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Abstract

An organized approach to designing a complex autonomous robot platform is presented.
This robot platform is built along the biological basis of the ant.  The aim for this
platform is to provide a minimum vessel for exploring self-learning with respect to gait,
terrain navigation, and group behavior.  This platform will be “fully” developed when it
has sufficient hardware and software to handle movement in the following conditions:
cautious exploration, walking, and obstacle avoidance.  These behaviors have been “brute
force” programmed to prove that the solution is attainable, and to gain insight into what
control algorithms will be needed for self-learning.  Like the ant, this platform will
consists of three independent segments with two legs each.  Each leg has three degrees of
freedom in movement and each segment is connected by a two degree of freedom in
movement joint.  Each segment has its own microprocessor and is designed such that an
arbitrary number of segments can be connected together in order to obtain complex robot
structures with minimum re-design.  The final leg design used is a stacked servo
configuration.  The final body segment design is a simple cross-shaped frame. The force
equation analysis of the final selection in leg design and body segment design are
reviewed.  This analysis is followed by a logical development of software creation for gait
behavior, obstacle avoidance, and ground detection.  Four sensor types, using three
physically distinct sensors, are implemented to provide real-world feedback.  This
feedback is used to control the arbitration between programmed behaviors.
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Executive Summary

After presenting a stated design goal, the project is scaled back to an achievable

level for one semester of work by one student.  The workload is reduced from producing

an entire robot to producing one segment, well designed and ready for replication.  The

segment is to have the basic behaviors integrated (walking, object avoidance, ground

detection, turning).  Future work will be to expand the design into the multiple-segment

robot.

A thorough discussion of all attempts to construct this autonomous robot platform

is presented.  The varied attempts at leg design, their reasons for failure or success, and

the material learned from each is discussed.  The body segment design is similarly

examined and each attempt is discussed within the context of benefits/drawbacks for each

method.

The final selection of the leg and body design are discussed with force equation

analysis using simple assumptions.  The assumptions are designed to cover nominal

anticipated operation of the autonomous agent, while giving a great enough flexibility

that the agent can attempt unexpected solutions to situations without causing self-

destruction.

The pseudo-code for controlling algorithms for gait, turning, and terrain surface

calculation are presented with discussion.  A brief discussion of sensor types and

placement is presented to generate the feedback needed to arbitrate the different behaviors

integrated in the segment.
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Section 1: Background

The primary goal of this robot is to mimic an ant.  To mimic an ant is a design

goal which can not be obtained readily, so this has been the underlying basis to create a

platform from which this goal may be reached.  The aim for this platform is to provide a

minimum vessel for exploring self-learning with respect to gait, terrain navigation, and

group behavior.  Using an ant for a basis introduces many interesting design complexities

over other walking robots.

Ants have three segmented bodies, where each segment has three degrees of

freedom in movement.  Each segment appears to have two legs attached to it, each leg

having three degrees of freedom in movement.  This is being carried into the mechanical

deign of this autonomous robot platform, where there are three segments, each segment

joined by two servomotors for only two degrees of freedom.  Six legs are provided, two

per segment, with three degrees of freedom in movement per leg.

This platform will be “fully” developed when it has sufficient hardware and

software to handle movement in the following conditions:

n cautious exploration: the terrain is uneven or unstable in the immediate path of

the robot; an example is horizontal-ladder or inclined-surface traversal;

n walking: stable walking mode, where only one leg is off the ground at a time;

and advanced walking mode, where three legs in a triangular pattern are off

the ground at a time;

n obstacle avoidance: stepping over, under or around obstructions in the

immediate path of the robot.
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These design goals are too complex to be attained in a one-semester project with

just one student working on the project.  These goals were scaled back to the minimum

criteria of designing and implemented one segment of this robot ant.  The segment chosen

was the center segment.

In order to reproduce the gait of an ant in software, we notice first that an ant

usually has as many legs on the ground as possible.  When walking forward, only one leg

tends to advance by lifting off the ground at a time.  This is a very stable weight

distribution for the ant, and is copied to the robot model.

To respond to obstructions in the path of the robot and a non-fixed environment,

sensory input devices must be placed strategically about the robot segment.  These will be

monitored at all times to prevent collisions with obstacles, running off the edge of the

world (e.g., a cliff), responding to the inclination of the segment for balance, and to verify

each leg is in contact with the ground when appropriate.

