EEL 5934

Intelligent Machines Design
L aboratory

Clyde

The Exploring House Robot

Jeff Webb

December 9, 1996
Professor: Keith L. Doty

University of Florida

Table of Contents

TABLE OF CONT ENT S ...ttt e e e e e s bt e e e e s e s e bbaba e e s e s s sasbabeeesesssessbabaseseassasssnres 2
F N TS I X R 4
EXECUTIVE SUMM ARY oottt ettt s et e e e e e s s e s b e st e e s e e s s b bbb e e e s e s ssabbbbeeesesssasbraeeasseian 5
RO 1510 O 1 O]\ 6
INTEGRATED SYSTEM ..ottt et e s e s bbbt e e s e e s s bbb b e e e e e e s s e bbabeeeeesssabbraeeassesan 7
[Y R DAY 7Y = ST 7
S0 = Y7 = R ORRRRR 7
SYSTEM OVERVIEW ..ttviiiiiieiitetiiee st e ssabbsteesssessssbasssessssssssbasssesssssassbasssesssssasbssssesesssasssssasssesssassssrsnssesssessssres 7
LA I N = N 8
Y O] I N I (@ = 1Y 9

AN
i O]

Ne O o/

=

... 10

YN O U 72N I 1] RO 11
DRIVE IMIOTORSttttiiiiieiiititte et e e e s esitibae et e e s s essaabaaeeeeseesaabasaeesseesaabssaeeseaesaasbabseeseessesssbaeeeesssesassbaneeeseeessnnans 11

S A S O S TR 12
INFRARED PROXIMITY SENSORS .. .uttiiiiiiiiiituttieieesiisisssesiessssssssssstesssssssssssssesssssssssssseessssssssssssesesssssssssseses 12
O = = NS = PR 13

S Y o Wl = N[00 5] = = IS TS 14
(000] =N SO 15
ST N VA KO = T 16

OBJECT AVOIDANCE BEHAVIORStttiiiiei e iciitttt i e e s e e s baste e s s s s sesbabseesessssasbabbeeseessesasbasseesssessasbaseeeassesan 16

F Yo L0 =T 0 To YRR 16
DEITA TR AVOIHANCE. ...ttt ettt e et e e et e e et e e e s sate e e s et teessastasesssbeeessbeseesensensesanens 16
BUITID AVOITAINCE.... ...ttt ettt et b e et b e et b e e he b reea e b et e bt b e e bt e st et e neene b e 17
ESCAPE CORNER BEHAVIORccciiiiitttiiiie e e iesitttetie s s s e ssiabasssesssessssbasseeassesassbasseesssssessbasssesssssasssbsnssesssesssnres 17
FRUSTRATED BEHAVIOR. .. .uuttiiiiiiiiitttitit e e s s esittteee e s st e sbbbstsesssessasbasaseassssaasbasseeessssassbabbssaesssassbsbanssesssesssnres 17
MOTOR STALL DETECTION BEHAVIOR ...c..coiiitttiiiiee e ettt e e s e e sebatie e e s s e s s baaae e s s s s s esababasesssssssssabanssesssessnnres 18

L @ =1V 17N AN [O 19
IMTECHANICAL ..iitttieee e e e s ettt e e e e s ettt et e e e e e e e saa b e e e e e e s s e s aabaaeeeeeeesaaabasaeeeeeesasbasaeeseessaababaneseessassnnbanesesssesnnnres 19
ELECTRICAL .. iiiitttiiee ettt e e e e e et e e e e s e s bbb b e e e e e eeesaaabasaeeeeeesaababaeeseessasababaeeeeessanssnbeneseeesesnnnre 19
BEHAVIORAL ...ctttttiie i e e i ettt e e e e e ettt et e e e s s e saa b e e e e e e ssessaabaaaeeseeesaasbasaeeeeeesaasbasaeeseessasababaneseessasssnbaneeeeesesnnnre 20
CONGCLUSION Lttt e e et e e e s e s e e b b e b e ee e e s sea bbb beeeessseabbbaseseassessasbasesesseassabanesssssesssnres 21
LR = AN L8 T 22
ROBOTICS AND TECHNICAL INFORMATIONuuutveeieeiieiiursreeeseseiassrsseeessssississsseesssssesssssssessssessssssssesssessnsnes 22
IDEAS AND INSPIRATION L1tttieiiiiiiiituteeeteseiiiiusseetesssesissssssessseaasssssssesssesmsssssssesssssssssssssesesssssssssssssesssesssssneses 22
ELECTRONIC COMPONENTS L.1tttiiieiiiitttteeteesieiissseetesssessstssseesssesssssssssessssisssssssesssssesssssssssesssessssssssesssessssnes 22
APPENDIX A: COMPASS SENSOR DESIGN ..ottt ettt e s bbare e e sbaaae e 23
APPENDIX B: BATTERY BACK-UP CIRCUIT ..ttt ettt svree st 24
APPENDIX C: MAIN PROGRAM CODE ...ttt ettt e s sabba e e 26

Abstract

This paper discusses the design of Clyde, an autonomous house robot. Clyde’s goal is to

explore its world and survive in a cluttered home environment. The robot perceives its
surroundings using an array of inexpensive sensors including five forward-looking

infrared proximity sensors, an integral bump sensor, wheel encoders, and a compass. The
robot has several behaviors that enable it to explore a hostile environment. Clyde can
avoid obstacles, escape from corners, beconfeustrated, andmigrate in a particular

direction. The robot uses a combination of subsumption and neural-net based
architectures to arbitrate between these different behaviors.

Executive Summary

Clyde is an autonomous house robot that | designed to explore its surroundings and
survive in a cluttered home environment. The robot has a round platform with a dome-
like shell that serves as an integral bump sensor. The platform has two drive wheels and
atail-skid. Clydeiscontrolled by a 68HC11 microprocessor running compiled C
software. The robot perceives its surroundings using an array of inexpensive sensors
including five forward-looking infrared proximity sensors, eight bump sensors, two wheel

encoders, and a compass.

The robot has several behaviors that enable it to explore a hostile environment. Clyde
can avoid obstacles, escape from corners, become frustrated, detect motor stalls, and
migrate in aparticular direction. The robot uses a combination of subsumption and

neural-net based architectures to arbitrate between these different behaviors.

For the most part, Clyde was successful in his role as a house robot. The robot’s robust
bump sensor design and maneuverable platform allow it to navigate through cluttered
environments. The neural net obstacle avoidance and migrate behaviors also work fairly
well. The motor stall detection behavior has mixed results. The routine will detect most
stalls and wheel slippage, but it sometimes triggers falsely and occasionally does not

trigger at all. Overall, Clyde is a successful robot with the potential for future expansion.

Introduction

This paper is about Clyde, an autonomous house robot. Clyde’s purpose is to explore its
world and survive in the cluttered environment that we humans call home. This is not as
simple as it may sound. Although the living room or kitchen of an average home may
seem comfortable and secure to human eyes, mobile robots see a world full dangerous
obstacles. Chair legs, clothes on the floor, and stairs can be serious hazards to an
unsuspecting robot. Clyde’s goal is to navigate through such an environment without

getting trapped or stuck on any obstacles.

The robot requires several major components in order to accomplish its mission. First of
all, Clyde needs a mobile platform capable of navigating through a crowded room. The
robot must also have motors to propel itself and sensors to detect its environment. In
order to explore a room, Clyde needs behaviors to avoid obstacles and find unknown
territory. Finally, the robot needs a method to integrate all of these components into one

useful system.

In this report, | will describe the mechanical, electrical, and behavioral systems that
enable Clyde to survive in a complex environment. | will first introduce the robot’s
design at a system level, and then describe each of Clyde’s subsystems. Finally, I will

discuss each of Clyde’s behaviors and evaluate the robot’s performance.

Integrated System

Hardware

| chose to use a 68HC11E9 microprocessor as the controller for the robot. | used a

standard Motorola EVBU board with Novasoft's ME11 kit, which adds 32k of RAM,

motor drivers, and several I/O ports to the system. | designed a battery-backup circuit for

the 32k RAM which is described in Appendix B.

Software

| wrote the robot’s software in C using the ICC11 compiler. In addition to Clyde-specific
code, | wrote several general libraries that can be used for other applications. This
includes routines for multi-tasking, time-keeping, motion control, shaft encoders, IR

sensors and bump sensors.

System Overview

Clyde’s control system has four main components: sensory input, behavioral desires,
behavioral arbitration, and motor actuation. The robot’s sensors are sampled by calling
the sampleSensors() function, which takes readings from the sensors and updates the

global sensor output variables. Clyde’s behavioral desires are generated by several
behavior functions which are called in the main program loop. Each behavior gives its
opinion on what the robot’s forward speed and turn rate should be, based upon the current
sensor values. These opinions are then combined by the behavioral arbitrator. For most
of the behaviors, the arbitrator consists of a neural net that sums up the opinions from

each sensor and chooses the most popular course of action. A few behaviors use a

subsumption arbitrator in which a higher priority behavior completely takes control from

the lower level behaviors. Finaly, after the behaviors have been arbitrated, the

motionControl() routine updates the robot’s forward speed and turn rate. This routine

also smooths the motor response and performs motor speed calculations.

