
Val - the Valet Robot
Intelligent Machine Design Lab

EEL 5666
Daniel Copeland

2

Table of Contents

Abstract 3
Introduction 3,4
Mobile Platform 5
Actuation 5,6
Sensors 7-10
 Bump Switches 7
 Infrared Emitters/Detectors 7
 Continuously Turning Potentiometers 8
 PC-HC6811 Feedback Program 9
 Docked Computer Communication Link and Recharger 10
 Remote Control Link 10
Behaviors 11,12
 Record 11
 Execution 11
 Docking 11,12
 Wall Following 12
 Computer Communication/Voice Recognition Response 12
 Recharging 12
Experimental Results 13
Conclusion 13
Appendices 14-38
 Assembly Code 14-38

3

Abstract

Val is a valet robot whose purpose is to respond to voice command by carrying candy (or
any other small objects) from its docking station to different locations, and then return to
recharge and wait for its next instruction. Val records how to get to these locations by
human direction via remote control. As Val’s master directs it to the target location, Val
is busy monitoring the distance traveled and turns made. After the location is determined
and Val is returned to the docking station, the recorded instructions are saved on a PC
under a voice command which, when heard by the PC's voice recognition software, will
trigger Val to go to the determined location autonomously and return. In this way, Val’s
master is able to teach it where it should go, and assign a meaningful voice command to
the location like “go to the refrigerator.” With this scheme, Val is a reliable and
teachable valet with no other agenda but to serve.

Introduction

The first ideas for Val came with the thought of a coffee-serving robot set in an office. A
robot that could respond to workers requests when needed and be out of the way when
not. It would be a self-sufficient robot that hardly needs maintenance or attention.
Several obstacles lay in the way of realizing that idea. How would it know where it is or
where to go? How would it receive commands from its users in a way that is natural to
them? The answers to these questions materialized in the form of Val. How would it
know where it is? By dead reckoning, Val uses two potentiometers mounted on the sides
about its center axis. Connected to these pots are two wheels, heavy and free to spin, that
move as Val moves and work for both forward/backward motion and left/right turns.
How would it know where to go? Always launching from the same location (its docking
station), Val is commanded exactly where to go with remote control and records the
directions in memory. Then, after docking, the recorded information is saved to a file on
a PC. How would it receive commands from its users in a way that was natural to them?
What is more natural than speech? Val connects to a PC via the docking station. The PC
listens for voice commands using Microsoft Voice—a free voice recognition program.
After receiving a command, a program is launched which sends the appropriate record
file to Val. Then more questions came: How will the robot dock and make reliable
electrical connections? If it is to be low maintenance, how will it stay running? How will
it be remotely controlled? What if there is an obstruction in its path? What if it gets off
course? The answers followed as Val developed. How will the robot dock and make
reliable electrical connections? The docking station is made in a “Y” shape to help Val
find its way. Also, rolling lever microswitches are mounted two on each side, which
allow for a tight fit. Consequently, it can make some precise electrical connections. If it
is to be low maintenance, how will it stay running? While docked, Val recharges both of
its battery packs. How will it be remotely controlled? Val uses the serial connector used
with the docking station to connect to an hp48g calculator. With it, Val is remotely
controlled. What if there is an obstruction in its path? Val has infrared detectors and
emitters as well as bump switches which may be used for object avoidance and detection.
What if it gets off course? Val has the ability to wall follow, which helps with

4

recalibrating itself on long-distance trips. The final product, after a semester of working
through the details, is shown below in figure 1, followed by a more detailed description of
Val and its sub-systems.

Bumper

Docking Station

Infrared
Detector

Carrying
Compartment

Infrared
Emitter

On/Off

Docking
Connectors

Potentiometer

Motorola
HC6811
EVBU

Modular
Carrying
Compartment
Design

Free-Spinning
Guidance
Wheel

Rolling Lever
Microswitch

Figure 1: Introduction to Val

5

Mobile Platform

For the robot platform, I needed a design that could promote forward movement rather
reliably as well as 360-degree turns. I wanted the platform to be a tracked vehicle
because of the high surface area contact of the track to the floor. I felt a tracked vehicle
would have less of a tendency to spontaneously slip on the floor, and would probably be
stronger—thus more capable of carrying a small load. Because I wanted to avoid the
details of building my own platform, I looked for a toy with these qualities. At Toy’s R
Us, I found the “Excavator” by New Bright. The toy was a wire remote controlled unit
with four motors—one for each track to propel the vehicle and two to actuate the
excavator arm- all of which were powered by a single 6.3V rechargeable battery pack. I
purchased the Excavator for $40 dollars and the rechargeable battery pack with recharger
for $10. After removing the top of the Excavator, I began to build on to the base shown in
figure 2 below. The rest of Val’s body was drawn in AutoCAD and cutout by a t-tech-
milling machine at the Machine Intelligence Lab of the University of Florida.

 Figure 2: The Base of the Excavator by New Bright

Actuation

The only actuation provided by Val is that of its two tank trends actuated by the two
motors and a few gears to gear up the motors all provided with the Excavator toy. The
motors are simple, electric motors with unknown speed and torque characteristics. To
control the motors, I use a motor driver circuit (shown as Fig. 3) designed by Drew
Bagnell that enables me to control the motors with the HC6811. The circuit provides for
four signals from the HC6811: Left Motor Forward/Reverse, Right Motor Forward/
Reverse, Left Motor On/Off, and Right Motor On/Off. For speed control of the motors, I
simply pulse the On/Off signals to create various duty cycles. For direction control, I
either bias one of the motors for a slight turn to the right or left or reverse it to turn.

6

Figure 3: Motor Driver Circuit

Actuation Algorithms
The pulsing of the motors is done through the output compare system of the HC6811. I
use output compare 1 to always set output compare 3 and 4 to high when the timer is 0.
Then, I use OC3 and OC4 to turn themselves off. Thus, if a number between 0 and 216 is
written to OC3 or OC4 that number represents the amount of time the pulse signal is
high, (see Fig.4). For my system, the pulse wave period of 216 clock cycles = 32ms.

Figure 4: Pulse Width Modulation

To start the vehicle motion, I enable this system and then wait 160ms. Likewise, to stop
the vehicle motion, I disable the output capture system and wait 160ms. With this
start/stop system, I ensure that there is at least a period of 320ms before the motor can
change its direction—a technique intended to prolong the life of the motors. To change a
motor’s speed while it is in motion, I only need to write a different number to the
appropriate output compare register. For turning in place, one motor must change its
direction. To do this, I first stop the motors. Then, I set the signal to change the
appropriate motor direction. Finally, I start the motors again. This technique provides for
turning right or left as well as moving backwards.
Sensors

7

Bump Switches

There are three major reasons why I added bump switches: to detect when Val bumps
something, to guide it into the docking station, and to detect walls for wall following. To
meet these goals I used two different types of switches (see fig 5): four roller
microswitches–two on each side—to help with wall following and docking and four
momentary tactile switches—two in front and back—to sense forward and backward
bumps. Across the front and back switches, I epoxied a piece of a clothes hanger that
allowed for sensing bumps over the whole front and back area.