The primary goals of solving the software issues can be summarized as follows:

n Simple code (limited space available)

n Quickly executing (time critical motor driver and

 IR emitter/sensor system)

n Multitasking (capable of responding to outside world)

n Rich motor driver (capable of driving many servos simultaneously)
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Leg Design

The primary issue in designing the leg unit is to provide three degrees of freedom

in movement, as can be seen in Figure 1a.  Obtaining the extension of the leg, along with

the lift and body-plane rotation, has led to many interesting design ideas, most of which

were failures.  Most of the attempts documented here focused on a simple design for

extending the foreleg, as can be seen in Figure 1b.

Attempt 1: Screw Arm

body

pivot point

body-
plane
rotation

vertical
lift

leg
extension

Figure 1a: Three Degrees of Freedom in Movement

Figure 1b: Central Leg Design Idea

foreleg

extension
(elbow) arm

Top View
Side View

Side View

Side View
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The initial plan was to mount a freely pivoting screw to the foreleg, while

attaching a servo capable of spinning arbitrarily in either direction to the opposing end as

shown in Figure 2.  As the servo turned clockwise, the leg is forced out, and vice versa.

This design was severely hampered by the design of modern servos, which turn

60° arcs in the range of 0.20 - 0.50 seconds.  Assuming a thread spacing of 16 threads per

inch, to obtain a one-inch extension or retraction would result in 6 revolutions per thread,

or 96 revolutions, each revolution taking 0.25 seconds average, or 24 seconds.  This is too

slow for a robot which has a limited life due to self-containment with batteries.  No

prototype was built, and another design idea was considered.

Attempt 2: Geared Arm

Removing the cross piece shown in Figure 1b, the initial upper leg diameter was

increased to insert a rotating shaft.  The ends of this shaft were attached to gear units,

where one unit was attached to a servomotor and the second unit was attached to a fixed

gear at the joint in leg segments.  As the gear spun clockwise, the leg would extend, and

vice versa.  This simple design can be seen in Figure 3.

servo with screw
attachment

screw shaft,
attached to pivot
ball joint on
foreleg

Figure 2

foreleg gearhead
fixed

hollow upper leg

Side View

spinning internal
gear shaft

Figure 3
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This had many mechanical problems, starting with the increased weight required

by the larger-diameter initial leg segment coupled with the inside shaft.  Additional

weight was required by the gear boxes.  Significant force loads would be placed on the

gear at the leg segment joint, requiring both strong gears and a very strong joint

connection, thus increasing the weight again.  The weight overhead of this design was

approximated to be too great a drawback to implement.

Attempt 3: Elbow Arm

The first successful prototype followed the initial design idea as shown in Figure

1b.  This design used an elbow mechanism to directly push the arm forward with a 140°

swing of the servo, as shown in Figure 4a.  This provided an excellent source of power

and fast extension of the foreleg, with the tradeoff being additional torque on the servo.

This design unfortunately was found to require either a spring-loaded mechanism

to permit elbow arm to extend, or a freely moving sleeve system on the upper leg joining

the elbow arm, as shown in more detail in Figure 4b.  Additionally, the elbow arm tended

Figure 4a Figure 4b

lift servo

elbow
extension
servo

Free pivot point

loose sleeves

Side View
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to hit the body platform, mandating mounting the legs on extended projections away from

the body.  The elbow arm also required a wider body design, allow the arm to travel

forward and backward while extending the foreleg without impinging with the opposite

side leg’s elbow arm.  The final drawback to this mechanism was the complexity of the

force equations.  Using this design as a basis, Dr. Doty was consulted and a minor

redesign implemented to remove most of the drawbacks and keep the benefits.

Attempt 4: Stacked Elbow

The stacked elbow design mounts the lifting servo and the extension servo on top

of each other, these two being mounted directly on top of the body-plane rotation servo,

as shown in Figure 5a.  This simplified the torque/force equations and made the space

usage more efficient.  The only significant drawback to this design is the large amount of

force created on the body-plane rotation servo head.  The force has been judged sufficient

to break off the servo head under full load conditions, and burn the servo out under

nominal conditions.  This has been compensated for with two separate minor

modifications to this design.