Neural Net

The object avoidance and migrate behaviors are combined using a very simple neural net

system. Each behavior has one or more neurons that give opinions on what the robot’s

current speed and turn rate should be. The robot has five possible forward speeds (fast,

medium, slow, very slow, and reverse), and five possible turn rates (hard left, soft left,

straight, soft right, and hard right). Each neuron in the net gives an opinion on each one

of these possible speeds and turn rates. The benefit of this system is that the system

designer can consider each neuron’s opinion independently, and then the neural net will

combine all the opinions together and arbitrate between them. Figure 1 shows an

example of how the opinions for an IR proximity sensor are determined.

Figure 1. Neura Net Transfer Functions

HL =L 3 3R 100| HER 1aa
IR IR IR X_\ |
-75 =50
-100

As one can see from the Figure 1, the opinions for this neuron are dependent upon the

amount of IR reflection. When no reflection is detected, the neuron has no opinion on the

robot’s movement, which allows other neurons to control the robot’s turn rate. As the IR

reading increases, however, this neuron gives stronger opinions about where it would like
to turn and where it does not want to turn. Sincethisisaleft IR sensor, asthe IR reading

increases, the robot will tend to turn right in order to avoid the approaching object.

After the opinions for each neuron have been generated, the neuron’s opinions are
multiplied by an associated weight factor. This factor allows the system designer to give
certain behaviors more influence over the robot’'s behavior. For example, the bump
sensor neurons have a greater weight than the IR sensor neurons. After this step, the
weighted opinions on each subject are added together, and the speed and turn rate with

the highest opinions are selected to control the robot.

Mobile Platform

The robot chassis is one of the most important features of a mobile robot. The chassis
serves as the “body” for the robot, allowing the machine to interact with its environment.
Clyde must be able to explore and navigate through a cluttered and changing
environment, so the platform must be very maneuverable. The robot must also be able to
survive collisions with obstacles, and not get stuck by running over small objects on the

floor. This means that the design must be as robust as possible.

In order to satisfy these objectives, | chose to use a round platform with two drive wheels
and a tail-skid. A sketch of the platform is shown in Figure 2. One benefit of this chassis

design is that the robot can spin in place with very little possibility of bumping into an

object during aturn. This makes the robot very maneuverable in tight situations. The
platform is 10 %2 inches in diameter, and made out of 1/4 inch thick birch plywood. The

plywood is strong, light weight, and very easy to work with.

Figure 2: M obile Robot Platform The platform has two holes for mounting the

Bottom and Side Views] i
wheels and drive motors. The two drive

/‘(}\ /‘5’\ motors are modified model airplane servos that

turn 3-inch rubber wheels. | mounted the
D O

b Iy servos are flush with the bottom of the main
\{;} O Q‘/ platform. This configuration allows as much
"'\—____'_'_,_:—""

ground clearance as possible without anything

I
:O modified servos such that the bottom of the

protruding below the platform that will cause
the robot to get stuck on small objects. Since

the robot rides fairly low to the ground, |

N

decided to use a tail-skid instead of a rear
caster wheel. The tail-skid, which | constructed from half of a ping-pong ball, is simple,

light weight, and effective.

The most interesting feature of this robot platform is the outer shell which serves as a
bump sensor. The outer shell is a large plastic bowl which encloses the entire robot. A
wire frame supports this dome, which pivots on a single screw at the top of the robot. |

mounted ten keyboard switches around the perimeter of the lower platform. When the

10

robot bumps into an object, the shell tilts, and some of the switches are depressed. The
goal of thisshell isto detect a collision, no matter what part of the robot bumpsinto an

obstacle.

Actuation

Drive Motors

The main actuators used on Clyde are the drive motors. The drive motors must provide
adequate torque to maneuver the robot, have alow power consumption, and also have an
acceptable top-end speed. In addition to these performance requirements, the motors

must also be durable enough to sustain constant use and stresses on the gear train.

The motors used in model-airplane servos meet these requirements, and aso have other
desirable qualities. The servo motors are small, efficient, and durable. They also provide
enough torque and speed for use on small robots. The best features of these motors,
however, are the internal gearing, the ease of mounting, and their low price. These
motors have been used with much success on many robots created in previous intelligent

machine courses.

I modified two servos for continuous rotation using a technique demonstrated by Scott
Jantz, one of the lab assistants. This process involved cutting the gear-stops on the
internal gears, and then removing all of the electronics from the inside the servos. After

this step, | soldered the servo connector wires directly to the motors. The two motors are

11

driven by a SN754410 motor driver chip on the ME11 expansion board. The
microprocessor can control the speed and direction of each motor by sending pulse-width
modulated (PWM) and select signals to the motor drivers. | used Professor Doty’'s

motor.c library file to drive the motors in my ICC11 programs.

Sensors

In order for a robot to navigate and interact with other objects, the robot must have some
sense of its environment. Clyde perceives his surroundings using an array of inexpensive
sensors. These sensors include infrared proximity sensors, an integral bump sensor,

wheel encoders, and a compass.

Infrared Proximity Sensors

Clyde has five forward-looking infrared proximity sensors which serve as the robot's
“eyes.” Clyde uses these sensors to detect approaching objects and avoid collisions. The
five sensors are mounted in a radial pattern on the inside of the robot’s shell, which has
holes for each of the sensors. This configuration protects the sensors from collisions and

provides a wide field of view in front of the robot.

Each sensor consists of a 40kHz modulated infrared LED and a Sharp GP1U58Y infrared
detector. The emitters are controlled and modulated by an output latch on the ME11
expansion board. Each emitter is columnated in a black tube to prevent IR leakage from
saturating the detectors. | modified the Sharp IR detectors to output analog voltages, as

described in lab, and then connected the output of these sensors to the analog inputs of

12

the 68HC11. | then wrote ICC11 routines to sample and normalize the readings from the

SENSorsS.

Bump Sensor

Bump sensors are used to detect when the robot has collided with an obstacle and needs

to change course. Ideally, most objects will be detected with infrared proximity sensors

before a collision occurs, but in an unpredictable environment, bump sensors are a

necessity. Since bump sensors are essentially the “last line of defense” for detecting
obstacles, | wanted the Clyde’s sensor to be very reliable. The resulting design was the

pivoting shell configuration described in timebile platform section of this report.

| placed eight SPST keyboard switches around the perimeter of the robot and interfaced
them to the micro-controller using a 74HC374 8-bit latch. One terminal of each switch is
grounded, and the other terminal is connected to one of the eight latch inputs. | used 10k
pull-up resistors on each of the latch inputs. The latch is read as a memory-mapped input
at address $4000 by using the Y1 line on the ME11 expansion board as a chip enable for
the latch. Data is clocked into the latch by the 68HC11 E-clock. The schematic for the

bump sensor interface is shown in Figure 3.

13

Figure 3: Bump Sensor Interface

o ' E-clock
Eump 1ok CLE

Switches 13 374 13 G5HC11l Data Lines

3) 17 UH T2 "7

D6
1z DS
D4
D3
Dz
Dl
O0E Lo

L T
B ME1l ¥1

I

i

The bump sensor can be polled by a single software read from memory address $4000.
Each bit of the data byte corresponds to the state of a bump switch. The switches are
active low, so a data value of $FF means that no switches are being depressed. | wrote a
set of generic ICC11 functions that allow a user to sample the latch value and determine
which bump sensors are active. | also wrote a specific routine for Clyde’s bump sensor

configuration that allows the robot to determine the direction of the collision.

Shaft Encoders

Clyde uses a pair of shaft encoders to measure the rotation of the drive wheels. These
encoders allow the robot to determine distance it has traveled, the number of degrees it
has turned, and the current speed of each wheel. Clyde uses this information to measure

forward movement, perform precise rotation, and to determine if the motors have stalled.

The shaft encoders sense wheel rotation by measuring the amount of infrared light

reflected off striped cut-outs glued each wheel. The cut-outs are circular pieces of poster-

14

board with 16 alternating black and white stripes painted like pie slices. | glued a cut-out
on the outside of each wheel, and then mounted Sharp 2L01 infrared emitter/detector
pairs about a centimeter away from each cut-out. | used a 470 ohm current-limiting
resistor on the infrared emitter and a 1k resistor on the collector of the detector. | then
used a 74HC14 Schmitt-trigger inverter to convert the signalsto 0 - 5V square waves.
The 68HC11 then uses input capture lines IC2 and 1C3 to detect the transitions between

the black and white stripes. The schematic for this circuit is shown in Figure 4.

Figure 4: Shaft Encoder Circuit

4+ Ay
o
|
]
f;D 1k UTA gRHCT 1
1 T _ Ilnput Copture
IR Emitter By _ |
Py G FAHCT 4
| IE Detector Schmitt Trigoger

| wrote an ICC11 library to interpret the data from the shaft encoders. The library
includes an initialization routine to set up the system, two interrupt service routines to
process the encoder data, and several other functions that allow the user to read, reset, and

turn off the encoders.

