ght] = 40;
on[l eftRearQuter][hardRi ght] = 20;
on[leftRearQuter][softRi ght] = 70;
on[leftRearQuter][straight] = -10;
on[leftRearQuter][softLeft] = -60;
on[l eftRearQuter][hardLeft] = -90;
on[l eftRearl nner][hardRi ght] = 10;
on[leftRearlnner][softRight] = 50;
on[leftRearlnner][straight] = 40;
on[leftRearlnner][softLeft] = -10;
on[leftRearlnner][hardLeft] = -30;

on[rightRearlnner][fast] = 50;

on[rightRearlnner][nmediun] = 100;

on[rightRearlnner][slow = 50;

ion[rightRearlnner][verySlow = O;
ion[rightRearlnner][reverse] = -100;
ion[rightRearCQuter][fast] = 40;

on[right RearQuter][nmediun] = 100;

on[rightRearQuter][slow] = 60;

on[rightRearQuter][verySlow = 10;

on[rightRearQuter][reverse] = -90;

on[rightFrontQuter][fast] = -90;

*/
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Defi ne Transfer

bunpSpeedOpi
bunpSpeedOpi
bunpSpeedOpi
bunpSpeedOpi

bunpSpeedOpi
bunpSpeedOpi
bunpSpeedOpi
bunpSpeedOpi
bunpSpeedOpi

bunpSpeedOpi
bunpSpeedOpi
bunpSpeedOpi
bunpSpeedOpi
bunpSpeedOpi

bunpSpeedOpi
bunpSpeed i
bunpSpeed i
bunpSpeed Qi
bunpSpeed Qi

bunpSpeed Qi
bunpSpeed Qi
bunpSpeedQpi
bunpSpeed Qi
bunpSpeed Qi

bunpSpeed Qi
bunpSpeed Qi
bunpSpeed Qi
bunpSpeed Qi
bunpSpeed Qi

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

on[rightFrontQuter][nmediun] = -80;
on[rightFrontQuter][slow = -10;
on[rightFrontQuter][verySlow = 0;

on[rightFrontQuter][reverse] = 70;
on[rightFrontlnner][fast] = -100;
on[rightFrontlnner][nmediun] = -90;
on[rightFrontlnner][slow = -50;
on[rightFrontlnner][verySlow = -10;
on[rightFrontlnner][reverse] = 100;
on[leftFrontlnner][fast] = -100;
on[leftFrontlnner][mediun] = -90;
on[leftFrontlnner][slow = -50;
on[leftFrontlnner][verySlow = -10;
on[leftFrontlnner][reverse] = 100;
on[leftFrontQuter][fast] = -90;
on[leftFrontQuter][nmediun] = -80;
on[leftFrontQuter][slow = -10;
on[leftFrontQuter][verySlow = 0;

on[leftFrontQuter][reverse] = 70;

on[leftRearQuter][fast] = 40;
on[l eftRearQuter] [ medi unj = 100;
on[leftRearQuter][slow] = 60;
on[leftRearQuter][verySlow = 10;

on[leftRearQuter][reverse] = -90;
on[leftRearlnner][fast] = 50;
on[l eftRearlnner][mediun] = 100;

on[leftRearlnner][slow = 0;
on[leftRearlnner][verySlow = 50;

on[l eftRearlnner][reverse] = -100;

Functions (Piece-w se |inear coordinates)
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i nt headi ngSeekHL[] = -30, 100,

{ 0, 0,
-179, -50, 30, -50,
-135, -50, 90, -50,
-90, 0, 135, 0,
90, 0, 180, 0
135, 100, b
180, 100
}; int headi ngSeekHR[] =
{
i nt headi ngSeekSL[] = -179, 100,
{ -135, 100,
-179, 0, -90, 0,
- 135, 0, 90, 0,
-90, -50, 135, -50,
-30, -50, 180, -50
0, 0, }
30, 100,
90, 100, i nt headi ngRepel HL[] =
135, 0, {
180, 0 -179, 0,
b -1, O,
0, -30,
i nt headi ngSeekS[] = 180, O
{ }
-179, 0,
- 20, 0, i nt headi ngRepel SL[] =
-10, 25, {
10, 25, -179, O,
20, 0, -1, 0,
180, 0 0, -50,
I 90, O,
180, O
i nt headi ngSeekSR[] = };
{
-179, 0, i nt headi ngRepel S[] =
-135, 0, {

-90, 100, -179, 0O,



i nt

{

int
{

int
{

int

-45, 0,

0, -100,

45, 0,
180, O

headi ngRepel SR[] =

-179, 0,

-90, O,

headi ngRepel HR[] =

179, 0,
0, -30,

headi ngRepel Sl oW ]

179, 0,
-40, O,
-30, 100,
-20, 100,
-10, O,
10, O,
20, 100,
30, 100,

180, O

headi ngRepel VerySl oy ]

{

-179, 0,
-20, 0O,
-10, 100,

10, 100,
20, O,
180, O
b
int zero[] =
{
0, 0,
100, 0
b

int deltalrTf1[]

{
-100, O,
-50, 0,
-40, 100,
-15, 100,
0, O,
100, -75
b

int deltalrTfO[]

{

-100, 100,
-50, 100,
-40, o,

o, 0,
100, - 100
b

int deltalrTf2[]
{
- 100, 0,
-60, 100,
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0, 0,
100, - 100 int peak80to90[] =
b {
0, 0,
int deltalrTf3[] = 80, 100,
{ 90, 100,
-100, 100, 100, 0
-60, 100, b
- 30, 0,
0, 0, int peak80tol00[] =
100, -75 {
b 0, O
80, 100,
int ranpNegl00[] = 100, 100
{ b
0, 0,
100, - 100 int peak90tol00[] =
b {
0, 0,
int ranpNeg75[] = 90, 100,
{ 100, 100
0, 0O }
100, -75
}; i nt peak40to60[] =
{
int ranpNeg50[] = 0, 0,
{ 40, 100,
0, 0, 60, 100,
100, -50 100, 0
b }
int peak60to80[] = int peak50to0l00[] =
{ {
0, 0, 0, 0,
60, 100, 50, 100,
80, 100, 100, 100

100, 0 b



50, 0,

int peak60tol00[] = 60, 100
{ 80, 100,
0, 0, 90, 0,
60, 100, 100, 0
100, 100 )
h
int peak80tol00a[] =
int peakOtol0[] = {
{ 0, 0,
0, 10, 70, 0,
10, 10, 80, 50
20, 0, 100, 50
100, O };
b

int peakl0to30[] =
{

10, 10,
30, 10,
40, 0,
100, 0

int peak30to60[] =

{

0, O,
20, O,
30, 30,
60, 30,
70, 0,

100, O
b

int peak60to80a[] =