By mounting a reversed L-brace on the back of the lift and extension servos, as

shown in Figure 5b, and placing two smooth surfaces on top and below the L-brace, all of

the force on the servo head is absorbed by the twin sheets.  This acts as a stabilizer for the

servo stack as well as nullifying the torque.  While this solved the problem, it added the

Figure 5a lift arm and servo

elbow arm and
extension servo

mounting system for lift
and extension servos

body plane
rotation servo

body segment
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extra weight of two additional (large) sheets of material, as well as the appropriate

mounting hardware.  This weight overhead led to the second refinement.

By removing the L-brace and replacing it with a vertical pivot rod, as shown in

Figure 5c, the torque forces are also nullified.  The vertical rod requires that only two

body frame pieces are required – rather than three with the L-brace method – to hold the

forces off the body-plane rotation servo.  This is the method that has been judged to be

most efficient in space, weight, and strength.  This method is the one that was chosen for

the robot platform.   (The shoulder servo was moved to the top in implementation.)

Figure 5b

Figure 5c

Forces pushing
stack back
during lift

twin thin supporting
plates, very smooth
for easy sliding

Support pillar for plates

attached heavy
L-brace

Forces pushing
stack back
during lift

dual body plates
provide easy
mounting
options and
remove stress

support arm
pivots freely
between body
plates and is
attached to servo
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Body Segment Design

In designing the body segment, the main criteria was weight, which necessitated

the smallest possible size.  With two large, heavy leg servo stacks and an inter-segment

servo stack, a sufficiently strong frame was also required to keep the segment from

tearing itself apart.  The basic geometry points of consideration can be seen in Figure 6.

Aside from the weight consideration, whatever design is used must not impinge upon the

inter-segment rotation motion.  A rotation of  ± 60° was the target ideal.

Attempt 1: Square / Rectangular

The simplest design to make is that of a square or rectangle.  It provides a large

area for mounting sensors, battery packs, CPUs, and servo units.  This design has two

critical failures of the criteria for the body segment: it has large regions of unused space,

wasting weight, and it significantly interferes with the inter-segment motion unless the

inter-segment servos are extended away from the body.  Extending the servos requires

Figure 6: Top View

leg servo stack

intersegment
joint
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more material and in turn more weight.  This idea was then refined to remove the motion

problems and some of the excessive unused space.

Attempt 2: Octagon

The octagon is also a fairly simple unit to make.  It retains the large surface area

for mounting devices, and removes the impinging of inter-segment motion. While this

design corrected the problems of the square body, there was still a large amount of space

that was not being used effectively, increasing the weight of the segment unnecessarily.

After careful consideration, it was decided that there was only one good way to remove

the unused space problem.

Attempt 3: Frame Only

A cross-formation frame was designed which provides four mounting points:

segment forward, segment backward, left leg, and right leg.  Where devices are needed,

such as battery units, CPUs, and sensors, they can be either directly mounted to the frame

or a small frame extension can be mounted out of lightweight plastic (nylon) or wood (5-

ply).  This design can be seen in Figure 7.

convenient
mounting points
for leg servo
stacks

mounting point
for inter-segment
joint servos

Figure 7: Top View

Not to scale dimensionally
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Section 3: Device Installation

The selection of servomotors was dependent upon quick force approximations.

Using the kinematics of the leg with simple assumptions about projected ranges of

motions and simple heuristics, the following set of assumptions and calculations were

derived:

W = Maximum segment weight = 6lbs. = 108 oz.

L = Upper and Lower Link Lengths = 3.5 in.

E = Elbow Link = 2.5 in.

Assume: The upper link is usually horizontal

Shoulder:

Assuming only one leg is on the ground, the maximum forces occur when

traversing an incline.  Assuming a worst-case incline of 30 degrees,

W’ = W sin( slope )
= 54 oz

torque to support weight = (L * W’) / (Legs on the ground)
= 54 oz - in

Lift Arm:

The worst case lift is when the leg is fully extended downward, projected outward

at an inclination.  Using the assumptions that the maximum lateral extension will be 45

degrees in the lift arm link, 30 degrees in the actual leg, the calculations are:
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Let M be the moment arm,

M = 3.5 sin (45) + 8.5 sin(30)
= 6.7 in

lift torque = (M) * (total weight) / (# legs on ground)
= 723 oz - in = 45 lb - in