Compass

Clyde has a compass for measuring rotational motion. This sensor is useful for
navigation and calibration purposes. Clyde uses the compass to migrate in a particular

direction, to determineif heistrapped, and to detect excessive wheel sippage. The

15

compass, which was designed by myself and Kevin McFarlin, uses an optical encoder
from a PC mouse to measure the rotation of afloating magnet. The designisvery

compact and inexpensive. The details of the compass design are shown in Appendix A.

Behaviors

Object Avoidance Behaviors

IR Avoidance

Clyde uses hisfive infrared proximity sensors to avoid the large obstacles he encounters.

Each sensor has a corresponding neuron in the robot’s neural net that gives an opinion on
what it thinks the robot’s current speed and turn rate should be. If a proximity sensor
senses a high level of IR reflection, the sensor’s neuron wants the robot to slow down and
steer away from the approaching object. The opinions from each neuron are all added
into the neural net, and then the turn rate and speed with the highest opinions are selected

to control the robot.

Delta IR Avoidance

In addition to responding to the magnitude IR reflection, Clyde also responds to a change
in IR reflection on any one sensor. Each proximity sensor has another neuron that gives
an opinion based upon the change in IR reflection since the last sample time. This set of

opinions causes Clyde to react more quickly to objects when traveling at full speed.

16

Bump Avoidance

When Clyde’s IR sensors fail to detect an object, he must use his bump sensors to
navigate around the obstacle. Just like the IR sensors, each bump sensor has a neuron
that gives an opinion on the robot’s speed and turn rate. The bump sensor opinions,
however, have a much greater weight than the IR sensors in the neural net. This allows

the bump sensors to have priority over the proximity sensors when a bump has occurred.

Escape Corner Behavior

With only the neural-net based object avoidance, Clyde can function very well under

most conditions. Unfortunately, there are a few situations that cause Clyde to get trapped.
One of these situations arises when Clyde is facing a dark (non IR-reflective) corner.
Since the IR sensors sense no reflection, only the bump sensors have an opinion. This
causes the robot to bump on the right side, then on the left side, then on the right side...
etc. This is where thescape corner behavior comes in. If Clyde encounters the situation
described above, when he bumps on the right side for the second time in the same
location, he will turn right instead of left. This causes the oscillation to be broken, and

Clyde can escape.

Frustrated Behavior

Occasionally, other situations arise where Clyde oscillates or “freezes” and no collisions
occur. Thdrustrated behavior allows Clyde to escape from these scenarios as well.

When Clyde notices that he has not made much forward progress over a long period of

17

time, and that his heading is approximately the same, Clyde get “frustrated” with his
progress and turns a random amount. This action usually “frees” Clyde from his trapped

condition, and he can continue exploring.

Motor Stall Detection Behavior

There are some very low objects that Clyde’s bump sensors cannot detect. This includes
clothing, tools, and other small objects that may be lying on the floor of a typical home.
When Clyde encounters one of these objects, the robot may pass over it, the wheels may
get stuck and stop turning, or Clyde might get stuck on top of the object, causing a wheel
to spin freely. The latter two cases could be very bad situations where the robot is
trapped forever. Theall detection behavior is designed to detect either of these

situations and allow Clyde to escape.

When a wheel spins freely, the motor speed is faster than normal for a given motor duty
cycle. When a wheel is stuck, the speed is lower than expectedtall lietection

behavior takes advantage of this information, and compares the speed of each wheel to an
expected speed for the current duty cycle. If the actual speeds are not close to the
expected speeds, Clyde will stop, move backwards, and then turn. The difficulty with

this scheme is in determining what the expected speeds should be. Ideally, the robot
would adaptively change these values to account for different environments, but currently

Clyde only calibrates the table on startup.

18

Performance

Mechanical

The mechanical design of the robot worked very well. The most impressive part of this

design isthe integrated bump sensor. The sensor consistently detects collisions in the

“real world” environment of my cluttered room. The outer shell also provides good
protection for the microprocessor and its sensors. A standard robot would much more
vulnerable to damage in an unpredictable environment. The shell design does have some
disadvantages, however. Mounting the IR sensors, power switches, and serial connector
is much more involved than on the standard type robot. The enclosed design also cuts
down on the space available to mount sensors and other components. In spite of these

deterrents, | believe this design is a very good option for “real world” robots.

Electrical

All of the sensors on the robot proved to be effective. The keyboard switches worked
very well as bump sensors. The switches are cheap, fairly sensitive, and very durable.
The compass worked well when mounted on the robot, and seemed to be repeatable (see
Appendix A). The shaft encoders were also very consistent and reliable. | did not do any
detailed mapping using the encoders, but | suspect that they would work fairly well for

this purpose. The IR sensors worked well, except for some infrared leakage between the
emitters and detectors that caused the ambient readings to rise above the normal values.
My battery back-up circuit performed flawlessly throughout the semester. | never had to

reload a program due to memory corruption.

19

Behavioral

In most situations, Clyde’s obstacle avoidance was fairly good. Clyde’s IR sensors do not
always detect dark objects, but the bump sensors detect these objects and allow the robot
to continue. As mentioned in thehaviors section, the object avoidance occasionally

fails and Clyde gets trapped. Fortunately,ftiistrated andescape behaviors usually

allow Clyde to get out of these situations. Sometimes these behaviors may cause Clyde to

look confused, but they usually succeed in allowing Clyde to escape these traps.

The motor stall detection behavior has demonstrated limited success. Currently, Clyde is
able to detect most stall conditions, but sometimes the behavior triggers falsely, and
sometimes it does not detect stalls. The main difficulties with this behavior are creating
the table of expected speeds (which changes with battery voltage), and avoiding false

triggering when the motors are changing speeds.

20

Conclusion

For the most part, Clyde was successful in hisrole as a house robot. Heisableto
navigate through most indoor environments without much difficulty. In very cluttered
areas, Clyde sometimes becomes confused, but he rarely gets trapped or stuck on top of

an obstacle.

The bump sensor design is one of Clyde’s best features, allowing him to survive in
environments where other robots may fail. The neural net system also worked very well,
and produced some very interesting and complex behaviors. The object avoidance and
migrate behaviors integrated well with the neural net, but was very difficult to integrate

the other behaviors using the neural net. Because these behaviors require complete
control of the robot for an extended period of time, | had to use the subsumption form of
arbitration with these routines. The only behavior that | am not really satisfied with is the
stall detection behavior. | believe this idea has promise, but it probably needs an adaptive

algorithm to calibrate itself.

21

References

Robotics and Technical Information

Jones, Joseph L., and Anita M. Flynn, Mobile Robots: Inspiration to
Implementation. Wellesley, MA: A K Peters, 1993.

ImageCraft ICC11 Users Manual v3.6. Sunnyvale, CA: ImageCraft, 1996.

Machine Intelligence Lab Web Ste. http://www.mil.ufl.edu

Ideas and Inspiration

Doty, Keith L., IMDL Class Lectures. Gainesville, FL: University of Florida,
Fall 1996

Rossey, Lee, IMDL Class Lecture: Neural Nets. Gainesville, FL: University of
Florida, Fall 1996

Electronic Components

All Electronics Corp.
14928 Oxnard Street
Van Nuys, CA 91411

Digikey Corporation
701 Brooks Ave. South
Thief River Falls, MN 56701-0677

Electronics Plus
2026 SW 34" Street
Gainesville FL

Sipper Electronics
3708 Newberry Rd.
Gainesville, FL

Radio Shack
Several Gainesville Locations

22

Appendix A: Compass Sensor Design

23

Appendix B: Battery Back-up Circuit

| designed a battery back-up circuit for the 32k RAM on ME11 expansion board. The
initial design for this circuit came from aNew Micros Inc. (NMI) 68BHC11 board. |
modified this circuit to suit my needs and match the partsthat | had available. Thefinal

circuit | used (see Figure B-1) looks quite a bit different from the original NMI circuit.
Figure B-1: Battery Back-up Circuit

45V VBackup = 3.0V

+5%

R3T

AlS

T4LE10

My back-up circuit uses two power supply busses. one for the 32k RAM, and one for the
main 68HC11 circuitry. When the main 5V supply is powered by the voltage regulator,
the RAM power is supplied via a diode connected to this supply. When the main power
supply drops below about 4V, the low-voltage inhibit (LV1) chip on the 6BHC11 board
holds down the reset (RST) line low. Since the output of the 3-input NAND gate goes
high when this occurs, the contents of the 32k RAM will not be destroyed by random
memory writes as the battery voltage drops. When the main power supply drops below

about 3V, the RAM power will be supplied by the 3V back-up power supply through a

24

second diode. When the main power supply voltage drops low enough that the NAND
gate can no longer operate, the chip enable of the RAM will be held high by a 4.7k pull-
up resistor. In order for thislast condition to occur, an LSTTL NAND gate must be used
instead of an HCMOS chip. This hasto do with the output resistance of the chips when

no power supply is applied.