 Figure 5: Microswitch (Left) and Momentary Tactile Switch (Right)

Infrared Emitters and Detectors

For more long distance sensing, I added two infrared emitter/detector pairs to the front
(see fig. 6). The emitters are collimated with shrink-wrap tubing and the detectors are
standard digital 40KHz sensors sold by Sharp. They have been hacked to give an analog
signal. See Sharp Sensor Hack for Analog Distance Measurement at the following web
site www.mil.ufl.edu/imdl/handouts/sharphack.pdf for more details.

 Figure 6: Infrared Emitters/Detectors
Continuously Turning Potentiometer

IR Detectors

Collimated IR
Emitters

8

To keep track of Val’s location using dead reckoning, Val must measure three things:
distance traveled forward, angle of point-turns, and amount of drift. To do this, I
originally planned to use three different sensors, but the idea of using two potentiometers
mounted on the side replaced those plans. With the potentiometers mounted with free
spinning wheels about the center axis, I could measure both distance and angle.
Furthermore, by comparing the speed of both wheels I could get an idea if Val was
drifting to one side and compensate. After looking for good continuously turning pots, I
contacted Spectrol who graciously donated four 5K pots as shown in fig 7 and 8. These
pots have a life of around 2 million turns and an electrical freedom of about 352 degrees.
This means that there is about an eight-degree space in which no sure signal is given.

Figure 7: Spectrol Potentiometer

Figure 8: Potentiometer and Wheel
PC-HC6811 Feedback Program

Spectrol
Potentiometer

9

In troubleshooting Val’s code, which is all written in assembly, I found it difficult to see
what was going on with its sensors, and whether it was executing its code properly. To
help with this problem, I wrote a Windows 95 based program in Visual Basic that
cooperated serially with Val.
The PC program, PC-HC6811 Link, allows the user to request to see any variety of
memory locations in Val real time. The information is displayed real time in three
possible ways: as a graph, as a numerical value (in hex or decimal), or as an “LED.” The
user can change the memory requests at any time, and the sessions can be saved to disk as
desired. An example session is shown as figure 9.

Figure 9: PC-HC6811 Link Program
Docked Computer Communication Link and Recharger

10

When Val docks, it makes five electrical connections: Ground, RS232 Transmit, RS232
Receive, +6.3V Recharge, and +9.6V Recharge – see Fig. 10. With these connections,
Val recharges both of its battery packs while maintaining a serial
communication connection with a computer. To recharge the batteries, I used the
transformers that were made to recharge them. For the connectors I used two headphone
type connectors and one probe type between them.

 Figure 10: Docking Electrical Connectors. Val (Left) and Docking Station (Right)

Remote Control Link

To communicate with Val while in its recording mode, I decided to use the same serial
port used by the docking station. The advantage of using a serial connection is the ease
with which I can add new commands for Val to receive—no additional hardware is
required. I wrote a program for my HP48g calculator that allowed me to send the serial
commands (see fig. 11).

Figure 11: Remote Controller Linked to Val

Behaviors

Ground

+9.6V

+6.3V

RS232 Transmit

RS232 Receive

11

Record

When Val is in Record mode, its behavior is simply to wait for commands. Then, when a
command is received, it is recorded in a table. If the instruction involves movement, then
Val begins keeping track of the distances traveled by the potentiometers and continues
until a new command is given. Then, the distances traveled are recorded and the new
instruction is handled. Below is a list of the current possible commands Val responds to.

-Go Forward
-Turn left
-Turn Right
-Stop
-Follow Left Wall
-Follow Right Wall
-Wait for Bump (This is for user interaction. Val waits to be bumped)
-Dock (Val assumes the docking station is some where close behind it)

In terms of how the commands are represented, each command is one byte long. This
makes possible 256 commands. Each distance measurement is two bytes long: one byte
that is the number of pot revolutions and the other byte for the final pot position. I only
use one pot to measure at a time and usually the one that is moving forward. For
example, I use the left pot to measure forward and right turn movements and the right pot
to measure left turns.

Execution

The Execution mode is very similar to the record mode. It is assumed that the
instructions to be executed have already been downloaded. Val executes each instruction
one after another as they are read. If the instruction involves a certain distance
requirement—like go straight for 5 and a half revolutions of the left potentiometer—then
Val will read the requirement and will not move to the next instruction until the current
one is satisfied. In this way each instruction is played back as it was recorded.

Docking

In the Docking mode, Val assumes the docking station is somewhere closely behind it.
Because the docking station is shaped in a “Y,” it slowly leads Val to the connectors in an
iterative trial-and-error process. Val begins with moving backward, and continues
backward until either the back left or right bumper is hit, all four side switches are closed,
or a timeout occurs. If the back left bumper is hit, then Val moves a little forward, turns
right, and tries again. Likewise, if the back right bumper is hit, then Val moves forward,
turns left, and starts backing again. If all four side-switches close, then Val has worked
its way into the narrow part of the docking station and is almost connected. When this
happens, Val continues backing until both back bumper switches close. This signifies that
Val is connected—docking is complete. If, however, a timeout occurs in any of these
steps, then Val assumes it is stuck and moves forward, turns a little, and tries again.

12

Wall Following
For the wall following behavior, the roller switches on each side were very useful. I can
simply bias the appropriate motor and Val veers to the appropriate side until a wall is
reached. When a wall is reached, then Val straightens out against the wall, using the
roller switches as a guide, and the bias helps keep Val against the wall. While this goes
on, Val also measures the distance traveled just as if it was going straight.

Computer Communication/Voice Recognition Response

I wrote a Visual Basic program called Val Link that would work with Microsoft Voice.
This program is launched by a batch file with one of two possible command line
parameters. If you pass it “-r” then goes into record mode. Val is sent a special character
to see if it is already online. If it is, then Val will respond with a special character. This
allows the PC program to immediately command Val to begin the Record behavior. If
Val does not respond, then the PC program waits until Val is turned on, then it downloads
the main code to Val and starts it running. Then the command to begin recording is sent.
After the command to record is sent, the PC program waits for Val to return. When Val
returns, another set of special characters is exchanged and Val begins to send the recorded
instructions to the computer. When the exchange is complete, the PC program asks for a
filename by which to save the recorded set of instructions. Then it asks for a voice
command by which these instructions will be executed. Finally, a batch file is created by
the name of the voice command given. The batch file is stored in a special folder set
aside by Microsoft Voice. Files in this folder are executed when their names are detected
by Voice. The batch file is written to simply call the PC program with the record
filename as its parameter. The second parameter type accepted by the PC program then is
a filename that is the name of a text file containing the commands Val is to execute.
When a filename is passed, the PC program again detects if Val is online—sending the
main program if it is not. When Val is online, the list of commands are sent and stored in
Val. When that it done, Val is commanded to begin execution.