If the leg is limited to a mere 30 degree extension, these numbers reduce to,

M = 3.5 sin (30) + 8.5 sin(30)
= 6 in

lift torque = 648 oz - in = 40.5 lb - in

However, when the leg is held vertical, these forces reduce to,

M = 3.5 sin (45)
= 2.4 in

OR

M = 3.5 sin (30)
= 1.75

lift torque = 260 oz - in = 16.25 lb - in  (45 degree push down)
= 189 oz - in = 11.1 lb - in (30 degree push down)

Elbow Arm:

m = 8.5 sin (45)
= 6 in

elbow torque = (m) * (total weight) / (# legs on ground )
= 648 oz - in = 36 lb - in

However, by using the elbow design with the additional arm length of 2.5 in, we

reduce this by a factor of (2.5 / 3.5) or 0.71, for a resultant force of,

elbow torque = (1.00 - 0.71) * (648 oz - in)
= 187 oz-in

If the extension of the elbow is limited to a mere 30 degrees, the forces reduce to,
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m = 8.5 sin (30)
= 4.25

elbow torque = (1.00 - 0.71) * (m) * (total weight) /
(# legs on ground)

= 133 oz - in

In summary, the forces required by the three separate leg servos are: Shoulder =

54 oz - in, Lift Arm = 648 to 723 oz-in, and Elbow Arm = 133 oz - in.  These worst case

scenarios are further reduced by the real implementation in three ways: usually both legs

are on the ground simultaneously, reducing all of these numbers by half; the computed

maximum weight of 6 lbs was transferred into ounces with a 12.5% (1/8th) overestimation

in weight to (6.75lbs) as a safety factor; and, the actual prototype weight measured at 5.1

lbs fully configured (batteries, CPU, sensors, frame, servos, wires), not 6, further

reducing the numbers: Shoulder = 40.8 oz - in, Lift = 490 oz - in (extended), 143 oz - in

(vertical), Elbow = 100 oz - in.  Again, those reflect only one leg on the ground.  When

both legs are on the ground, those numbers are divided by two.

Servomotors

The servos obtained for this robot were Hitec/RCD HS-700BB units.  These

generate 133 oz-in torque at 4.8V DC, or 161 oz-in torque at 6.0V DC.  These were

chosen primarily for cost considerations, even though they do not provide sufficient

torque for the lift joint.  A torsion spring is required to generate the additional force

needed at the lift arm.  Hitec/RCD generously offered to provide these servos at $20.24

each, rather than the usual $37.50 through a special corporate sponsorship program.  (For

details, contact Mike Mayberry at Hitec/RCD -- http://www.hitecrcd.com.)
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These servos measure 2.3 x 1.1 x 2.0 inches, weighing a mere 3.68 oz (102 g).

They are water tight, have a ball-bearing assembly, and use metal rings for gear protection

against stripping.  Unfortunately, these units draw high current and can cause the CPU to

reset when several servos operate simultaneously.

The servos are driven in a Pulse Width Modulation system.  The three-wire

connector on each servo is color coded: red for positive power supply (4.5 - 6V DC),

black for ground, and yellow for the PWM control signal.  Using the MC68HC11E2FN

microcontroller, with the RTI system enabled for 32.77ms interrupts, driving an output

pin to +5VDC from 0VDC for a minimum count of 40 (where the count is in a for loop,

such as: “for (I=0; I<count; I++) { PORTC = 0xFF; }”) corresponds to the

minimum rotation position of the servomotor, and a maximum count of 120 corresponds

to the maximum rotation of the servomotor (slightly over 180 degrees of rotation).  The

six servos, and anticipated two additional servos for inter-segment link control, were

driven off the Port C output pins of the 68’11.

Sensory Inputs

Three types of sensory input devices are attached to each segment: momentary

switches at the bottom of the legs (ground contact), bump sensors on the edges of the legs

(object collision with the leg), and IR emitter/sensor pairs (approaching object, terrain

computation).  After the “Sharp Sensor Hack” was applied to the Sharp GP1U58Y IR

detection units, as developed by Ariel Bentolila and refined by Dr. Keith L. Doty, the

Sharp sensors could generate an analog distance reading instead of a digital On/Off

signal.  The analog signal is accurate to approximately 100 to 300mm, with about 6mm
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accuracy.  The segment designed in this report sits above the ground in normal operation

approximately 6” (~150mm), so this resolution was sufficient.  The bottom four IR

detectors were connected to the MC68HC11E2FN’s A/D (Port E) input pins 4-7.  The top

four IR detectors were connected to the A/D input pins 0-3.  By toggling the control bits,

the appropriate bank of IR detectors was sampled during operation.  The IR emitters were

driven using the code developed by Ivan Zapata from Port B, modulated at 40KHz.  The

top four IR emitters were connected to Port B pins 0-3, and the bottom 4 IR emitters were

connected to Port B pins 4-7.  The contact sensors (one per side) and the bump sensors

(two per side) were designed as digital inputs, connected to Port A on the 68’11.