25

Appendix C: Main Program Code

/**/
[RRER KKKk kR Rk kkok ok kR Kk k ok kR ARk k ok kK ARk Kk ok Kk kA Rk k ok ok kA k ok ok kA k ok ok kA k ok ok kR kkkok ok ok ok k [

/* */
/* Robot Program */
/* */
/* Features: |R Magnitude Obstacle Avoidance (Neural Net) */
/* Delta IR ostacl e Avoi dance (NN) */
/* Bunp Sensor Object Avoi dance (NN) */
/* Frustrated Behavi or (Subsunption) */
/* Escape Behavi or (Subsunption) */
/* Headi ng Seek Behavi or (NN) */
/* Headi ng Repel Behavior (NN) */
/* */

AR R AR R EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE SRR EEEEEE Ry
/**/

/* __ */
/* Include files */
/* __ */

#i ncl ude <mul ti Tsk. h>
#i ncl ude <tinekeep. h>
#i ncl ude <serio. h>
#i ncl ude <notcontr. h>
#i ncl ude <neural .c>
#i ncl ude <function. h>

#i ncl ude "sensors. c"
#i ncl ude "nnconfig.c"
#i ncl ude "nove. c"

/* __ */
/* Defines *J
/* __ */

#defi ne notorTi neConstant 4
#defi ne not or Sanpl i ngPeri od 50

IR E R R RS EEEEEE R R EE R R R R R R EELY

/* */
/* 1R Opini ons */
/* */
/* Description: Sets neural net opinions for obstacle avoi dance based on */
/* the magni tude of the readings for each IR sensor. */
/* */

/**/

voi d set!|rQpinion()

/* __ */
/* Variabl es */
/* __ */
int subject;
int irlndex;
/* __ */
/* Set IR magnitude opinion for each turn rate subject */
/* __ */

for (subject=0; subject<nunilTurnSubjects; subject++)
for (irlndex=0; irlndex<num R irlndex++)

turnQpi ni on[subj ect] += irTurnWeight[irlndex] *
pwLi near (i r[irlndex],irTurnTF[irlndex][subject], 100);

b
h
/* __ */
/* Set IR magnitude opinion for each speed subject */
/* __ */

for (subject=0; subject<nunBpeedSubjects; subject++)

26

for (irlndex=0; irlndex<num R; irlndex++)

speedQpi ni on[subj ect] += irSpeedWei ght[irlndex] *

pwLi near (ir[irlndex],irSpeedTF[irlndex][subject], 100);

}
}
}

/**/

/*
/*
/*
/*
/*
/*

Delta I R Opinions

Description: Sets neural net opinions for obstacle avoi dance based on
the change in the readings for each IR sensor.

*/
*/
*/
*/
*/
*/

AR R AR R R EEEEEEEEREEEEEEEEEEEEEEEEEEEEEEEE SRR EEEEE Ry

voi d setDel talrQpinion()

/*
/*
/*

/*
/*
/*

__ */
Vari abl es */
__ */
int subject;
int irlndex;
__ */
Set delta IR opinion for this turn rate subject */
__ */
for (subject=0; subject<nunilurnSubjects; subject++)
for (irlndex=0; irlndex<num R, irlndex++)
{
turnQpi ni on[subj ect] += deltalrTurnWeight[irlndex] *
pwii near (del tal Rl irlndex],deltalrTurnTF[irlndex][subject]
, 100) ;
b
b
__ * [
Set delta IR opinion for this speed subject */
__ * [
for (subject=0; subject<nunBpeedSubjects; subject++)
for (irlndex=0; irlndex<num R, irlndex++)
{
speedQpi ni on[subj ect] += del talrSpeedWight[irlndex] *
pwiLi near (del tal R irlndex], del talrSpeedTF[irl ndex][subject]
,100) ;
b
b
}

/**/

/*
/*
/*
/*
/*
/*

Bunmp Opi ni ons

Description: Sets neural net opinions for obstacle avoi dance based on
the bunp sensors.

*/
*/
*/
*/
*/
*/

/**/

voi d set BumpQpi ni on()
{

int subject;
i nt bunpl ndex;

if (anyBunp())
set Mot or TC(1) ;

27

el se
set Mot or TC(ot or Ti meConst ant) ;

/* __ */
/* Set opinions for each bunp sensor on each turn rate subject */
/* __ */

for (subject=0; subject<numlurnSubjects; subject++)
for (bunpl ndex=0; bunpl ndex<nunBunp; bunpl ndex++)
{

turnQpi ni on[subj ect] += bunpTur nWéi ght [bunpl ndex] *
bunp[bunpl ndex] * bunpTur nOpi ni on[bunpl ndex] [subj ect];

b
/* __ */
/* Set opinions for each bunp sensor on each speed subj ect */
/* __ */

for (subject=0; subject<nunBSpeedSubjects; subject++)
for (bunpl ndex=0; bunpl ndex<nunBunp; bunpl ndex++)
{

speedOpi ni on[subj ect] += bunpSpeedWei ght [bunpl ndex] *
bunp[bunpl ndex] * bunpSpeedOpi ni on[bunpl ndex] [subj ect];

b
}
/**/
/* */
/* Seek Headi ng Opi nion */
/* */
/* Description: Sets neural net opinions that cause the robot to seek */
/= the headi ng specified by the seekDirection paraneter. */
/* */

IR R R RS EEEREEEEEEEEEE R EEEEEEEEEEE R EEEE R EEE R EEELY

voi d set SeekHeadi ngOpi ni on(int seekDirection)
int diff = headi ngDiff(getHeading(), seekDirection);

turnQpi ni on[hardLeft] += headi ngSeekTur nWi ght *
pwLi near (di f f, headi ngSeekHL, 180) ;

turnQpi nion[softLeft] += headi ngSeekTur nWei ght *
pwLi near (di f f, headi ngSeekSL, 180) ;

turnQpi ni on[strai ght] += headi ngSeekTur nWi ght *
pwLi near (di f f, headi ngSeeksS, 180) ;

turnQpi ni on[sof t R ght] += headi ngSeekTur nWi ght *
pwLi near (di f f, headi ngSeekSR, 180) ;

t ur nQpi ni on[har dRi ght] += headi ngSeekTur nWi ght *
pwLi near (di f f, headi ngSeekHR, 180) ;

}
/**/
/* */
/* Frustrated Opinion */
/* */
/* Description: If not nuch forward notion is detected in a certain */
/* period of tine, the robot get frustrated and spins */
/* a random anount . */
/* */
/**/
/* __ */
/* Private Variables */
/* __ */

int ol dLeft Count, ol dRi ght Count;
unsi gned int |astFrustratedTi me=0;
i nt |astFrustHeadi ng;

voi d set Frustrat edQOpi ni on()

{
| % o e meee o * [
/* Execute this routine once every 16 seconds */
| o e o ee e e o s * [

if (getMIliseconds() - |astFrustratedTi me > 16000)

28

int |eftDistance = get Encoder(left) - ol dLeft Count;
int rightDistance = get Encoder (right) - ol dRi ght Count;

printf("l %d r % \n",leftDistance,rightDi stance);

if (abs(leftDistance + rightDistance) < 160 &&
abs(headi ngDi ff (get Headi ng(), | ast Frust Headi ng)) < 70)
{

printf("l’mfrustrated!\n");

hal t();
del ay(1000);
spin(left, randon(135, 225));
halt();
3
ol dLeft Count = get Encoder(left);
ol dRi ght Count = get Encoder (right);
| ast FrustratedTine = getM | liseconds();
| ast Frust Headi ng = get Headi ng();

}
/~k***********************/
/* */
/* Escape Qpi nion */
/* */

/**/

/* __ */
/* Private Variabl es */
/* __ */

i nt bunpRel eased;

i nt | ast BunpHeadi ng, | ast BunpHeadi ng2;

unsi gned int |astBunpTine, |astBunpTine2, |astBunpAngle;
i nt escapi ng;

voi d set EscapeQpi ni on()

/* __ */
/* Variables */
/* __ */
int diff;
i nt bunpAngl e;

escapi ng = 0;

if (anyBunp() == 0)
burmpRel eased = 1;

if (anyBunp() && bunpRel eased==1)
{

i nt bunpHeadi ng;
hal t ();

bunpAngl e = get BunpAngl e();
bunpHeadi ng = get Headi ng() + bunpAngl e;

i f (bunpHeadi ng > 359)
bunpHeadi ng = bunpHeadi ng - 360;
el se if (bunpHeadi ng < 0)
bunpHeadi ng = bunpHeadi ng + 360;

printf("hdg: % % % \'n", bunpHeadi ng, | ast BunpHeadi ng, | ast BunpHeadi ng2) ;

printf("time: % 9% %l \n",getMI1liseconds(),|astBunpTine, | ast BunpTi ne2) ;

printf("bunpAngle: % hdgDiff: %
\' n\ n", bunpAngl e, headi ngDi f f (bunpHeadi ng, | ast BunpHeadi ng)) ;