Recharging

Recharging isn’t much of a behavior for Val, because it is really a function of its docked
connection. However, it warrants mentioning. Val recharges both battery packs while
docked. The circuitry used to recharge the batteries are those that came with the battery
packs.

Experimental Results

To test Val, I simply walked it through a simple recording procedure: go straight a while,
stop, turn left about 180 degrees, go straight a while, turn right 180 degrees, and dock.

13

Then, Val would replay these steps by itself. Doing this several times, Val was mostly
successful. Occasionally, Val’s potentiometers would slip and it would get off course a
little. The cleaner the floor, the less this happened. I also did some tests of wall
following which showed good success. The only problem I had was knowing when to
command the wall following to begin. If Val was too far from the wall when the
command was given, then it would drift right/left too much and bump straight into the
wall. This could be overcome, however, with more intelligent code.

Conclusion

Most of the original goals for Val were accomplished. Docking, wall following,
recording, dead reckoning, and voice activation were all a great success. Of course, Val is
only suited for tiled floors and rooms without steps, but that was an expected limitation. I
did not have time to concentrate on monitoring whether Val was going straight or not as I
intended to. However, I found that Val’s motors were rather consistent; and, after some
trial-and-error measurements, I was able to balance its motors so that it moved straight
forward rather well. Also, I have not yet enabled Val to avoid obstacles in its recorded
path. The ideas that made Val successful, however, I would recommend to anyone
attempting to solve the same problems. The docking station design coupled with the
rolling bump switches was a very reliable and robust concept. Of course, care must be
take to ensure the robot fits the docking station snuggly, but otherwise it is simple and
easy. I would also recommend the side-mounted potentiometers carrying the free-
spinning wheels for dead reckoning. The fact that the potentiometers were not mounted
to the actual drive track wheels helped eliminate a lot of potential error through slippage.
The wheels that drive a vehicle will always slip, because they have to propel the vehicle
by the force of friction against the floor—there will be slippage. Therefore, they are more
unreliable to measure distances traveled by the robot than wheels whose purpose alone it
to measure that. I would also recommend Microsoft Voice (which can be found at
www.research.microsoft.com) to anyone wanting to deal with simple-command voice
recognition on a PC, and say that the hp48g calculator serves as an excellent remote
control. Lastly, I would recommend a reliable method for feedback. My program, which
graphed in real time what my robot was seeing, saved me a ton of debugging time.
Anyone interested in this program can contact me at daniel@mil.ufl.edu. Finally, I would
like to thank all those whose help and support enabled me to finish this project—
especially my wife, Avery Suzanne.

14

Appendix

Assembly Code

*CONSTANTS *

ADCTL EQU $1030
ADR1 EQU $1031
ADR2 EQU $1032
ADR3 EQU $1033
ADR4 EQU $1034
BAUD EQU $102B
BPROT EQU $1035
CFORC EQU $100B
CONFIG EQU $103F
COPRST EQU $103A
DDRC EQU $1007
DDRD EQU $1009
EPROG EQU $1036
HPRIO EQU $103C
OC1D EQU $100D
OC1M EQU $100C
OPTION EQU $1039
PACNT EQU $1027
PACTL EQU $1026 ; RTI Timer control
PORTA EQU $1000
PORTB EQU $1004
PORTC EQU $1003
PORTCL EQU $1005
PORTD EQU $1008
PORTE EQU $100A
PPROG EQU $103B
SCCR1 EQU $102C
SCCR2 EQU $102D
SCSR EQU $102E
SCDR EQU $102F
SPCR EQU $1028
SPDR EQU $102A
SPSR EQU $1029
TCNT EQU $100E
TCTL1 EQU $1020
TCTL2 EQU $1021
TFLG1 EQU $1023
TFLG2 EQU $1025
TIC1 EQU $1010
TIC2 EQU $1012
TIC3 EQU $1014
TIC4 EQU $101E
TMSK1 EQU $1022
TMSK2 EQU $1024 ; RTII enable flag
TOC1 EQU $1016
TOC2 EQU $1018
TOC3 EQU $101A
TOC4 EQU $101C
TOC5 EQU $101E

*ISR_VECTORS *

15

ORG $00EB
JMP RTI_ISR
org $00c4
jmp ISR_SCI

*VARIABLES *

 ORG $2000

JMP INITIALIZE
LEFT_IR FCB 0
RIGHT_IR FCB 0
RIGHT_POT FCB 0
LEFT_POT FCB 0
OLD_LEFTPOT FCB 0
OLD_RIGHTPOT FCB 0
SAVE_LEFT_ROT FCB 0
SAVE_LEFT_CNT FCB 0
LOVERFLAG FCB 0
SaveA000 FCB 0
DO_POINT FDB DO_TABLE
TEMP FCB 0
SAVE_RIGHT_ROT FCB 0
SAVE_RIGHT_CNT FCB 0
ROVERFLAG FCB 0
RTI_CNT FCB 0
MODE FCB 0
DOCK_COUNT FDB 0
SAVE_STUCK FCB 0
STUCK_ADDR FDB 0
IR_MODE FCB 0
TEMP_IR FDB 0
SPEED_WAIT FCB 0
LAST_LEFT_CNT FCB 0
LAST_LEFT_ROT FCB 0
LAST_RIGHT_CNT FCB 0
LAST_RIGHT_ROT FCB 0
RIGHT_SPEED FCB 0
LEFT_SPEED FCB 0
SPEED_FLAG FCB 0

*INITIALIZATION *

INITIALIZE LDS #$0041
LDAA #1
STAA OLD_LEFTPOT
STAA OLD_RIGHTPOT
LDAA #EDGE_MODE
STAA TCTL1
LDAA #OC1M_MASK
STAA OC1M
LDAA #OC1D_MASK_SP
STAA OC1D
LDD #$8000
STD RIGHT_FWD_PWM
LDD #$7800
STD LEFT_FWD_PWM
LDD #0

16

STD TOC1
STD TOC4
STD TOC3
STD DOCK_COUNT
CLR SaveA000
CLR MODE
LDD #DO_TABLE
STD DO_POINT
JSR InitAtD
JSR InitRTI
JSR InitSCI
JSR TurnLEDOn