Materials

After the quick force calculations, it was apparent that significant amounts of

force would be applied to the structure of the robot.  With various machine shops quoting

between $1200 and $2500 to manufacture one segment of this robot, the author decided

to build the unit by hand, borrowing tools, garages, and various friends (see

“Acknowledgments”).  The first fully function prototype (Prototype #7) was made of ¼”

extruded perspex plexiglass.  This material is extremely strong, yet flexible.  It is almost

impossible to break under high force loads.  At $1.50 per square foot, and each segment

using about 1.5 square feet of material, this was a very cheap solution.  This material can

be best obtained from your local plastics company.  If you can obtain cast ¼” plexi, use it

instead -- it is easier to machine.  The following are words of advice for working with this

material:
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Use the glue the plastics manufacturer recommends.  It is a monomer/solvent

combination that first dissolves, and then re-bonds, the pieces of plexi back together.  It is

incredibly strong material.

You can not undo what you have done with glue.  Once you glue something, it is

permanent (unless it is a very small surface area).  You have the throw the material away

and start over.  (The author used about 15 square feet of plexi to generate 1.5 square feet

of usable prototype.  Having built the first one, the others can be made with about 5

square feet each.  Anticipate making a lot of mistakes.)

To cut this material, use a table saw with a carbide tipped blade -- the more teeth,

the better the cut.  If you can get a 10” table saw blade with at least 80 teeth, you will

have smooth and even cuts.  Fewer teeth means the plexi will melt and shatter.

To drill this material, you must have very clean, very sharp bits.  Use “metal” bits.

Do not use the “plexi” bits – they don’t work.  A drill press is very useful.  You must drill

very slowly, or else the plexi melts around the bit, and either shatters the plexi, shatters

the drill bit (if less than ¼” diameter), or melts the plexi to useless deformity.

To place a screw in this material, drill the hole the exact diameter of the screw.  It

will melt slightly and fill back in to provide a tight lock.  Before inserting the screw,

apply the solvent/monomer glue thoroughly inside the pre-drilled hole and let it sit for 10

- 20 seconds before screwing together.  You will inadvertently break many screws if you

don’t follow this process exactly.  Even with these steps, you will strip ~½ of the screw

heads.

Once you screw something together, you can not unscrew it and then screw it back

together again.  Screws, like glue, are one-shot items with plexiglass.
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Section 4: Algorithm Development

In order to evaluate a programming solution to the gait of a walking robot, it is

helpful to first examine gait visually.

Figure 8: Top View Leg Movement

As can readily be seen, the twin leg servo stacks will rotate freely.  While in

contact with the ground, the servo stacks rotate backward to push the body forward.

Once the maximum backward rotation is reached in a leg, the opposite leg is frozen; the

fully extended leg is lifted off the ground, rotated back to the front, and pushed back into

contact with the ground.  The normal walking procedure then resumes.  This can be seen

in Figure 9.

Figure 9: Top view of leg rotation
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Gait

It  is observed that the walking algorithm for a legged robot is simultaneously

simple and complex.  The servo actuators are driven in a constant pattern, assuming no

obstacles, which is easy to reproduce in a simple looping algorithm.  Yet it is also

complex, for firm contact with the ground must be checked at all times, and any

encountered obstacles must be avoided.  A first-pass walking algorithm can be

demonstrated by the following C pseudo-code:

sub-process Walk:

while (WALKING_FORWARD) {
if (!LeftLegAllBack && !RightLegAllBack) {

rotate_leg( LEFT_LEG, degree_increment );
rotate_leg( RIGHT_LEG, degree_increment );

}
else
if (LeftLegAllBack && !RightLegAllBack) {

lift_leg( LEFT_LEG, LIFT_UP_FULLY );