/* if (getMIlliseconds() - |astBunpTinme < 6000
&& abs(headi ngDi f f (bunpHeadi ng, | ast BunpHeadi ng)) <= 45
&& abs(bunpAngl e-| ast BunpAngl e) <= 45)

escaping = 1;
printf("l’mescaping!'\n\n");
i f (bunpAngle > 0)

spin(l eft, randon{ 60, 180));

29

el se
spi n(right, randon(60, 180));

*/
if (getMIliseconds() - |astBunpTine2 < 10000
&& abs(headi ngDi f f (bunpHeadi ng, | ast BunpHeadi ng2)) < 20)
{
escaping = 1;
printf("l’mescaping!'\n\n");
i f (headi ngDi ff (bunpHeadi ng, | ast BunpHeadi ng) > 0
&& (bunpAngl e<=90 && bunpAngle >= -90))
spin(right, random(45, 225));
el se if (headingDi ff(bunpHeadi ng, | ast BunpHeadi ng) > 0
&& (bumpAngl e>90 || bunpAngle < -90))
spin(l eft, randon(45, 225));
el se if (headi ngDi ff (bunpHeadi ng, | ast BunpHeadi ng) < 0
&& (bunmpAngl e<=90 && bunpAngle >= -90))
spi n(l eft, randon(45, 225));
else if (headingDi ff(bunmpHeadi ng, | ast BunpHeadi ng) < 0
&& (bunmpAngl e>90 || bunpAngle < -90))
spi n(right, randon(45, 225));
| ast BunpAngl e = bunpAngl e;
| ast BunpTi ne2 = | ast BunpTi ne;
| ast BunpHeadi ng2 = | ast BunpHeadi ng;
| ast BunpTime = getM 1 1iseconds();
| ast BunpHeadi ng = bunpHeadi ng;
burmpRel eased = 0;
b
}
/**/
/* */
/* Stall Opinion */
/* */

IR E R R R AR SRR R R R R R R R R LY

int speedbDuty[] =
{ 0 0
10, O,
20, 1,
30, 8,
40, 11,
50, 13,
60, 15,
70, 16,
80, 17,
90, 18,
100, 18

/* __ */
/* Calibrate the stall speed array */
2 * [
void calibrateStall ()

int i,l,r,11,r1;

notor (left,0);
mot or (ri ght, 0);

for (i=0; i<=6; i++)

{

nmot or (I eft, 10*i);

not or (right,-10*i);

del ay(1000);

| = get Encoder (left);
r = get Encoder (right);
del ay(5000);
notor (1 eft, 0);

not or (ri ght, 0);

|1 = get Encoder (1l eft);
rl = get Encoder (right);
speedDut y[i ndexMatri x2(speedbDuty,i,1)] = (11-1)/5;

30

del ay(9000) ;
for (i=0; i<=10; i++)

printf(" % | %, %
\n",i,elemrentMatri x2(speedDuty, i, 0), el ement Matri x2(speedDuty,i,1));

/* Monitor Mtors for stall condition

int |astStall Headi ng=0;
unsigned int lastStallTime = 0;

voi d stall Detect()

o e e e e e e e e e e e e e e e d e eaiaas

/* Execute this section once every 2 seconds

e e e e e e e e e e e d e eaiaas
if (getMIliseconds() - lastStallTime > 2000)

/* int | eftChange = get Encoder (left) - |astLeftPul ses;

int rightChange = getEncoder(right) - |astRightPul ses;
i nt encoder Degrees = (| eftChange - right Change) *
360 / pul sesPer Tur nRev;

i f (abs(get Speed(left)-getSpeed(right)) > 20 &&
abs(headi ngDi f f (get Headi ng(), ol dHeadi ng)) < 5)
*/
nt |duty get AvgDut y(l eft);
nt rduty get AvgDuty(right);
nt |ldutyl = getQ dAvgDuty(left, 0);
nt rdutyl = get d dAvgDuty(right, 0);
nt tabl eLspeed = pwLi near (abs(! duty), speedDuty, 100);
nt tabl eRspeed = pwlLi near (abs(rduty), speedDuty, 100) - 1;
t abl eLspeedl = pwii near (abs(Il dutyl), speedDuty, 100);
nt tabl eRspeedl = pwli near (abs(rdutyl), speedDuty, 100) - 1;
nt | speed = abs(get Speed(left));
nt rspeed = abs(get Speed(right));
nt | speedl = abs(getd dSpeed(left,0));
nt rspeedl = abs(getd dSpeed(right,0));
nt leftStall = abs(lspeed-tabl eLspeed) > 2 &&
abs(| speedl-tabl eLspeedl) > 2 &&
abs(l duty-Idutyl) <= 10;
&&
&&

=}
=3

int rightStall = abs(rspeed-tabl eRspeed) > 2
abs(rspeedl-tabl eRspeedl) > 2
abs(rduty-rdutyl) <= 10;

f ((leftStall || rightStall) && !anyBunp())

hal t ();
printf("Mtors are stalled...\n");
printf("\nleft : % % % \n",|Iduty,|speed,tablelLspeed);
printf("leftl : %d % % \n",Idutyl,|speedl,tablelLspeedl);
printf("right : % % % \n",rduty,rspeed,tabl eRspeed);
printf("rightl: %d 9% % \n",rdutyl,rspeedl,tabl eRspeedl);

rev();

del ayCondi ti onFal se(randon(2000, 4000), *anyBunpNow) ;

hal t ();

spin(left, randon(45, 135));

s
| ast St al | Headi ng = get Headi ng();
lastStall Tine = getM11iseconds();

*/
*/
*/

/**/

/*
/* Neural Net Opinions

*/
*/

31

/* */

/**/

unsigned int et;
unsigned int ol dt;

voi d get Opi ni onsProcess()

whi | e(1)
{
et = getMIliseconds() - oldt;
oldt = getMIliseconds();
sanpl eSensors();

setlrQpinion();
set Del t al r Opi ni on();

/* set SeekHeadi ngQpi ni on(0); */
set EscapeQpi ni on();
set Frustrat edOpi ni on();

stal |l Detect();

if (escaping == 0)
set BumpQpi ni on() ;

neur al Net () ;
nmot i onControl ();

[RRE KKK Kk kR k ok ok ok kR Rk kk kR ARk Kk kK ARk ok ok kA Rk k ok ok kAR k ok ok kAR k ok ok kA k ok k kR ok k ok ok ok ok k [

/* Display Debugging information */

/**/
voi d display()
{ whi | e(1)
printf("et: 9% ", et);
printf("left : %@ % %

", get AvgDut y(|I eft) get Speed(| eft), pwLi near (abs(get AvgDuty(l eft)), speedDuty, 100));
printf("right: %d % %l

\n", get AvgDuty(ri ght), get Speed(ri ght), pwLi near (abs(get AvgDuty(ri ght)), speedDuty, 100));

1

}

AR R R AR R EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE SRR EEEEE LY

/* Robot Test Program */

AR R R AR R R EEEEEEEEREEEEEEEEEEEEEEREE R EEEEE SRR EEEEE LY

mai n()

/* Set up serial port for output */
i ni t Serial (BAUD_ 1200, PROT_8N1, POLLED TRANSM T);
printf("Ready...\n");

/* Initialize I/O devices */
i ni t Ti neKeeper ();
initMltiTasking(RTI_32ms);
initSensors();

/* Initialize Control Processes */
i ni t MotionControl (notorTi neConst ant, 200) ;
i ni tNeural TF();

/* calibrateStall();*

/* start Process(*noti onControl Process, 1);*/
/* start Process(*stal | Detect Process, 1);*

/* startProcess(*display, 1);*/

/* start Process(*noti onControl Process, 1);*

32

start Process(*get Opi ni onsProcess, 4);
/* Main Program Loop .
not i onCont r ol Process(); /
/* get Opi ni onsProcess();*/
whi | e(1)
/* del ayCondi ti onFal se(4000, *anyBunmpNow) ; */

fwd();
del ay(5000) ;

halt();
del ay(1000);

rev();
del ay(4000)

halt();
del ay(1000);

#i ncl ude <vectors.c>

/**************~k***********************/

/* */
/* Sensor System */
/* */
/~k~k~k~k*****~k~k~k~k*****~k~k~k~k*****~k***********************/
/* __ */
/* Incl udes */
/* __ */

#include <ir.c>

#i ncl ude <bunp.c>

#i ncl ude <conpass. h>
#i ncl ude <encoders. h>

/* __ */
/* Defines */
/* __ */
/* Delay between sensor readings in mlliseconds */

#def i ne sensor Sanpl eRate 100

/* Nanmes of IR Sensors */
#define farRight 0
#define nearRight 1
#define center 2
#defi ne nearLeft 3
#define farlLeft 4

/* Names of Bunp Sensors */
#define rightRearlnner 0
#define rightRearQuter 1
#define rightFrontCQuter 2
#define rightFrontlnner 3
#define leftFrontlnner 4
#define leftFrontQuter 5
#define | eftRearQuter 6
#define | eftRearlnner 7

