
Marshall

The Autonomous
Fire-Seeking and Extinguishing

Robot

By

Steven Logreira

EEL 5934
Final written report

9/15/97

2

Table of Contents

I Abstract ……………………………………………………. Page 3

II Introduction …………………………………………………. Page 4

a) Background ………………………………………… Page 4

 b) Scope and Objectives ………………………………. Page 4

c) Structure of the Report …………………………….. Page 5

III Integrated system ……………………………………… Page 5

 a) Overview …………………………………………… Page 5

 b) Aluminum Platform and toy chassis ………………. Page 6

 c) Fire Engine body ..………………………………… Page 8

 d) Servo Motors ……………………………………… Page 9

IV Sensors ……………………………………………….. Page 10

a) IR sensors and IR LED’S …………………………. Page 10

b) Bump Sensors …………………………………….. Page 11

c) Pyro-Electric Sensor ……………………………… Page 11

1) Motivation for using pyro-sensor ……………Page 12

2) Hacks to adapt sensor ……………………… Page 13

3) Experiments and data gathering ………… Page 14

 V Behaviors …………………………………………….. Page 17

 a) Search for Fire ………………………………… Page 17

 b) Collision Avoidance …………………………… Page 17

 c) Bump Sensing …………………………………. Page 17

 d) Found fire “Extinguish it” ………………….. Page 18

 VI Conclusion

 VII Appendix I

 VII Appendix II

3

ABSTRACT

People choose careers as a way to support themselves and their families. Some

careers are far more dangerous than others; one such career is being a fireman. The

fireman is an unsung hero that puts his/her life on the line every day to help those in

need. A fireman has to make quick and correct decisions every time that he/she is facing

a dangerous situation. Bad judgment can lead to serious injury or even death.

“Life is too precious to jeopardize or lose.”

What if instead of sending people to fight fires, we can send machines to fight

fires. Machines never tire and can work 24 hours a day, seven days a week.

At the beginning of the semester, I saw a news bulletin about how a fireman

tragically lost his life in a fire. That terrible news inspired me to develop on the idea of

an autonomous fire-fighting robot.

The robot’s main design would be to perform in certain situations much too

dangerous for humans. The robot would be outfitted with special pyro-sensors that detect

elevated heat levels. Once a fire has been detected, it is equipped with a water pump

and a water-reservoir to give it fire-extinguishing capabilities. It will also possess some

basic collision avoidance sensors to keep it from getting stranded

In essence, this autonomous, self-propelled robot will save lives and tax-payer’s

money if ever implemented on a commercial scale.

4

INTRODUCTION

Background

Fire-fighting has always been a very dangerous profession. Fire fighters spend

most of their careers putting their life on the line. Current fire-fighting techniques

require that firefighters take high risks. Why not send a robot to take these risks instead.

Robots are not sensitive to smoke and can be made to withstand large amounts of heat. It

is imperative to reduce the risk of losing precious life.

Scope and Objective

This project code-named Marshall is designed to implement many different

functions such as fire detection, collision avoidance through Infrared (IR) sensors, bump

sensing in case the IRs fail, and a water dispensing mechanism.

The objective of this project will be to built a robot using a Motorola 68HC11

microcontroller EVBU board with a Novasoft ME11 expansion board and various

sensors.

The scope of this project is to understand how by implementing different sensing

techniques we can achieve a product that can be eventually used in a real-life scenario.

Structure of the report

5

In the following sections, I will discuss in detail all the various components that

make up Marshall. I will begin by discussing the platform that makes up Marshall’s

chassis. Then I will discuss the motors that propel him. followed by a detailed

explanation of some of Marshall’s sensors. Then I will discuss the lights, voice module

and water spraying mechanism and finally it’s expected behavior patterns.

INTEGRATED SYSTEM

Overview

Marshall is built on a 10-inch diameter aluminum platform designed by the MIL

team at the University of Florida code-named “Tolric.”

Mounted on top of the chassis, is a 68HC11 EVBU board and an ME11 32K

expansion board. Other hardware include two hacked Futaba servo motors, Four hacked

Sharp IR sensors with their respective IR LEDs, switches used as bumpers as a backup

to the collision avoidance system, a pyro-sensor to detect fire, a lights and voice module

warning circuit and finally a water spraying system consisting of a DC water pump and a

water reservoir. Also note that mounted on top of the frame is the chassis of a toy fire

truck to make the design aesthetically pleasing.