Phase 1: The leg
is fully rotated
backward

Phase 2: The leg
is lifted and
rotated fully
forward

Phase 3: The leg
is then pushed
back into ground
contact, where
normal gait is
resumed
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rotate_leg( LEFT_LEG, LEFT_ZERO_POSITION );
rotate_leg( RIGHT_LEG, degree_increment );
lift_leg( LEFT_LEG, PUSH_DOWN_TO_CONTACT );

}
else
if (RightLegAllBack && !LeftLegAllBack) {

lift_leg( RIGHT_LEG, LIFT_UP_FULLY );
rotate_leg( RIGHT_LEG, RIGHT_ZERO_POSITION );
rotate_leg( LEFT_LEG, degree_increment );
lift_leg( RIGHT_LEG, PUSH_DOWN_TO_CONTACT );

}
else
/* Both legs are fully extended to the rear */
{

lift_leg( LEFT_LEG, LIFT_UP_FULLY );
rotate_leg( LEFT_LEG, LEFT_ZERO_POSITION );
lift_leg( LEFT_LEG, PUSH_DOWN_TO_CONTACT );
lift_leg( RIGHT_LEG, LIFT_UP_FULLY );
rotate_leg( RIGHT_LEG, RIGHT_ZERO_POSITION );
lift_leg( RIGHT_LEG, PUSH_DOWN_TO_CONTACT );

}
}

This walking algorithm assumes a separate arbitration process which determines

the status of each attempted action.  The arbiter first determines if the “Walk” process

should operate at all (there may be obstacles to navigate), and then maintains the state of

the walking system by controlling the algorithm in two separate ways.  First, by disabling

the boolean “WALKING_FORWARD” bit in a boolean bit-vector, the walking

subsystem will complete the current iteration of the loop and then halt.  This can be

useful when decided on a new direction of travel, or when it is necessary to investigate an

“interesting” object.  Second, the arbiter can freeze the walking subsystem by refusing to

return control when a leg subroutine is called.  For example, if a rotate_leg(..) fails

because of an obstacle, the arbiter can activate a new process “ObstacleAvoid” or

“GroundSeek” instead of allowing control to return to the walking subsystem.  This is

useful for immediate action situations where it is imperative the robot stops all current

behavior.

The key idea to this walking algorithm is to have all legs moving backwards as

much as possible.  While each leg is in contact with the ground, the “shoulder” joint
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servos rotate backward propelling the robot body forward.  When the maximum

backward rotation is reached, the leg is lifted and rotated to the maximum forward

rotation.  It is then pushed back to the ground to reestablish a load-bearing contact.  It is

important that only one leg be lifted at a time for stability.  As each leg is lifted,

significant torque forces (as high as 30 lbs-in) are generated at the segment joints and

lifting multiple legs can increase these forces by a factor of four with each additional leg

lifted.

In such a multisegmented system as Antaean, keeping all but one leg on the

ground at all times is a stable gait mode.  The weight of all combined segments is

distributed approximately evenly through those legs in contact with the ground.

However, to assist the robot in keeping a wide distribution of legs, the range of motion of

the legs is divided by the number of legs in the system to obtain a collection of unique

starting points.  This assures that by forward walking alone, no two legs will ever need to

be raised simultaneously.  Each leg has a unique starting angle in the rotation cycle that

avoids having any two legs over time ending in the same position.

While this is a good initial condition, we still code the subprocess “Walk” to

handle the case of two legs needing to be moved forward at the same time.  To reduce

“brittle” engineering, it is imperative to recognize at the outset that as obstacles are

navigated and slippage with the ground occurs, it is likely over time (as time goes to

infinity) that two legs will end up in this condition.

An important optimization to this basic algorithm is to rotate the leg opposite of

the lifting leg while the lifting leg is in the air.  That is, as one leg lifts off the ground, the

opposing leg performs its specified rotation forward.  This avoids a change in the
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movement vector that would occur if the leg were immediately placed on the ground.

Since the lifted leg never pushed the body forward, yet the opposing leg does, it forces a

linear drift in direction to the side of the lifted leg.  Rotating the opposing leg such that its

forward push is ended by the time the lifted leg comes back into contact with the ground

avoids this problem.

An obvious disadvantage of this system appears when the code is actually used.

Since the rotation/lift subroutines are “blocking” (they don’t return control until the

routine is finished executing), each rotation occurs sequentially in time.  This causes each

leg to subtly push against the other, much as the case of rotation while leg lifting,

inducing repeated changes in the direction vector which cause the robot to “waddle.”  As

the left leg rotates backward, the motion moves to the right; as the right leg rotates

backward, the motion moves to the left.