/* __ */
/* Init Sensors Process */
/* __ */

voi d initSensors()

initlR(5, 112, 128, 100, Ox1F);

33

i ni t Bunp(8);
i ni t Conpass();
i ni t Encoders();

}
/* __ */
/* Sanpl e Sensors */
/* __ ~k/

voi d sanpl eSensors()

sanmpl el R();
sanpl eBunp();

/* __ */
/* Sanple Sensors Process */
/* __ */

voi d sanpl eSensor sProcess()
whi | e(1)

sanpl eSensors();
del ay(sensor Sanpl eRat e) ;

b
}
/* __ */
/* Find Bunp Angle Routine */
/* __ */

i nt get BunpAngl e()
{
i nt bunpAngl e=0;
if (bunp[rightFrontlinner] && bunp[leftFrontlnner])

bunpAngl e = 0;
else if (bump[rightFrontlnner] && bunp[rightFrontQuter])

bunmpAngl e = 45;

else if (bump[leftFrontlnner] && bunp[leftFrontQuter])
bumpAngle = - 45;

else if (bump[rightFrontQuter] && bunp[rightRearQuter])
burmpAngl e = 90;

else if (bunp[leftFrontQuter] && bunp[leftRearCQuter])
burmpAngle = - 90;

else if (bunmp[rightRearQuter] && bunp[rightRearlnner])
bunmpAngl e = 135;

else if (bunp[leftRearQuter] && bunp[leftRearlnner])
bumpAngle = - 135;

else if (bunp[rightRearlnner] && bunp[leftRearlnner])
bunmpAngl e = 180;

else if (bunp[rightFrontlnner])
bunmpAngl e = 22;

else if (bunmp[leftFrontlnner])
bumpAngle = - 22;

else if (bunmp[rightFrontQuter])
bunmpAngl e = 67;

else if (bun'p[leftFrontOJter])
bumpAngle = -

else if (bunp[r| ght RearOJter])
bunmpAngl e =

else if (bunp[leftRearOJter])
bumpAngle = - 112;

else if (bunp[rightRearlnner])
bunmpAngl e = 157;

else if (bunp[leftRearlnner])
bunpAngle = - 157,

return bunpAngl e;

[RRER KKKk Kk Rk kkok ok kR Rk kok ok kA Xk k ok ok kA Rk k ok ok kA Rk k ok ok kAR k ok ok kAR k ok ok ok Ak k ok k kR ok k ok ok ok ok k [

/* */
/* Movenent Routines */
/* */
1* */

/********~k***********************/

#i ncl ude <encoders. h>
#i ncl ude <notcontr. h>

i nt pul sesPer Spi nRev = 45;
unsi gned int maxTi mePer Spi nRev = 12000;

void spin(int direction, int degrees)

i nt del taPul ses;
int dLeftPul ses=0;
i nt dRi ght Pul ses=0;

/* Save current wheel position
int startlLeftPul ses = get Encoder (left);
int startRi ght Pul ses = get Encoder (right);
/* Set maximumturn tine
unsi gned int maxTurnTi ne = maxTi mePer Spi nRev / 360 * degrees;
unsigned int startTime = getMI|1liseconds();
/* Cal cul ate nunber of pul ses needed on each wheel for this turn
del taPul ses = degrees * pul sesPer Spi nRev / 360;
/* Initiate Turn
if (direction == left)
set Desi redTur nRat e(- 30) ;
el se
set Desi redTur nRat e(30) ;
set Desi r edSpeed(0) ;
/* Turn until robot has rotated desired anpunt
whil e(abs(dLeftPul ses) < deltaPul ses &&
abs(dRi ght Pul ses) < deltaPul ses &&
getMIliseconds() - startTime <= maxTurnTine)
dLeft Pul ses = getEncoder (left) - startlLeftPul ses;
dRi ght Pul ses = get Encoder (right) - startRi ghtPul ses;
b
/* Stop turning

set Desi redTurnRat e(0) ;

voi d fwd()
{

set Desi redSpeed(30);
set Desi redTur nRat e(0) ;

void rev()

set Desi redSpeed(-30);
set Desi redTur nRat e(0) ;

*/

*/

*/

*/

*/

*/

*/
*/
*/

*/
*/
*/

35

voi d halt ()
{

set Desi redSpeed(0) ;
set Desi redTurnRat e(0) ;

}
/* __ */
/* 1ncl udes */
/* __ */
#i ncl ude "neural TF. c"
/~k __ ~k/
/* Defines */
/~k __ */
/* Turn Rate Defines */

#define straight O
#define hardLeft 1
#define softlLeft 2
#define softRight 3
#defi ne hardRi ght 4

/* Speed Defines */
#defi ne medi um 0
#define slow 1
#define verySl ow 2
#define fast 3
#define reverse 4

/* __ */
/* Opinion Transfer Function Arrays */
/* __ */

nt * irTurnTF[maxNum R] [maxNumTur nSubj ect s] ;
nt * irSpeedTF[maxNum R] [maxNunBpeedSubj ect s] ;
nt i rTur n\Wei ght [maxNum R] ;

nt irSpeedWei ght [maxNum R] ;

nt * deltalrTurnTF[maxNum R] [mexNunilur nSubj ect s] ;
nt * deltalrSpeedTF[maxNum R] [maxNunfSpeedSubj ect s] ;
nt del talr TurnWei ght [maxNum R] ;

nt deltal r SpeedWei ght [maxNum R] ;

nt bunpTur nOpi ni on[maxNunBunp] [maxNumTur nSubj ect s] ;
nt bunpSpeedOpi ni on[maxNunBunp] [maxNuntpeedSubj ect s] ;
nt bunpTur nWi ght [maxNunmBunp] ;

nt bunpSpeedWei ght [maxNunBunp] ;

i nt headi ngSeekTur n\Wéi ght ;

/**/

/* */
/* Initialize Neural Net Variables and Opinion Transfer Functions */
/* */

/**/

voi d initNeural TF()

int i;
/* __ */
/* Set up neural net variables */
/* __ */
/* Set the nunber of subjects for each neural net

numrur nSubj ects = 5;
nunBpeedSubj ects = 5;

/* Set the turn rates for each turn subject
tur nMagni t ude[hardLeft] = -35;
turnMagni tude[softlLeft] = -15;

*/

*/

/*

/*
/*

/*

Set the forward speeds for

turnMagni tude[strai ght] = O;
t ur nMagni t ude[sof t Ri ght] 15;
t ur nMagni t ude[har dRi ght] 35;

speedMagni tude[fast] = 50;
speedMagni t ude[medi unj = 30;
speedMagni t ude[sl ow] = 20;
speedMagni t ude[verySl ow] = 10;
speedMagni tude[reverse] = -15;

irTurnWeight[farLeft] = 1;
i r Tur n\Wéi ght [near Left]

i r Turn\Wei ght[center] = 6;
i r Tur n\Wi ght [near Ri ght] = 3;
i rTurnWeight[farRight] = 1;

del tal r TurnWei ght[farLeft] =1
del tal r Tur nWei ght [near Left] =
del tal r TurnWei ght[center] = 6;
del tal r TurnWei ght [nearRi ght] = 3;
del tal r TurnWeight[farRi ght] = 1;

3

bunpTur n\Wei ght [ri ght Rear | nner] = 10;
bunpTur nWei ght [ri ght RearQuter] = 10;
bunpTur n\Wei ght [ri ght Front Quter] = 15;
bunpTur nWei ght[ri ght Front I nner] = 15;
bunpTur nWei ght [| eft Front | nner] = 15;
bunmpTur nWei ght [l eft Front Quter] = 15;
bunpTur nWei ght [| eft Rear Quter] = 10;
bunpTur nWei ght [| eft Rear I nner] = 10;

headi ngSeekTur nWi ght = 5;

i r SpeedWei ght[farLeft] = 1;
i r SpeedWei ght [near Left]

i r SpeedWei ght [center] = 1,
i r SpeedWei ght [near Ri ght] = 1;
i r SpeedWei ght [farRi ght] = 1;

del t al r SpeedWei ght [farLeft] = 4;
del t al r SpeedVi ght [near Left] = 4;
del t al r SpeedWei ght [center] = 4;

del t al r SpeedWei ght [nearRi ght] = 4;
del t al r SpeedWei ght [farRi ght] = 4;

bunpSpeedWi ght [ri ght Rear I nner] = 10;
bunpSpeedWei ght[ri ght RearQuter] = 10;
bunpSpeedWei ght [ri ght Front Quter] = 15;
bunpSpeedWei ght[ri ght Front I nner] = 15;
bunpSpeedWi ght[| eft Front I nner] = 15;
bunpSpeedWei ght[l eft FrontQuter] = 15;
bunpSpeedWi ght [| eft Rear Quter] = 10;
bunpSpeedWei ght[| eft Rear I nner] = 10;