Aluminum Platform and toy chassis

6

The 10-inch circular aluminum platform is designed to hold two servo motors

with their respective wheels, the Processor boards, the system sensors and all other

mechanisms.

I proceeded to paint the aluminum chassis red; symbolic of a fire truck. Mounted

on the chassis is the frame of a toy Chevy Blazer emergency vehicle.. The toy frame will

also hold the water pump and its’ reservoir as well as the lights, voice module and the

Pyro-sensor.

I chose the round shape for the frame because it is more functional than a

rectangular frame. A rectangular body will have certain blind spots on it’s bump sensors

that will partially inhibit its bump-sensing capabilities. Because of the round shape, the

robot will have a much broader sensing scope. A top, front and side view of the robot

can be seen on Figure I.

7

Caster Wheel

Caster Wheel

3-inch wheels

EVBU board

ME11 Board

EVBU Board

Servo Motors

Battery Holder

Battery Holder

Top View

Bottom View

Side View

8

Figure I - top, bottom and side view of Marshall

Fire Engine Body

Marshall’s body was adapted from a toy emergency vehicle. It rests on top of the

Aluminum frame as can be seen in figure 1.a. The water pump, the water tank, the pyro

sensor, the lights, the spray nozzle, bump sensors and IR transmitters and receivers have

been incorporated into the toy car chassis.

9

Figure 1.a - Toy car body mounted on chassis

Servo Motors

The motors on Marshall are Hacked Futaba servos. I hacked them using a

technique developed by the MIL lab staff. Basically I clipped off a small tab on the gear

shaft, I removed the electronics board inside the motor casing and soldered the wires

straight to the motors. Then I attached three-inch wheels to the servos by forcing a screw

through the center shaft of the wheel and of the servo motor. The specifications for the

motor can be seen on table I:

Power Supply: 4.8 to 6.0 Volts
Power Consumption: 6.0 Volts @ 8mA(when idle)
Output Torque: 42 oz/in
Operation Speed: 1.32 rev/sec
Weight: 1.5 Oz
Dimensions: 1.59 X .77 X 1.4 in.
Table I- Specifications for Servo Motors

The motors are controlled by a L293 motor driver chip located on the ME11

expansion board. The direction of the motors is controlled by the PD4 and PD5 pins

(PORT D) of the Processor and the speed is controlled by pins PA5 and PA6 (Output

Capture) using pulse-width modulation to control the left and right enable pins.

10

SENSORS

IR Sensors and IR LEDs

The IR sensors receive a signal from the IR LEDs that tells the processor if an

object has been detected. This gives the robot a neural net thus giving the robot object

avoidance capabilities. It is imperative that the sensors are correctly placed on the robot

to maximize its sensing capabilities. Figure 2 shows an effective way in which the

sensors can be arranged and figure 3 shows the control circuitry for the Sensors. The

four IR sensors are Sharp GP1U52X complemented by four IR LEDs. Two of the IRs

cross in the front (note that the sensors have been mounted on the front grill to give it the

effect of headlights. Picture just depicts desired configuration) and there are also sensors

on either side. The sensors are connected to a MC14051 MUX outputting the signal to

PE0. The MUX control lines are supplied by the 74HC53 Output Latch.

11

Figure 2 - IR sensor placement

3

4

MC1405174HC573

Latch
Output

IR sensor
analog signal

8

Port C
PE0

D2-D0

Figure 3 - IR sensor controller

Along with the 4 IR receivers also are four IR transmitters that continuously pulse

an IR beam at 40 Khz.

Bump Sensors

The bump sensor mechanism is comprised of a series of contact switches

connected in parallel that trigger certain behaviors of the robot. I will talk discuss more

about these behaviors on the “behaviors” segment of this document. The circuit

schematics can be seen in Appendix B

Pyro-Electric sensor

A Pyro-Electric-sensor is a one that detects changes in heat radiation with respect

to movement and distance. It is composed of Lithium Tantalite crystals that induce a

charge when heated. This charge is then amplified. These sensors are typically used to

detect motion. When a heat source passes in front of the sensor, it emits an analog

positive or negative voltage swing; the voltage depends on which way the subject is

moving (right or left). This voltage level change can be used to trigger a particular

12

behavior. These type of sensors are very popular in outdoor motion detectors. Figure 4

shows a picture of the pyro-sensor.