By modifying the rotation subsystem to be an interface to a more complex,

automatic process, this can be avoided.  The calls to “rotate_leg” and “lift_leg” are

replaced with calls which setup bitmask patterns that code what action a leg is to take on

the next motor-drive cycle.  They therefore return control immediately, without waiting

for the leg to perform a specified action.  A new process, subprocess “MotorDriver”,

launches every 32.77ms and totally consumes the CPU for approximately 5ms driving the

servomotors to their specified locations.  A new routine is added to handle special timing

cases, “WaitForMotorCompletion()” which is blocking until the leg action finishes.  This

is inserted around the leg lift code to avoid the case of the bitmask patterns overwriting

each other before the rear leg can be lifted, rotated forward, and then placed back into

contact with the ground.
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Linear Travel Adjustment

A less obvious flaw in the subprocess “Walk” is due to the geometry of Antaean’s

design. Since each segment’s leg control systems are mounted on vertical pivot points,

with an extension arm running from the servos to the actual leg, all motion is circular.

When a leg rotates backwards, the motion is describes on the ground is an arc, not a

straight-line path.

This results in a wobble while walking.  Each leg is pushing or pulling against the

other legs, and the robot body is constantly undergoing many minute changes in direction.

This can only be compensated by manipulation of the elbow servo joint to extend and

retract the leg as the leg rotates about the body.  This problem can be seen in Figure 10.

Figure 10: Linear Correction Illustrated

In order for the extension arm to adjust the leg, it is necessary to determine the

ratio of  adjustment per degree of rotation.  (Note that degrees of rotation are really

measured by cycles in pulse-width-modulation of the servomotor control line.)  This is

This represents the desired
path of the leg motion, as
opposed to the path actually
achieved with simple rotation
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then used to modify the subprocess Walk into the version derived after the following

calculations:

The results of this simple geometric analysis, combined with the previously

discussed modifications, leads to the following C pseudo-code:

sub-process Walk:

while (WALKING_FORWARD) {
if (!LeftLegAllBack && !RightLegAllBack) {

rotate_leg( LEFT_LEG, degree_increment );
extend_leg( LEFT_LEG, extend_adjustment );
rotate_leg( RIGHT_LEG, degree_increment );
extend_leg( RIGHT_LEG, extend_adjustment );

}
else
if (LeftLegAllBack && !RightLegAllBack) {

lift_leg( LEFT_LEG, LIFT_UP_FULLY );
rotate_leg( LEFT_LEG, LEFT_ZERO_POSITION );
rotate_leg( RIGHT_LEG, degree_increment );
extend_leg( RIGHT_LEG, extend_adjustment );
extend_leg( LEFT_LEG, extend_adjustment );
WaitForMotorCompletion();
lift_leg( LEFT_LEG, PUSH_DOWN_TO_CONTACT );

}
else
if (RightLegAllBack && !LeftLegAllBack) {

lift_leg( RIGHT_LEG, LIFT_UP_FULLY );
rotate_leg( RIGHT_LEG, RIGHT_ZERO_POSITION );
rotate_leg( LEFT_LEG, degree_increment );
extend_leg( LEFT_LEG, extend_adjustment );
extend_leg( RIGHT_LEG, extend_adjustment );
WaitForMotorCompletion();
lift_leg( RIGHT_LEG, PUSH_DOWN_TO_CONTACT );

r

dx

X reflect

R arccos(D/2) = X reflect

dx = r - X reflect

adjustment =  dx / (D/2)

D/2 = half
maximum
rotation
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}
else
/* Both legs are fully extended to the rear */
{

lift_leg( LEFT_LEG, LIFT_UP_FULLY );
rotate_leg( LEFT_LEG, LEFT_ZERO_POSITION );
extend_leg( LEFT_LEG, extend_adjustment );
WaitForMotorCompletion();
lift_leg( LEFT_LEG, PUSH_DOWN_TO_CONTACT );
lift_leg( RIGHT_LEG, LIFT_UP_FULLY );
rotate_leg( RIGHT_LEG, RIGHT_ZERO_POSITION );
extend_leg( LEFT_LEG, extend_adjustment );
WaitForMotorCompletion();
lift_leg( RIGHT_LEG, PUSH_DOWN_TO_CONTACT );

}
}

Turning

When the robot encounters an obstacle and needs to avoid collision or entrapment,

it is necessary for the robot to turn away from the “danger.”  Turning can be regarded as a

slightly modified case of walking – instead of walking forward with each leg traveling the

same distance, one leg travels less.