*MAIN PROGRAM *

MAIN CLI
COM_WAIT JSR WAIT_FOR_COM

CMPA #’G’
BEQ EXEC_RECORD
CMPA #’R’
BEQ JUMP_RECORD
CMPA #’H’
BEQ SEND_IM_HERE
BRA COM_WAIT

HERE JSR CHKIR
JSR STRCHK
BRA HERE

JUMP_RECORD JMP RECORD_MODE

SEND_IM_HERE LDAA #%00110101
STAA BAUD
LDAA #%00001100
STAA SCCR2
LDAA #’H’
JSR OutChar
JSR InitSCI
JMP COM_WAIT

*WAIT FOR COMMAND *

WAIT_FOR_COM JSR STRCHK

LDAA MODE
BEQ WAIT_FOR_COM
CLR MODE
RTS

*EXECUTE RECORD TABLE *

FWD_STOP EQU 0
FWD_GO EQU 1
RGHT_GO EQU 2
LFT_GO EQU 3
BWAIT EQU 6

NOW_LWF JSR SET_GO_STRAIGHT

17

LDD #$B000
STD RIGHT_FWD_PWM
LDD #$4800
STD LEFT_FWD_PWM
LDAA 0,X
INX
LDAB 0,X
INX
JSR FORWARD_START
JSR GO_TIL_STR
JSR FORWARD_STOP
JMP NOW_BACK

NOW_RWF JSR SET_GO_STRAIGHT
LDD #$5000
STD RIGHT_FWD_PWM
LDD #$B000
STD LEFT_FWD_PWM
LDAA 0,X
INX
LDAB 0,X
INX
JSR FORWARD_START
JSR GO_TIL_STR
JSR FORWARD_STOP
JMP NOW_BACK

NOW_BUMP_WAIT JSR BUMP_WAIT
BRA NOW_BACK

EXEC_RECORD JSR UNDOCK
DO_TBLE_LOOP LDX DO_POINT

LDAA 0,X
INX
CMPA #7
BEQ NOW_LWF
CMPA #8
BEQ NOW_RWF
CMPA #0
BEQ NOW_FWDSTOP
CMPA #1
BEQ NOW_FORWARD
CMPA #2
BEQ NOW_RIGHT
CMPA #3
BEQ NOW_LEFT
CMPA #4
BEQ NOW_STRAIGHT
CMPA #5
BEQ NOW_IR_FOLLOW
CMPA #6
BEQ NOW_BUMP_WAIT
JSR DOCK
JMP INITIALIZE

NOW_BACK STX DO_POINT
BRA DO_TBLE_LOOP

NOW_FWDSTOP JSR FORWARD_STOP
BRA NOW_BACK

NOW_RIGHT JSR SET_TURN_RIGHT
JSR SET_TURN_SPEED

18

LDAA 0,X
INX
LDAB 0,X
INX
JSR RIGHT_START
JSR GO_TIL_RIGHT
JSR RIGHT_STOP
JMP NOW_BACK

NOW_LEFT JSR SET_TURN_LEFT
JSR SET_TURN_SPEED
LDAA 0,X
INX
LDAB 0,X
INX
JSR LEFT_START
JSR GO_TIL_LEFT
JSR LEFT_STOP
JMP NOW_BACK

NOW_FORWARD JSR SET_GO_STRAIGHT
JSR SET_FORW_SPEED
LDAA 0,X
INX
LDAB 0,X
INX
JSR FORWARD_START
JSR GO_TIL_STR
JSR FORWARD_STOP
JMP NOW_BACK

NOW_STRAIGHT JSR SET_GO_STRAIGHT
BRA NOW_BACK

NOW_IR_FOLLOW JSR CHKIR
LDAA LEFT_IR
JSR IRSTRONG
TAB
LSLB
STAB TEMP
LDAA RIGHT_IR
JSR IRSTRONG
ADDA TEMP
CMPA IR_MODE
BEQ NOW_IR_FOLLOW
STAA IR_MODE
CMPA #0
BEQ IR_STOP
CMPA #1
BEQ IR_RIGHT
CMPA #2
BEQ IR_LEFT
CMPA #3
BEQ IR_AHEAD
BRA NOW_IR_FOLLOW

IR_STOP JSR FORWARD_STOP
JSR SET_GO_STRAIGHT
JMP NOW_IR_FOLLOW

IR_AHEAD JSR FORWARD_STOP
JSR SET_GO_STRAIGHT
JSR FORWARD_START
JMP NOW_IR_FOLLOW

19

IR_RIGHT JSR FORWARD_STOP
JSR SET_TURN_RIGHT
JSR RIGHT_START
JMP NOW_IR_FOLLOW

IR_LEFT JSR FORWARD_STOP
JSR SET_TURN_LEFT
JSR LEFT_START
JMP NOW_IR_FOLLOW

*MONITOR IRS AND POTS *

STRCHK PSHA

PSHB
JSR GETPOT
STAA RIGHT_POT
STAB LEFT_POT
JSR LEFT_CHANGE
JSR LEFT_CNTR
JSR LEFT_ROT
JSR RIGHT_CHANGE
JSR RIGHT_CNTR
JSR RIGHT_ROT
PULB
PULA
RTS

BKCHK PSHA
PSHB
JSR GETPOT
STAA RIGHT_POT
STAB LEFT_POT
JSR BKLEFT_CHANGE
JSR LEFT_CNTR
JSR LEFT_ROT
JSR BKRT_CHANGE
JSR RIGHT_CNTR
JSR RIGHT_ROT
PULB
PULA
RTS

LTCHK PSHA
PSHB
JSR GETPOT
STAA RIGHT_POT
STAB LEFT_POT
JSR BKLEFT_CHANGE
JSR LEFT_CNTR
JSR LEFT_ROT
JSR RIGHT_CHANGE
JSR RIGHT_CNTR
JSR RIGHT_ROT
PULB
PULA
RTS

20

RTCHK PSHA
PSHB
JSR GETPOT
STAA RIGHT_POT
STAB LEFT_POT
JSR LEFT_CHANGE
JSR LEFT_CNTR
JSR LEFT_ROT
JSR BKRT_CHANGE
JSR RIGHT_CNTR
JSR RIGHT_ROT
PULB
PULA
RTS

*MOTOR DIRECTION ROUTINES *

SET_TURN_RIGHT PSHA
LDAA SaveA000
ORAA #%00100000
ANDA #%01111111
STAA $A000
STAA SaveA000
PULA
RTS

SET_TURN_LEFT PSHA
LDAA SaveA000
ORAA #%10000000
ANDA #%11011111
STAA $A000
STAA SaveA000
PULA
RTS

SET_GO_STRAIGHT PSHA
LDAA SaveA000
ANDA #%01011111
STAA $A000
STAA SaveA000
PULA
RTS

SET_GO_BACK PSHA
LDAA SaveA000
ORAA #%10100000
STAA $A000
STAA SaveA000
PULA
RTS

*Turn On the LED
*at Port a000
*Requires Memlocation SaveA000 for Data at that port