Figure 4 - Pyro-Electric Sensor components.

Motivation for using a pyro-sensor The main behavior of my robot is to

detect a fire or an intense heat source; therefore, a Pyro-Electric sensor is best suited for

that task. I can take the readings from the sensor into an A/D port of the 68HC11

Microcontroller and according to certain thresholds trigger a behavior. In my case, the

behavior will be to turn on a siren and flashing lights and then direct my robot towards

the heat source. Once the robot is close to the heat source, It will pump water from a

reservoir and attempt to extinguish the fire.

Hacks to adapt sensor The sensor I am using came from an outdoor motion

detector. Since the sensitivity of those sensors is high, I had to reduce the sensitivity so I

13

could apply it to my design. The motion detector has two parts to it. One is the 120V

supply circuitry which steps the voltage down to an acceptable 5V and provides

switching circuitry to trigger the flashing lights on, and the other is the circuitry for the

sensor. This circuitry includes the sensor itself, voltage regulation and an LM324 op-

amp to amplify the signal.

I removed the 120V circuitry and kept the sensor board. There was three cables

coming out of the PC board; one was ground, the other was VCC and the third was the

signal cable. After further testing, I concluded that the third cable was not the analog

signal but a modified DC signal. I then ran further tests and ended up tapping the signal

out of pin 11 of the op-amp; which was the desired signal. I then fed the signal to the

A/D port of the HC11.

Apart from the internal hacks, I also had to figure out how to reduce the

sensitivity of the sensor. The sensor, has a potentiometer that reduces the sensitivity. I

turned down the potentiometer and ran tests. It turns out that I could lower the sensitivity

enough to where body heat was barely detected and intense heat was quite noticeable. I

tested my hack by placing a soldering iron heated to 900° F. Final testing was done

using a propane lantern. The lantern will also be used for the final demo.

Another problem was also present. The sensor has a very wide angled field of

view and ironically, It was most sensitive at its widest angles and less sensitive at the

center. I had to figure out a way to reduce the range of sensitivity. Since the plastic

housing of the sensor was small enough and practical enough for me to use, I covered

the front window of the housing with aluminum foil and electrical tape and only left a

small slit exposed. I then mounted the housing on the inside of the car frame. to give the

14

effect of the car changing directions by itself. This worked quite well. I managed to

reduce the angle to almost a straight line and also reduce the total range. See figures 5, 6

and 7.

Figure 5- front view of sensor Figure 6 - front view of sensor after
 filtering

Figure 7 - Field of view before and after filtering

Experiments and data gathering I gathered data using two different

methods. First, I wrote a small routine in IC, which can be seen in Appendix I, to read

the A/D port of the HC11 and gather various data points and then plotted them using MS

Excel. As can be seen in figure 8, there are positive to negative swings which represent

movement of a heat source. All my tests where conducted using the hot soldering iron.

For some reason unknown to me, the negative voltage spikes have a much bigger

amplitude. Also, one can see from the graph that the frequency varies from left to right

15

and in some points the amplitude is much smaller. The frequency and amplitude vary

with the distance from the sensor to the subject. The farther away the subject is, the

smaller the frequency and thus the smaller the A/D values. As I brought the source closer

to the sensor, the frequency and amplitude of the signal increased.

As can be seen by figure 8, I first began gathering data far away from the sensor

and then slowly approached it. Then I removed the iron from the field of view only

exposing my body heat and then I put the iron in the path again and moved further away

without exposing the iron. Please note that the values on the Y-axis are A/D values and

not direct voltage readings. The red line represents the reference point where the pyro

sensor is not being activated.

0

20

40

60

80

100

120

140

Series1

Figure 8 - A/D data points plot

The other method for gathering data was to use the Digital Visual Oscilloscope

software and hardware in the MIL lab. Figure 9 show a trace of the soldering iron being

swept in front of the sensor. The reference voltage is 2V DC and there is a voltage swing

between 2.7 V to -225 mV. which verifies my data gathered from the A/D.