If the right leg moves 4”, but the left leg moves only 2”, simple geometry tells us

the robot will veer 45 degrees to the left.  Similarly, moving the right leg a subset of the

left leg induces a turn to the right.   Therefore, if we consider walking to be movement

between the values of (for the left leg) “LEFT_ZERO_POSITION” and

“LEFT_MAXIMUM_POSITION”, then we can turn to the left by storing these original

values in temporary variables, and reassigning these to lesser values.  The urgency of the

turn (object is imminent, object is far away, object is intermediate) can govern the degree

of the turn by controlling the limits used.  As the two limits come together (from ZERO

to MAXIMUM and from MAXIMUM to ZERO), the turn becomes sharper.

Computing the Plane
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The only other complex algorithm development was determining the planar vector

of the surface under the segment.  This information will be used when the full robot – all

three segments – is completed.  In order to maintain stability between segments, it is

important that each segment understand the terrain underneath itself and try to stay

parallel to that terrain.  This reduces risks of unbalancing and helps minimize the amount

of forces transferred between the segment joints.

Only three IR emitter/sensor pairs are required for this calculation, but using four

provides us with additional information.  Not only can we monitor the surface underneath

the segment, the four pairs – one in each extreme of the bottom segment body plate – can

also provide very accurate information about the distance to the ground to detect

imminent ground collisions, or for other (presently unforeseen) expansion.

The four IR pairs are quickly divided into two groups – the front-back pair and the

left-right pair.  By computing the slope of the ground in each pair, the segment can

quickly adjust the appropriate leg or inter-segment connection to balance.  The pseudo-

code is as follows:

sub-process ComputePlane:

front = analog(BOTTOM_FRONT);
back = analog(BOTTOM_BACK);
left = analog(BOTTOM_LEFT);
right = analog(BOTTOM_RIGHT);
fb_slope = ((front-back)/back * 100);
lr_slope = ((left-right)/right * 100);

Computing the slope as the “abs(front-back)/back” places the slope in relative

comparison to the distance of the robot above the terrain.  As the robot gets closer to the
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surface of the ground on either side of the pair, the slope becomes larger indicating tilt.

When the slope is negative, it indicates the tilt is to the latter direction of the pair (back or

right); when the slope is positive, the inclination is to the forward direction of the pair

(front or left).  The final multiplication is simply to put the slope in integer terms rather

than perform CPU costly floating point calculations.
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Section 5: Future Directions & Project Evaluation

To complete this project, the remaining two segments need to be built. Prior to

this, torsion springs need to be found which counter appropriately the lift forces needed

for this design.  With the torsion springs installed on the center segment, and the design

verified, the three segments need to be connected together.

Control software for the inter-segment joint will be extremely complicated.  A

nonlinear system is suggested, with overall system stability as the goal.  A finished SPI

network needs to be installed between each segment, so that messages can be relayed and

the robot can reach a consensus for how to act, rather than being driven by a central

“brain”.

The gait needs to be modified to allow arbitrary extension of the lower leg while

walking, rather than the current “fixed” model where the leg travels a known path with

known angles.  The advantage is when traveling porous (pot-holes, horizontal ladder)

surfaces, the leg can still be used to propel the body forward if the leg extends farther out

from the body.

The class in general was an excellent tutorial on how to think and build real-world

non-brittle projects.  Unfortunately, the scope of the project the author chose to attempt

was far too large to be done in a single semester.  There were too many things that had

never been done before that had to be solved.  While this hampered gaining true

momentum (always building another prototype, trying to reduce weight, or size, or

moment arms) in creating a fully functional robot, the author was pleased with what was

accomplished.  Several hundred man-hours of labor (in excess of 300 machining and

assembling parts alone) went into this project.  When this is complete, I hope to be able to

release technical diagrams in AutoCAD such that anyone can build this robot, to learn

from it -- and with it.  Until then, the work must go on.
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 Appendix: Source Code

This is stored in a separate file on the associated floppy disk.  It is quite extensive to print
out, and will be changed before the demonstration.  The early version of the source code
is in the file “appx_c.doc”.  A new “appx_c.doc” will be provided on demonstration day.