LED_ON equ $10

21

TurnLEDOn psha
ldaa SaveA000
oraa #LED_ON
staa $a000
staa SaveA000
pula
rts

*Turn Off the LED
*at Port a000
*Requires Memlocation SaveA000 for Data at that port

LED_OFF equ $EF
TurnLEDOff psha

ldaa SaveA000
anda #LED_OFF
staa $a000
staa SaveA000
pula
rts

*LEFT POTENTIOMETER ROUTINES *

LEFT_CHANGE LDAB #0
LDAA OLD_LEFTPOT ;SEE IF POT HAS CHANGED BY ONE

KOOLJ1 CMPA LEFT_POT
BEQ SEND_1
CMPB #22
BEQ DUD
INCB
INCA
BRA KOOLJ1

DUD LDAA #0
RTS

SEND_1 STAA OLD_LEFTPOT
TBA
RTS

LEFT_CNTR TSTA ;IF CHANGE THEN INCREMENT LEFT COUNTER
BNE DOTHENEXT
RTS

DOTHENEXT TAB
CLRA
ADDD SAVE_LEFT_ROT
STD SAVE_LEFT_ROT
RTS

LEFT_ROT RTS

BKLEFT_CHANGE LDAB #0
LDAA OLD_LEFTPOT ;SEE IF POT HAS CHANGED BY ONE

KOOLJ2 CMPA LEFT_POT
BEQ SEND_2
CMPB #22
BEQ DUD2
INCB

22

DECA
BRA KOOLJ2

DUD2 LDAA #0
RTS

SEND_2 STAA OLD_LEFTPOT
TBA
RTS

*RIGHT POTENTIOMETER ROUTINES *

RIGHT_CHANGE LDAB #0
LDAA OLD_RIGHTPOT ;SEE IF POT HAS CHANGED BY ONE

KOOLJ3 CMPA RIGHT_POT
BEQ SEND_3
CMPB #22
BEQ DUD3
INCB
INCA
BRA KOOLJ3

DUD3 LDAA #0
RTS

SEND_3 STAA OLD_RIGHTPOT
TBA
RTS

RIGHT_CNTR TSTA ;IF CHANGE THEN INCREMENT LEFT COUNTER
BNE DOTHENEXT2
RTS

DOTHENEXT2 TAB
CLRA
ADDD SAVE_RIGHT_ROT
STD SAVE_RIGHT_ROT
RTS

RIGHT_ROT RTS

BKRT_CHANGE LDAB #0
LDAA OLD_RIGHTPOT ;SEE IF POT HAS CHANGED BY ONE

KOOLJ4 CMPA RIGHT_POT
BEQ SEND_4
CMPB #22
BEQ DUD4
INCB
DECA
BRA KOOLJ4

DUD4 LDAA #0
RTS

SEND_4 STAA OLD_RIGHTPOT
TBA
RTS

*INITIALIZE THE A TO D CONVERTER *

23

AtD_LOWER EQU %00010000
AtD_HIGHER EQU %00010100
InitAtD psha

ldaa #%10010000
staa OPTION
ldaa #AtD_LOWER
staa ADCTL
pula
rts

*INITIALIZE THE RTI TO 32 MS *

InitRTI PSHA

LDAA #%00000011
STAA PACTL
LDAA #%01000000
STAA TMSK2
PULA
RTS

*IR ROUTINES

GETIR PSHX ;GET THE IR READINGS FROM THE AtD
CONVERTER

ldaa #AtD_LOWER
staa ADCTL
LDX #ADCTL

LOOPY BRSET 0,x %10000000 LDAD
Bra LOOPY

LDAD LDAA ADR3
LDAB ADR4
PULX
RTS

IRSTRONG CMPA #119 ;TEST VAL IN REG A TO SEE IF CONSIDERED STRONG
BGE STRONG
LDAA #0
RTS

STRONG LDAA #1
RTS

CHKIR JSR GETIR
PSHA
CLRA
STD TEMP_IR
LDAA #58
LDAB RIGHT_IR
MUL
ADDD TEMP_IR
ADDD TEMP_IR
ADDD TEMP_IR
ADDD TEMP_IR
ADDD TEMP_IR
ADDD TEMP_IR
LSRD
LSRD
LSRD
LSRD

24

LSRD
LSRD
STAB RIGHT_IR
PULB
CLRA
STD TEMP_IR
LDAA #58
LDAB LEFT_IR
MUL
ADDD TEMP_IR
ADDD TEMP_IR
ADDD TEMP_IR
ADDD TEMP_IR
ADDD TEMP_IR
ADDD TEMP_IR
LSRD
LSRD
LSRD
LSRD

LSRD
LSRD
STAB LEFT_IR
RTS

*GET POT VALUES *

GETPOT PSHX

ldaa #AtD_HIGHER
staa ADCTL
LDX #ADCTL

POTLOOP BRSET 0,x %10000000 POTLDAD
Bra POTLOOP

POTLDAD LDAA ADR1
LDAB ADR2
PULX
RTS

INITPOT PSHB
LDAB #50
CBA
BLT INITPOTDN
LDAB #100
CBA
BLT INITPOTDN
LDAB #150
CBA
BLT INITPOTDN
LDAB #200
CBA
BLT INITPOTDN
LDAB #250
CBA
BLT INITPOTDN
LDAB #1

INITPOTDN TBA
PULB
RTS

25

*MOTOR ACTUATION ROUTINES *

OC_ON_MASK EQU %11100000
EDGE_MODE EQU %00101000
OC1M_MASK EQU %00110000
OC1D_MASK_SP EQU %00000000
OC1D_MASK_GO EQU %00110000
NM_TIMES_WT EQU 5
PWD_INC EQU 1
pwd_inc2 EQU 2*PWD_INC
max EQU $3000
compare_val EQU max-pwd_inc2

RIGHT_FWD_PWM FDB 0
LEFT_FWD_PWM FDB 0
RIGHT_BKWD_PWM FDB 0
LEFT_BKWD_PWM FDB 0
RIGHT_FWD_INC FDB 0
LEFT_FWD_INC FDB 0
LEFT_BKWD_INC FDB 0
RIGHT_BKWD_INC FDB 0
RIGHT_FWD_CMP FDB 0
LEFT_FWD_CMP FDB 0