A/D Port readings

 Various Distances

16

Visual SCOPE Statistics

Vmin-C2 Freq-C2 Vmax-C2 T-C2
Max 2.0 V 88.9 Hz 2.8 V 1.5 s
min -225 mV 0 Hz 2.1 V 0 s
Avg 1.6 V 3.8 Hz 2.5 V 258.2 ms

Figure 9 - Figure taken from a Digital Oscilloscope. It measures voltage-Vs-time
 and gives statistics of measurements.

Volts

time

17

BEHAVIORS

Search For Fire

Marshall’s main behavior is to randomly search for a fire. It’s algorithm makes it

go straight for five seconds and then rotate 360°. It will run this routine until interrupted

by a pyro-sensor read, an IR sensor read or a bump read. The algorithm can be seen in

Appendix A.

Collision Avoidance

Another of Marshall’s functions is collision avoidance. This behavior is executed

by the IR emitter/receiver system. The sensors indicate the distance between the robot

and an object. The algorithm does the necessary calculations to tell the robot to change

course when the IR threshold has been reached; thus avoiding collision with another

object. The control algorithm can be seen in Appendix A

Bump Sensing

The bump sensors are used as a backup system to the collision avoidance circuits.

There is three circuits in total; thus three separate behaviors can be achieved. The first

circuit makes the robot turn right if the left side and front bumpers have been activated.

The second circuit makes the robot turn left if the right side bumpers have been activated.

18

The third circuit checks to see if the rear bumper has been activated and makes the robot

go forward.

Found fire, “Extinguish it!”

When the pyro-sensor has detected a fire, the robot goes into the “fire

extinguishing” behavior. The algorithm causes PORTD2 to go hi and thus trigger a

“Reed” relay that activates the lights and voice module. Then, Marshall will slowly

approach the fire until it reaches a second threshold The second threshold will activate

the water pump circuit and spray water in an attempt to extinguish the fire. The water

pump circuit is triggered when PORTD3 goes low. The pump circuit consist of a TIP41

NPN transistor and one 2 KΩ and one 10 KΩ resistors. The water pump is basically a

12V automobile window-washer pump. It is powered by a separate 9.6V power supply

that can supply the desired current of three Amperes. A separate supply was need to keep

the main power supply from draining too quickly. Although the pump requires 12V

DC., I found that 9.6V was sufficient to cause the desired behavior. Marshall will spray

to a distance of three feet.

CONCLUSION

Fire fighting is a very hazardous way to make a living. Why not let a machine do

the job without risk to human life.

My attempt to design a totally autonomous fire fighting system was with the

vision that someday it might be implemented in a real-life scenario.

19

By incorporating collision avoidance, bumpers and most important a system that

will warn of threat and actually take action to correct the problem I have attempted to

realize a possible design for the future. Although my design is very small scale, it may

open the doors for others to follow suit including myself.

This project has opened my eyes to a technology that is still in a very infant stage

and has tremendous growth potential. It has also been a very valuable learning

experience as to what entails carrying out a real Engineering project from start to finish.

Appendix A

20

/* this piece of code reads values form analog(4); and displays those values
on the screen to help gather pyro-sensor data. */

void main()
{
 int i;
 init_serial(); /* call serial.c */
 write("Here’s the Data!\n");

 for (i = 0; i<300; ++I) /* loop to read 300 values from A/D ports */
 { write_int(analog(4));
 sleep(.05);
 }
 }

21

/* Steven Logreira
 Marshall
 fall/96 */

/***
* Global Variables
***/
int PORTD;
int DDRD;
int IR_emmit;

int stop_moving;
int forward;
int backward;
int right_turn;
int soft_right_turn;
int left_turn;

int ir_sense;
int bump_switch;
int pyro_sense;
int find_fire;
int look_for_fire;

int ir_command;
/* int bump_command; */

/***
*
* INITIALIZE PORTD 2&3 AS OUTPUTS FOR LIGHTS AND WATER
PUMP *
* AND SET TO LOW TO START *

*/
void initialize()
{
 int temp;
 temp = peek(DDRD); /* read DDRD current values */
 temp|= 0b00001100; /* mask DDRD to enable output DDR2 DDR3 */