Create transfer functions for IR neurons

Turn rate transfer functions

i rTurnTF[farLeft][hardLeft]=ranpNegl00;

i rTurnTF[farLeft][softLeft]=ranpNeg75;

i rTurnTF[farLeft][strai ght]=ranpNeg50;

i rTurnTF[farLeft][softR ght] =peak60t 080;
i rTurnTF[farLeft] [har dR ght] =peak80t 0100;

i r TurnTF[near Left] [hardLeft] =r anpNeg75;
i r TurnTF[near Left] [softLeft] =ranpNegl00;
i r TurnTF[near Left] [straight] =ranpNeg75;

each speed subj ect

*/

*/
*/
*/

*/

37

i r TurnTF[near Left] [soft Ri ght] =peak40t 060;
i r TurnTF[near Left] [har dRi ght] =peak60t 0100;

i rTurnTF[cent er] [hardLef t] =peak50t 0100;
i rTurnTF[center][softLeft]=ranpNeg75;

i rTurnTF[center][straight]=ranpNegl00;

i rTurnTF[center][softRi ght]=ranpNeg75;

i r TurnTF[cent er] [har dRi ght] =peak50t 0100;

i r TurnTF[near Ri ght] [har dLeft] =peak60t 0100;
i r TurnTF[near Ri ght] [soft Left] =peak40t 060;

i r TurnTF[near Ri ght] [strai ght]=ranpNeg75;

i r Tur nTF[near Ri ght] [sof t Ri ght] =r anpNeg100;
i r Tur nTF[near Ri ght] [har dRi ght] =r anpNeg75;

i rTurnTF[farRi ght][hardLeft] =peak80t 0100;
i r TurnTF[farRi ght][softLeft]=peak60t 080;

i r TurnTF[farRi ght][straight]=ranpNeg50;

i r TurnTF[far Ri ght][softRi ght]=ranpNeg75;

i r TurnTF[far Ri ght] [har dRi ght] =r anpNeg100;

/* Speed transfer functions

i rSpeedTF[farLeft][fast]=peakOtol0;

i r SpeedTF[f ar Left] [nedi unj =peak10t 030;

i r SpeedTF[farLeft][sl ow] =peak30t 060;

i r SpeedTF[farLeft][verySl ow =peak60t 080a;
i r SpeedTF[farLeft][reverse] =peak80t 0100a;

r SpeedTF[near Left] [f ast] =peakOt 010;

r SpeedTF[near Lef t] [nedi unj =peak10t 030;

r SpeedTF[near Lef t] [sl ow] =peak30t 060;

r SpeedTF[near Left] [ver ySl ow] =peak60t 080a;
r SpeedTF[near Left] [rever se] =peak80t 0100a;

r SpeedTF[center] [fast] =peakOt 010;

r SpeedTF[cent er] [nedi unj =peak10t 030;

r SpeedTF[cent er] [sl ow] =peak30t 060;

r SpeedTF[cent er] [ver ySl ow] =peak60t 080a;
r SpeedTF[cent er] [rever se] =peak80t 0100a,;

r SpeedTF[near Ri ght] [f ast] =peak0t 010;

r SpeedTF[near Ri ght] [nedi unj =peak10t 030;

r SpeedTF[near Ri ght] [sl ow] =peak30t 060;

r SpeedTF[near Ri ght] [ver ySI ow] =peak60t 080a;
r SpeedTF[near Ri ght] [rever se] =peak80t 0100a;

i r SpeedTF[far Ri ght][fast]=peak0tol0;

i r SpeedTF[f ar Ri ght] [nedi unj =peak10t 030;

i r SpeedTF[f ar Ri ght][sl ow] =peak30t 060;

i r SpeedTF[f ar Ri ght] [ver ySl ow] =peak60t 080a;
i r SpeedTF[far Ri ght][reverse] =peak80t 0100a;

| * o e o o e e e e e e e e e e e e e e e e eeeeee o
/* Create transfer functions for delta IR neurons

/* Turn rate transfer functions

del tal r TurnTF[farLeft] [hardLeft] =del tal r Tf O;
deltal rTurnTF[farLeft][softlLeft] =del talrTf1;
del tal r TurnTF[farLeft][strai ght]=ranpNeg50;
del tal r TurnTF[farLeft][softR ght] =peak60t 080;
del tal r TurnTF[far Left] [har dRi ght] =peak80t 0100;

del tal r TurnTF[near Left] [hardLeft] =del tal r Tf 3;
del tal r TurnTF[near Left][softLeft] =del tal r Tf 2;
del tal r TurnTF[near Left] [strai ght] =ranpNeg75;
del tal r Tur nTF[near Lef t] [sof t Ri ght] =peak40t 060;
del tal r Tur nTF[near Lef t] [har dRi ght] =peak60t 0100;

del tal r TurnTF[cent er] [har dLef t] =peak50t 0100;
del tal r TurnTF[center][softLeft] =ranpNeg75;
del tal r TurnTF[center] [strai ght]=ranpNegl00;
del tal r TurnTF[center] [sof t R ght] =ranpNeg75;

/*

del tal r Tur nTF|

del tal r Tur nTFH
del tal r Tur nTF|
del tal r Tur nTFH
del tal r Tur nTF|
del tal r Tur nTFH

del tal r Tur nTFH
del tal r Tur nTF|
del tal r Tur nTF
del tal r Tur nTF|
del tal r Tur nTF

center] [har dRi ght] =peak50t 0100;

near Ri ght] [hardLeft] =peak60t 0100;
near Ri ght] [soft Left] =peak40t 060;
near Ri ght] [strai ght]=ranpNeg75;
near Ri ght] [soft Ri ght] =del tal r Tf 2;
near Ri ght] [har dRi ght] =del tal r Tf 3;

far R ght] [hardLeft] =peak80t 0100;
farR ght][softLeft] =peak60t 080;
farR ght][straight]=ranpNeg50;
farR ght][sof t R ght] =del tal rTf 1;
farR ght] [hardRi ght]=del tal r Tf O;

Speed transfer functions

del t al r SpeedTF|
del t al r SpeedTF
del tal r SpeedTF|
del t al r SpeedTF
del tal r SpeedTF|

del t al r SpeedTF|
del t al r SpeedTF
del tal r SpeedTF|
del t al r SpeedTF
del tal r SpeedTF|

del t al r SpeedTF|
del t al r SpeedTF
del tal r SpeedTF|
del t al r SpeedTF
del tal r SpeedTF|

del tal r SpeedTF|
del t al r SpeedTF
del tal r SpeedTF|
del t al r SpeedTF
del tal r SpeedTF|

del tal r SpeedTF|
del t al r SpeedTF
del tal r SpeedTF|
del t al r SpeedTF
del tal r SpeedTF|

Turn Opi ni ons

bunpTur nOpi ni o
bunpTur nOpi ni o
bunpTur nOpi ni o
bunpTur nOpi ni o
bunpTur nOpi ni o

bunpTur nOpi ni o
bunpTur nOpi ni o
bunpTur nOpi ni o
bunmpTur nOpi ni o
bunpTur nOpi ni o

bunpTur nOpi ni o
bunmpTur nOpi ni o
bunpTur nOpi ni o
bunmpTur nOpi ni o
bunpTur nOpi ni o

bunpTur nOpi ni o
bunmpTur nOpi ni o
bunpTur nOpi ni o
bunmpTur nOpi ni o
bunpTur nOpi ni o

farLeft][fast]=peakOtol0;
farLeft] [medi unj =peak10t 030;
farLeft][sl ow] =peak30t 060;
farLeft][verySl ow] =peak60t 080a;
farLeft][reverse] =peak80t 0100a;

near Left][fast]=peakOt 0l0;

near Left] [nedi unj =peak10t 030;
near Left][sl ow] =peak30t 060;

near Left][verySl ow] =peak60t 080a;
near Left][reverse] =peak80t 0100a;

center][fast] =peakOt 010;

cent er] [medi unj =peak10t 030;
center][sl ow =peak30t 060;
center][verySl ow] =peak60t 080a;
center][reverse] =peak80t 0100a;

near Ri ght] [fast] =peakO0t 010;

near Ri ght] [nedi unj =peak10t 030;
near Ri ght] [sl ow] =peak30t 060;

near Ri ght] [ver ySl ow] =peak60t 080a;
near Ri ght][rever se] =peak80t 0100a,;

farRi ght][fast]=peak0tol0;

far R ght] [medi unj =peak10t 030;
farR ght][sl ow] =peak30t 060;
farRi ght] [verySl ow] =peak60t 080a;
farR ght][reverse] =peak80t 0100a;

n[right Rearl nner][hardLeft] = 10;
n[right Rearlnner][softlLeft] = 50;
n[right Rearl nner][straight] = 40;
n[right Rearl nner][softRight] = -10;
n[ri ght Rearl nner] [hardR ght] = -30;
n[right RearQuter][hardLeft] = 20;
n[right RearQuter][softlLeft] = 70;
n[rightRearCQuter][straight] = -10;
n[right RearQuter][soft R ght] = -60;
n[right RearQuter][hardRight] = -90;
n[right FrontQuter][hardLeft] = 40;
n[right FrontQuter][softLeft] = 90;
n[rightFrontQuter][straight] = -80;
n[right FrontQuter][softRi ght] = -90;
n[right Front Quter][hardRi ght] = -100;
n[rightFrontlnner][hardLeft] = 100;
n[right Frontlnner][softLeft] = 50;
n[rightFrontlnner][straight] = -90;
n[right Frontlnner][softRight] = -100;
n[right Front | nner] [hardRi ght] = -80;