*SLOWLY STOP YOUR FORWARD MOTION *

STOP PSHA

PSHB
PSHX
LDAA #OC1D_MASK_SP
STAA OC1D
LDD #0
STD TOC4
STD TOC3
LDX #TFLG2

FWD_ST_START LDAA #NM_TIMES_WT
FWDSTLOOP JSR 0,Y

BRCLR 0,X %10000000 FWDSTLOOP
BCLR 0,X $7F
DECA
BNE FWDSTLOOP

FINAL_STP1 PULX
PULB
PULA
RTS

FORWARD_STOP LDY #STRCHK
JMP STOP

LEFT_STOP LDY #LTCHK
JMP STOP

RIGHT_STOP LDY #RTCHK
JMP STOP

BACK_STOP LDY #BKCHK
JMP STOP

26

*SLOWLY START YOUR FORWARD MOTION *

START PSHA
PSHB
PSHX
PSHY
LDX #TFLG2

 LDAA #NM_TIMES_WT
FWDSRTLOOP JSR 0,Y

BRCLR 0,X %10000000 FWDSRTLOOP
BCLR 0,X $7F
DECA
BNE FWDSRTLOOP
LDAA #OC1D_MASK_SP
STAA OC1D
LDD LEFT_FWD_PWM
STD TOC4
LDD RIGHT_FWD_PWM
STD TOC3
LDAA #OC1D_MASK_GO
STAA OC1D
PULY
PULX
PULB
PULA
RTS

FORWARD_START LDY #STRCHK
JMP START

LEFT_START LDY #LTCHK
JMP START

RIGHT_START LDY #RTCHK
JMP START

BACK_START LDY #BKCHK
JMP START

SET_FORW_SPEED PSHA
PSHB
LDD #$8000
STD RIGHT_FWD_PWM
LDD #$7800
STD LEFT_FWD_PWM
PULB
PULA
RTS

SET_TURN_SPEED PSHA
PSHB
LDD #$6800
STD RIGHT_FWD_PWM

27

LDD #$6400
STD LEFT_FWD_PWM
PULB
PULA
RTS

*BUMP SWITCH ROUTINES *

BUMP_PORT EQU $A400
SIDE_R_BACK EQU %00010000
SIDE_R_FRONT EQU %00000010
SIDE_L_FRONT EQU %10000000
SIDE_L_BACK EQU %00000001
FRONT_LEFT EQU %00001000
FRONT_RIGHT EQU %00100000
BACK_LEFT EQU %00000100
BACK_RIGHT EQU %01000000
BACK EQU %01000100
FRONT EQU %00101000
SIDE_R EQU %00010010
SIDE_L EQU %10000001
BOTH_SIDES EQU %10010011

GET_BACK LDAA BUMP_PORT
ANDA #BACK
RTS

GET_FRONT LDAA BUMP_PORT
ANDA #FRONT
RTS

GET_SIDE_R LDAA BUMP_PORT
ANDA #SIDE_R
RTS

GET_SIDE_L LDAA BUMP_PORT
ANDA #SIDE_L
RTS

GET_BOTH_SD LDAA BUMP_PORT
ANDA #BOTH_SIDES
RTS

GET_SRB LDAA BUMP_PORT
ANDA #SIDE_R_BACK
RTS

GET_SRF LDAA BUMP_PORT
ANDA #SIDE_R_FRONT
RTS

GET_SLB LDAA BUMP_PORT
ANDA #SIDE_L_BACK
RTS

GET_SLF LDAA BUMP_PORT
ANDA #SIDE_L_FRONT
RTS

GET_BL LDAA BUMP_PORT

28

ANDA #BACK_LEFT
RTS

GET_BR LDAA BUMP_PORT
ANDA #BACK_RIGHT
RTS

GET_FL LDAA BUMP_PORT
ANDA #FRONT_LEFT
RTS

GET_FR LDAA BUMP_PORT
ANDA #FRONT_RIGHT
RTS

ALL_OPEN LDAA BUMP_PORT
CMPA #%11111111
BEQ ALL_OPEN_CL
RTS

ALL_OPEN_CL LDAA #0
RTS

BUMP_WAIT JSR STRCHK
JSR ALL_OPEN
BEQ BUMP_WAIT
RTS

*UNDOCK ROUTINE *

UNDOCK PSHA

PSHB
JSR GETPOT
JSR INITPOT
STAA OLD_RIGHTPOT
TBA
JSR INITPOT
STAA OLD_LEFTPOT
JSR FORWARD_START

UNDK_LP JSR STRCHK
JSR ALL_OPEN
BEQ UNDK_NXT
BRA UNDK_LP

UNDK_NXT LDAA #0
LDAB #20
JSR FORWARD_START
JSR GO_TIL_STR
JSR FORWARD_STOP
CLR SAVE_LEFT_CNT
CLR SAVE_LEFT_ROT
CLR SAVE_RIGHT_CNT
CLR SAVE_RIGHT_ROT
PULB
PULA
RTS

*ADJUST IF STUCK ROUTINE *

ADJ_STUCK JSR BACK_STOP

JSR SET_GO_STRAIGHT
LDAA #0

29

LDAB #10
JSR FORWARD_START
JSR GO_TIL_STR
JSR FORWARD_STOP
CLR RTI_CNT
LDY STUCK_ADDR
JMP 0,Y

*DOCK ROUTINE *

DOCK LDD #$8000

STD RIGHT_FWD_PWM
LDD #$7800
STD LEFT_FWD_PWM
LDD #DOCK_LP
STD STUCK_ADDR

DOCK_LP JSR SET_GO_BACK
JSR BACK_START

DOCK_LP2 JSR BKCHK
JSR GET_BR
BEQ ADJ_RIGHT
JSR GET_BL
BEQ ADJ_LEFT
JSR GET_BOTH_SD
BEQ DOCK_SET
JSR STUCK
BEQ ADJ_STUCK
BRA DOCK_LP2

ADJ_LEFT JSR BACK_STOP
JSR SET_GO_STRAIGHT
JSR FORWARD_START
LDAA #0
LDAB #50
JSR GO_TIL_STR
JSR FORWARD_STOP
JSR SET_TURN_LEFT
LDAA #0
LDAB #20
JSR LEFT_START
JSR GO_TIL_LEFT
JSR LEFT_STOP
CLR RTI_CNT
JMP DOCK_LP

ADJ_RIGHT JSR BACK_STOP
JSR SET_GO_STRAIGHT
LDAA #0
LDAB #50
JSR FORWARD_START
JSR GO_TIL_STR
JSR FORWARD_STOP
JSR SET_TURN_RIGHT
LDAA #0
LDAB #20
JSR RIGHT_START
JSR GO_TIL_RIGHT
JSR RIGHT_STOP
CLR RTI_CNT
JMP DOCK_LP