22

 poke(DDRD,temp);

 temp = peek(PORTD); /* read PORTD values */
 temp&= 0b11110011; /* mask PORTD 2&3 initialize */
 poke(PORTD,temp); /* Initialize PORTD 2&3 to 0 */
}
/***
*
* ACIVATES MOTORS FOR DIFFERENT DIRECTIONS *

*/

void direction(int action)
{
 if(action == stop_moving)
 { motor(0, 0.0); motor(1, 0.0); }
 else if(action == forward)
 { motor(0, 80.0); motor(1, 100.0); }
 /* note: motor 0 = 80 to adjust for unwanted deviations */
 else if(action == backward)
 { motor(0,-100.0); motor(1, -80.0); }
 else if(action == left_turn)
 { motor(0, -60.0); motor(1, 100.0); }
 else if(action == right_turn)
 { motor(0, 100.0); motor(1, -60.0); }
 else if(action == soft_right_turn)
 { motor(0, 50.0); motor(1, 0.0); }

 defer();
}

/***
*
* ROUTINE TO CONTROL MOTOR FUNCTIONS *

*/

void motor_control()

23

{
 while(1)
 {
 if(ir_sense) /* check for IR sensor redings */
 direction(ir_command);
/* else if(bump_switch) */ /* check for bump sensor readings */
/* direction(bump_command); */
/* else if(pyro_sense) */ /* check for pyro-sensor readings */
/* direction(action); */
 else if(find_fire)
 direction(look_for_fire);
 else direction(stop_moving); /* stop */
 defer();
 }
}

/***
*
* RANDOMNLY RUN AROUND AND LOOK FOR A FIRE *

*/
void find_the_fire()
{
 while(1)
 {
 look_for_fire = forward;
 find_fire = 1;
 sleep(10.0);

 look_for_fire = soft_right_turn;
 sleep(3.0);
 defer();
 }
}

/***
*
* IR_SENSOR COLLISION AVOIDANCE ROUTINE *

*/

24

void IR_sensors()

{
 int bumperir_right,far_right,bumperir_left,far_left,thr0,thr1;

 poke(0x7008,0xff); /* turn on IR Led’s */
 while(1) {
 thr0 = 100;
 thr1 = 100;
 far_left = analog(0);
 bumperir_left = analog(1); /* number represents PE0-PE3 pins
43-49 */
 bumperir_right = analog(2);
 far_right = analog(3);

 if (far_right > thr0)
 { ir_sense = 1; ir_command = left_turn; }

 if (far_left > thr0)
 { ir_sense = 1; ir_command = right_turn; }

 if (bumperir_left > thr0)
 { ir_sense = 1; ir_command = right_turn; }

 if (bumperir_right > thr1)
 { ir_sense = 1; ir_command = left_turn; }

 if (bumperir_left == bumperir_right)
 ir_sense = 1; ir_command = backward; }

 if ((bumperir_left < thr0) && (bumperir_right < thr0))
 {ir_command = forward; ir_sense = 0; }

 if ((far_left < thr0) && (far_right < thr0))
 {ir_command = forward; ir_sense = 0; }
 }
 defer();
}
/***

25

* BUMPER SENSORS ROUTINE *

*******/
/*
void bumper()
{
 while(1)
 {
 if (analog(5) <= 1)
 {
 bump_switch = 1;
 bump_command = right_turn;
 sleep(1.5)
 bump_command = forward;
 }

 if (analog(6) <= 1)
 {
 bump_switch = 1
 bump_command = left_turn
 sleep(1.5);
 bump_command = forward;
 }
 if (analog(7) <=1)
 {
 bump_switch = 1;
 bump_command = backwards;
 sleep(3.0);
 forward();
 }
 defer();
 }
*/

void main()
{
 PORTD = 0x1008;
 DDRD = 0x1009;
 IR_emmit = 0x7000;

26

 stop_moving = 0;
 forward = 1;
 backward= 2 ;
 right_turn = 3;
 left_turn = 4;

 ir_sense = 0;
 bump_switch = 0;
 pyro_sense = 0;
 find_fire = 0;
 look_for_fire = 0;

 ir_command = 0;

 initialize();
 sleep(3.0);
 charge();
 start_process(IR_sensors());
 start_process(motor_control());
 start_process(find_the_fire());

 looney_tune();

/* initialize global variables */

}