*/

39

bunmpTur nQpi ni
bunpTur nOpi ni
bunpTur nOpi ni
bunpTur nOpi ni
bunpTur nOpi ni

bunpTur nOpi ni
bunpTur nOpi ni
bunpTur nOpi ni
bunpTur nOpi ni
bunpTur nOpi ni

bunpTur nOpi ni
bunpTur nOpi ni
bunpTur nOpi ni
bunpTur nOpi ni
bunpTur nOpi ni

bunpTur nOpi ni
bunpTur nOpi ni
bunpTur nOpi ni
bunpTur nOpi ni
bunpTur nOpi ni

Speed Opi ni ons

bunpSpeedQpi
bunpSpeedOpi
bunpSpeedQpi
bunpSpeedOpi
bunpSpeedQpi

bunpSpeedQpi
bunpSpeedOpi
bunpSpeed Qi
bunpSpeedOpi
bunpSpeedQpi

bunpSpeedQpi
bunpSpeedOpi
bunpSpeed i
bunpSpeedOpi
bunpSpeedQpi

bunpSpeedQpi
bunpSpeedOpi
bunpSpeedQpi
bunpSpeedOpi
bunpSpeedQpi

bunpSpeed Qi
bunpSpeedOpi
bunpSpeed Qi
bunpSpeed Qi
bunpSpeedpi

bunpSpeed Qi
bunpSpeedQpi
bunpSpeed Qi
bunpSpeedQpi
bunpSpeedQpi

bunpSpeedQpi
bunpSpeedQpi
bunpSpeedQpi
bunpSpeedQpi
bunpSpeedQpi

bunpSpeed Qi
bunpSpeedQpi
bunpSpeedQpi
bunpSpeedOQpi
bunpSpeed Qi

ni
ni
ni
ni
ni

ni
ni
ni
ni
ni

ni
ni
ni
ni
ni

ni
ni
ni
ni
ni

ni
ni
ni
ni
ni

ni
ni
ni
ni
ni

ni
ni
ni
ni
ni

ni
ni
ni
ni
ni

on[leftFrontlnner][hardLeft] = -80;
on[leftFrontlnner][softLeft] = -100;
on[leftFrontlnner][straight] = -90;
on[leftFrontlnner][softRi ght] = 50;
on[leftFrontlnner][hardRi ght] = 100;
on[leftFrontQuter][hardLeft] = -100;
on[leftFrontQuter][softLeft] = -90;
on[leftFrontQuter][straight] = -80;
on[leftFrontQuter][softRi ght] = 90;
on[leftFrontQuter][hardRi ght] = 40;
on[leftRearQuter][hardRi ght] = 20;
on[leftRearQuter][softRi ght] = 70;
on[leftRearQuter][straight] = -10;
on[leftRearQuter][softLeft] = -60;
on[l eftRearQuter][hardLeft] = -90;
on[l eftRear | nner][hardRi ght] = 10;
on[leftRearlnner][softRi ght] = 50;
on[leftRearlnner][straight] = 40;
on[leftRearlnner][softLeft] = -10;
on[leftRearlnner][hardLeft] = -30;

on[rightRearlnner][fast] = 50;
on[rightRearlnner][nmediunj = 100;
on[rightRearlnner][slow = 50;
on[rightRearlnner][verySlow = 0;
on[rightRearlnner][reverse] = -100;
on[rightRearQuter][fast] = 40;
on[right RearQuter][nmediunj = 100;
on[rightRearQuter][slow] = 60;
on[rightRearQuter][verySlow] = 10;
on[rightRearQuter][reverse] = -90;
on[rightFrontQuter][fast] = -90;
on[rightFrontQuter][nmediun] = -80;
on[rightFrontQuter][slow = -10;
on[rightFrontQuter][verySlow = 0;
on[rightFrontQuter][reverse] = 70;
on[rightFrontlnner][fast] = -100;
on[rightFrontlnner][nmediun] = -90;
on[rightFrontlnner][slow = -50;
on[rightFrontlnner][verySlow = -10;
on[rightFrontlnner][reverse] = 100;
on[leftFrontlnner][fast] = -100;
on[leftFrontlnner][nmediun] = -90;
on[leftFrontlnner][slow = -50;
on[leftFrontlnner][verySlow = -10;
on[leftFrontlnner][reverse] = 100;
on[leftFrontQuter][fast] = -90;
on[leftFrontQuter][mediun] = -80;
on[leftFrontQuter][slow = -10;
on[leftFrontQuter][verySlow = O;
on[leftFrontQuter][reverse] = 70;

on[leftRearQuter][fast] = 40;
on[l eft RearQuter] [mediuni = 100;
on[leftRearQuter][slow] = 60;
on[leftRearQuter][verySlow = 10;
on[leftRearQuter][reverse] = -90;

on[leftRearlnner][fast] = 50
on[l eftRearlnner][mediun =
on[leftRearlnner][slow = 0;
on[l eftRear I nner][verySlow = 50;
on[leftRearlnner][reverse] = -100;

100;

*/

40

41

i nt headi ngSeekHL[] = -45, 0,

{ 0, -100,
-179, -50, 45, 0,
-135, -50, 180, O
-90, 0, };

90, 0,
135, 100, i nt headi ngRepel SR[] =
180, 100 {
}; -179, 0,
-90, O,
i nt headi ngSeekSL[] = 0, -50,

{ 1, 0,
-179, 0, 180, O
- 135, 0, }s
-90, -50,

-30, -50, i nt headi ngRepel HR[] =
0, 0, {
30, 100, -179, 0,
90, 100, 0, -30,
135, 0, 1, O,
180, 0 180, O
b h
i nt headi ngSeekS[] = i nt headi ngRepel Slow[] =
{ {
-179, 0, -179, O,
- 20, 0, -40, O,
- 10, 25, -30, 100,
10, 25, -20, 100,
20, 0, -10, O,
180, 0 10, O,
}s 20, 100,
30, 100,
i nt headi ngSeekSR[] = 40, 0,
{ 180, O
-179, 0, };
- 135, 0,
-90, 100, i nt headi ngRepel VeryS| ow]
-30, 100, {
0, 0, -179, 0,
30, -50, -20, O,
90, -50, -10, 100,
135, 0, 10, 100,
180, 0 20, O,
; 180, O
b
headi ngSeekHR[]
int zero[] =
-179, 100,
-135, 100, 0, 0,
- 90, 0, 100, 0
90, 0, }:
135, -50,
180, -50 int deltalrTf1[] =
; {
- 100, o,
headi ngRepel HL[] = - 50, 0,
-40, 100,
-179, O, -15, 100,
-1, O, 0, 0,
0, -30, 100, -75
180, O };
b
int deltalrTfO[] =
i nt headi ngRepel SL[] = {

{ -100, 100,

-179, 0, -50, 100,
-1, O, -40, o,
0, -50, 0, 0,
90, O, 100, - 100

180, O };

h
int deltalrTf2[] =

i nt headi ngRepel §[] = {

{ - 100, 0,

-179, 0, -60, 100,

-30, 100,

0, 0, i nt peak60to0l00[] =
100, - 100
b 0, 0,
60, 100,
nt deltalrTf3[] = 100, 100
{ |
-100, 100,
-60, 100, int peakOtolO[] =
-30, O, {
0, 0, 0, 10,
100, -75 10, 10,
b 20, O,
100, 0
n} ranpNegl00[] = };
0, 0, int peak10to30[] =
100, - 100 {
b 0, O,
10, 10,
nt ranpNeg75[] = 30, 10,
{ 40, 0,
0, 0, 100, 0
100, -75 h

h
nt ranpNeg50[]
{

i nt peak30t 060[]
{

0, 0,
0, 0, 20, 0,
100, -50 30, 30,
h 60, 30,
70, 0,
nt peak60t080[] = 100, 0
{ b
0, 0,
60, 100, i nt peak60to80a[] =
80, 100, {
100, 0 0, 0,
b 50, 0,
60, 100,
nt peak80to090[] = 80, 100,
{ 90, 0,
0, 0, 100, 0
80, 100, }i
90, 100,
100, 0 i nt peak80tol00a[] =
b {
0, 0,
nt peak80t0l00[] = 70, 0,
80, 50,
0, 0, 100, 50
80, 100, I
100, 100
b
nt peak90t 0l00[] =
0, 0,
90, 100,
100, 100
b
nt peak40t o60[] =
{
o, 0,
40, 100,
60, 100,
100, 0
b
nt peak50t 0100[] =
{
o, 0,
50, 100,

100, 100
}s