DOCK_SET JSR FORWARD_STOP

30

LDD #$A000
STD RIGHT_FWD_PWM
LDD #$A000
STD LEFT_FWD_PWM
LDD #DOCKDUDE
STD STUCK_ADDR

DOCKDUDE JSR SET_GO_BACK
JSR FORWARD_START

DOCK_NOW_IN JSR BKCHK
JSR STUCK
BEQ DOCK_STUCK
JSR GET_BACK
BNE DOCK_NOW_IN
JSR FORWARD_STOP
JSR SET_GO_STRAIGHT
RTS

DOCK_STUCK JMP ADJ_STUCK

*GO TIL DISTANCE ROUTINE (FOR THE LEFT POT)(GOING BK) *

GO_TIL_BK CLR SAVE_LEFT_CNT

CLR SAVE_LEFT_ROT
GO_TIL_LP3 JSR BKCHK

CMPA SAVE_LEFT_ROT
BNE GO_TIL_LP3
CMPB SAVE_LEFT_CNT
BHI GO_TIL_LP3
RTS

*GO TIL DISTANCE ROUTINE (FOR THE LEFT POT)(GOING STRAIGHT) *

GO_TIL_STR CLR SAVE_LEFT_CNT

CLR SAVE_LEFT_ROT
GO_TIL_LP1 JSR STRCHK

CMPA SAVE_LEFT_ROT
BNE GO_TIL_LP1
CMPB SAVE_LEFT_CNT
BHI GO_TIL_LP1
RTS

*GO TIL DISTANCE ROUTINE (FOR THE LEFT POT)(RIGHT TURN) *

GO_TIL_RIGHT CLR SAVE_LEFT_CNT

CLR SAVE_LEFT_ROT
GO_TIL_LP JSR RTCHK

CMPA SAVE_LEFT_ROT
BNE GO_TIL_LP
CMPB SAVE_LEFT_CNT
BHI GO_TIL_LP
RTS

*GO TIL DISTANCE ROUTINE (FOR THE RIGHT POT)(LEFT TURN) *

GO_TIL_LEFT CLR SAVE_RIGHT_CNT

CLR SAVE_RIGHT_ROT

31

GO_TIL_LP2 JSR LTCHK
CMPA SAVE_RIGHT_ROT
BNE GO_TIL_LP2
CMPB SAVE_RIGHT_CNT
BHI GO_TIL_LP2
RTS

*CHECK IF STUCK *

STUCK LDAA RTI_CNT

CMPA #255
BEQ IS_STUCK
LDAA #1
RTS

IS_STUCK LDAA #0
RTS

*WAIT ROUTINE *

NUM_TIMES_WT FCB 0
WAITING psha

pshx
LDX #TFLG2
LDAA NUM_TIMES_WT

WAIT_LOOP BRCLR 0,X %01000000 WAIT_LOOP
BCLR 0,X $BF
DECA
bne WAIT_LOOP
pulx
pula
rts

REC_BUMP LDAA #6
JSR REC_INSTR
JSR BUMP_WAIT
JMP RECORD_WAIT

REC_LWF LDAA #7
JSR REC_INSTR
LDD #$B000
STD RIGHT_FWD_PWM
LDD #$4800
STD LEFT_FWD_PWM
JSR FORWARD_START
LDAA #’L’
STAA FOLL_FLAG
JMP RC_FOR_WAIT

REC_RWF LDAA #8
JSR REC_INSTR
LDD #$5000
STD RIGHT_FWD_PWM
LDD #$B000
STD LEFT_FWD_PWM
JSR FORWARD_START
LDAA #’R’
STAA FOLL_FLAG
JMP RC_FOR_WAIT

FOLL_FLAG FCB 0

32

RECORD_MODE JSR UNDOCK
LDAA #%00110011
STAA BAUD

RECORD_WAIT JSR WAIT_FOR_COM
CMPA #’I’
BEQ REC_BUMP
CMPA #’W’
BEQ REC_LWF
CMPA #’X’
BEQ REC_RWF
CMPA #’L’
BEQ TOGGLE_LIGHT
CMPA #’F’
BEQ REC_FORWARD
CMPA #’S’
BEQ REC_STOP
CMPA #’T’
BEQ REC_LEFT
CMPA #’U’
BEQ REC_RIGHT
CMPA #’D’
BEQ REC_DOCK
BRA RECORD_WAIT

TOGGLE_LIGHT LDAA SaveA000
ANDA #LED_ON
BEQ TOGGLE_ON
JSR TurnLEDOff
BRA TOGGLE_DONE

TOGGLE_ON JSR TurnLEDOn
TOGGLE_DONE JMP RECORD_WAIT

REC_FORWARD LDAA #1
JSR REC_INSTR
JSR SET_GO_STRAIGHT
JSR SET_FORW_SPEED
JSR FORWARD_START

RC_FOR_WAIT JSR STRCHK
LDAA MODE
BEQ RC_FOR_WAIT
JSR FORWARD_STOP
JSR REC_STR_LEFT
JMP RECORD_WAIT

REC_STOP JSR FORWARD_STOP
JMP RECORD_WAIT

REC_LEFT LDAA #3
JSR REC_INSTR
JSR SET_TURN_LEFT
JSR SET_TURN_SPEED
JSR LEFT_START

RC_LEF_WAIT JSR LTCHK
LDAA MODE
BEQ RC_LEF_WAIT
JSR LEFT_STOP
JSR REC_STR_RIGHT
JMP RECORD_WAIT

REC_RIGHT LDAA #2
JSR REC_INSTR
JSR SET_TURN_RIGHT
JSR SET_TURN_SPEED

33

JSR RIGHT_START
RC_RGH_WAIT JSR RTCHK

LDAA MODE
BEQ RC_RGH_WAIT
JSR RIGHT_STOP
JSR REC_STR_LEFT
JMP RECORD_WAIT

REC_DOCK LDAA #255
JSR REC_INSTR
LDAA #%00110101
STAA BAUD
LDAA #%00001100
STAA SCCR2
JSR BUMP_WAIT
JSR DOCK
LDAA #’H’
JSR OutChar
LDD DO_POINT
TBA
JSR OutChar
LDX #DO_TABLE

REC_SEND_DATA CMPB #0
BEQ REC_SND_DTDN
LDAA 0,X
JSR OutChar
INX
DECB
BRA REC_SEND_DATA

REC_SND_DTDN LDD #DO_TABLE
STD DO_POINT
JMP INITIALIZE

*RECORD INSTRUCTION *

REC_INSTR PSHX

LDX DO_POINT
STAA 0,X
INX
STX DO_POINT
CLR SAVE_LEFT_CNT
CLR SAVE_LEFT_ROT
CLR SAVE_RIGHT_CNT
CLR SAVE_RIGHT_ROT
PULX
RTS

REC_STR_LEFT PSHX
LDX DO_POINT
LDAA SAVE_LEFT_ROT
STAA 0,X
INX
LDAA SAVE_LEFT_CNT
STAA 0,X
INX
STX DO_POINT
PULX
RTS

34

REC_STR_RIGHT PSHX
LDX DO_POINT
LDAA SAVE_RIGHT_ROT
STAA 0,X
INX
LDAA SAVE_RIGHT_CNT
STAA 0,X
INX
STX DO_POINT
PULX
RTS

RTI_ISR LDAA #%01000000
STAA TFLG2 ;CLEAR RTI FLAG
INC RTI_CNT
RTI

*Variables

SCI_STATE FCB 0
DMEM FCB 0
RCV_FLAG FCB 0
TRANS_FLAG FCB 0
POKE_TABLE RMB 4
POKE_point RMB 2
SCI_TBPT FDB SCI_TBLE
SCI_TBLE RMB 200

*Initialization for SCI interrupt service routine
* 1. Init State Variable
* 2. Setup sci system
*

InitSCI PSHA ; Save contents of A register

PSHX
 LDAA #%00110101 ; Set BAUD rate to 300
 STAA BAUD
 LDAA #%00000000 ; Set SCI Mode to 1 start bit,
 STAA SCCR1 ; 8 data bits, and 1 stop bit.
 LDAA #%00101100 ; Enable SCI Transmitter
 STAA SCCR2
 clr SCI_STATE
 LDX #SCI_TBLE
 STX SCI_TBPT
 LDX #POKE_TABLE
 STX POKE_point
 PULX
 PULA ; Restore A register
 RTS ; Return from subtoutine

*SCI interrupt service routine
*if (Receive Buffer Full?)
* then--if (state=download Data Info)
* then--store byte in table and increment tableincounter
* else--if (byte="G") then set state to Send

35

* if (byte="S") then set state to Stop and reset table pointer
* if (byte="X") then disable SCI interrupt
* if (byte="P") then set state to download Data Info and return
*
* else--if (Transmit Ready?)
* then--if (State=Send?)
* then--Load Table Address
* Load byte number flag
* if (byte number = single byte)
* then--load address
* load data
* send data
* else--load address
* load double data
* send first byte
* save second byte
* increment table counter
* else if (State=Send2D?)
* then--load saved data
* send data
* set state to Send
* else--Clear Flag and Return
* else--Return
*Return

*STATE DEFINITIONS
*STOPPED 0
*SEND 1
*RECEIVING DATA INSTRUCTIONS 2
*SEND SECOND PART OF DOUBLE DATA 3
*Receiving Poke Mem 4

ISR_SCI LDAA SCSR
BITA #%00100000
BEQ IfTrans
LDAA SCDR
LDAB SCI_STATE
CMPB #2
BEQ RecvData
cmpb #4
beq RecvPoke
CMPA #’G’
BEQ SEND_START
CMPA #’S’
BEQ SEND_STOP
CMPA #’X’
BEQ QUIT_SCI
CMPA #’P’
BEQ RD_START
CMPA #’M’
beq PK_START
CMPA #’D’
beq PK_DO
LDAA #1
Staa RCV_FLAG
RTI

RecvDataLDX SCI_TBPT
STAA 0,X
INX
STX SCI_TBPT

36

clr SCI_STATE
RTI

RecvPoke LDX POKE_point
STAA 0,X
INX
STX POKE_point
clr SCI_STATE
RTI

IfTrans bra IfTransReady
SEND_START LDAA #1

STAA SCI_STATE
LDX #SCI_TBLE
STX SCI_TBPT
LDAA SCCR2
ORAA #%10001000
STAA SCCR2
RTI

SEND_STOP CLR SCI_STATE
LDX #SCI_TBLE
STX SCI_TBPT
LDAA SCCR2
ANDA #%01111111
STAA SCCR2
RTI

QUIT_SCI LDAA SCCR2
ANDA #%01011111
STAA SCCR2
RTI

RD_START LDAA #2
STAA SCI_STATE
RTI

PK_START LDAA #4
STAA SCI_STATE
RTI

PK_DO ldx #POKE_TABLE
ldy 0,x
ldaa 2,x
staa 0,y
stx POKE_point
rti

IfTransReady BITA #%10000000
BEQ SCI_NULL

SEEHERE ldaa #1
staa TRANS_FLAG
LDAB SCI_STATE
CMPB #1
BEQ SSB
CMPB #3
BEQ SDB

SCI_NULL RTI
SDB LDAA DMEM

STAA SCDR
LDAA #1
STAA SCI_STATE
RTI

SSB LDX SCI_TBPT
LDAA 0,X
INX
CMPA #’1’
BEQ SMB
CMPA #’2’

37

BEQ DMB
CMPA #’3’
BEQ REGA
CMPA #’4’
BEQ REGB
CMPA #’5’
BEQ REGX
CMPA #’6’
BEQ REGY
CMPA #’7’
BEQ TABLE_END
RTI

TABLE_END LDX #SCI_TBLE
STX SCI_TBPT
JMP SEEHERE

SMB LDY 0,X
LDAA 0,Y
INX
INX
BRA SCI_DONE

DMB LDY 0,X
LDD 0,Y
INX
INX
STAB DMEM
LDAB #3
STAB SCI_STATE
clr TRANS_FLAG
BRA SCI_DONE

REGA TSY
LDAA 2,Y
BRA SCI_DONE

REGB TSY
LDAA 1,Y
BRA SCI_DONE

REGX TSY
LDD 3,Y
STAB DMEM
LDAB #3
STAB SCI_STATE
clr TRANS_FLAG
BRA SCI_DONE

REGY TSY
LDD 5,Y
STAB DMEM
LDAB #3
STAB SCI_STATE
clr TRANS_FLAG

SCI_DONE STAA SCDR
STX SCI_TBPT
RTI

**
* SUBROUTINE - OutChar
* Description: Outputs the character in register A to the screen after
* checking if the Transmitter Data Register is Empty
* Input : Data to be transmitted in register A.
* Output : Transmit the data.
* Destroys : None.
* Calls : None.
**

38

OutChar PSHB ; Save contents of B register
 PSHX
 LDX #SCSR

Loop1 BRSET 0,x %10000000 READY ; Check status reg (load it into B reg)
 BRA Loop1 ; Wait until empty
READY STAA SCDR ; A register ==> SCI data

 pulx
 PULB ; Restore B register
 RTS ; Return from subtoutine

org $6000

DO_TABLE FCB 1,255,5,255

