
Bull Pen: A Predator -
Based Mobile Robot

Final Report

Designer: Darren S. Walton

University of Florida

EEL 5666 Intelligent Machine Design Laboratory

Fall 1997

Instructors: Keith L. Doty
 Antonio Arroyo

TA’s: Scott Jantz
 Kevin Harrelson

 Aamir Qaiyumi

December 12, 1997

2

Table of Contents
Abstract 3

Executive Summary 4

Introduction 6

Integrated System 6

Mobile Platform 7
Microprocessor 7
Chassis 7
Motor Actuation 7

Sensors 8
Bump Sensor 8
Sharp IR Detectors 9
PIR Motion Detectors 9
CDS Light Detection Cells 10

Behaviors 11
Bump Detection 11
Object Avoidance 12
Motion Following 12
Light Following 12
Wandering 13

Conclusion 13

Appendix A: Source Code 14

3

Abstract

This report is based upon the construction of a predator based
mobile robot for Intelligent Machine Design Laboratory, EEL-
5666. The robot is designed to perform the predator function in a
predator/prey combination. The prey device is a modified “bump-
and-go” child’s toy with 32 kHz IR emitters, a capture shut-off
device, and a heat source. The predator is supposed to detect the
motion of the prey and the 32 kHz IR emitted from the prey to
locate the direction of the prey and attack it. The robot
construction took place in 3 phases: Platform construction, sensor
development, and behavior programming. When completed the
robot should be able to detect the motion of the prey device, move
towards the prey, and disable the prey.

4

Executive Summary

The robot designed in this project is the predator element of a

predator/prey combination. The main purpose of the robot is to track-down

and disable the prey device through the use of passive infrared motion

sensors and 32 kHz infrared detection.

The robot was built on a standard Talrik platform for ease of platform

design. Modifications of the platform were necessary to mount the motion

sensors and the capture arm.

The sensor suite consists of 4 Sharp 44 kHz infrared detectors, 1

Sharp 32 kHz infrared detector, 3 Leviton passive infrared occupancy

sensors, 10 microswitches, and 5 cadmium sulfide light sensitive resistors.

The 44 kHz IR detectors are used for object avoidance. The 32 kHz

detector is input for locating the prey device when directly in front of the

predator. The occupancy sensors detect prey movement. The

microswitches are used for detection of bumps by the robot into objects

which do not reflect sufficient infrared to be detected by the 44 kHz

detectors. And the Cadmium Sulfide cells are used to locate the direction of

highest light intensity.

5

The source code for the behaviors was written using the interactive -C

environment and the C programming language. The current behaviors

integrated are bump, object avoidance, and motion following (chasing).

6

Introduction

The basis for my project was a predator robot capable of detecting the

motion of its prey, chasing the prey, and capturing the prey by disabling it.

In order to accomplish this the robot must have some method of detecting

the motion of objects within its surroundings. The predator must also be

able to distinguish the prey from other non-prey moving objects. Using

infrared motion sensors and equipping the prey with a heat device allows

the predator to distinguish the motion of the predator device, and by causing

the predator to pause when checking the motion detectors will eliminate the

false motion detections due to motion of the robot.

Integrated System

The robot is assembled on the basic Talrik platform with the addition

of 3 passive infrared motions sensors. Standard Talrik hacked servo-motors

are used for the drive wheels, and the behavior of the robot is controlled

primarily by an arbitration function which determines which of the

behaviors will control these motors. Sensor input is gathered and assigned

to global variables which in turn are used by behavior algorithms to

generate signals for the left and right wheel motors.

Upon reset the robot enters the searching mode to detect movement.

It performs 8 checks in different directions (pivoting CCW), and if no

motion is detected it begins wandering and avoiding objects for 10 seconds

to attempt to clear obstacles between itself and possible prey. If a detection

occurs the robot heads in the direction of the motion, avoiding obstacles,

and attempts to intercept the prey. When the prey is in front of the robot

7

and within 8 - 10 inches the 32 kHz IR signal indicates that the object is the

prey and the robot lurches forward in an attempt to capture its prey.

Mobile Platform

Microprocessor

The MC68HC11E9 was chosen as the brain of the computer because

of the availability of the EVBU board, as well as due to the abundance of

technical support offered by the course assistants. Expanding the EVBU

with the ME11 expansion board added the necessary additional memory and

memory mapped I/O features for the project.

Chassis

The body of the robot is a slightly modified Talrik design, with

substituted solid rubber wheels for the standard air filled tires. The

MC68HC11 EVBU and ME11 expansion board are mounted in the center of

the body, and the motion sensors are mounted along the bridge.

Motor actuation

The motion of the robot is realized by two hacked servo-motors

which were provided with the Talrik partial kit. They are driven by the

motor driver included on the ME11 expansion board using pulse width

modulated signals produced from the MC68HC11 processor on output port

A.

Sensors

8

Bump Sensor

The bump sensor is composed of an acrylic bumper which entirely

encircles the main frame of the Talrik body. This bumper actuates 10

evenly spaced momentary microswitches which are connected to binary

input at address 0x4000. The switches are wired such that the lower nibble

of the address is the front 5 switches and the higher nibble is the rear 5

switches and generates the following decimal values as shown in the table

below.

Switch Position Decimal value at 0x4000

Far Left Front 1

Far Left Front and Front Left 3

Front Left 2

Front Center 6

Front Right 4

Front Right and Far Right Front 12

Far Right Front 8

Far Left Back 16

Far Left Back and Back Left 48
Back Left 32
Back Center 96
Back Right 64
Back Right and Far Right Back 192
Far Right Back 128
Sharp IR Detectors

There are 4 44 kHz sensitive Sharp Infrared light detectors mounted

along the front edge of the robot body. These sensors have been hacked to

9

provide an analog output signal which corresponds to the level of 44 kHz

flicker IR light that is detected. The 4 detectors are arranged evenly spaced

each “looking” out in a direction perpendicular with the edge of the robot.

These detectors are used exclusively for object avoidance when the robot is

searching or wandering.

Additionally there is a similarly hacked 32 kHz Infrared light detector

mounted below the center motion sensor. This detector senses the presence

of the prey vehicle which is equipped with 32 kHz IR emitting IR LEDs.

This device is used to indicate the near proximity of the prey device.

Leviton Passive Infrared Motion sensors

Mounted along the bridge are 3 hacked motion sensors. These

sensors detect changes in the heat zones in a conical region directly

projected from the front of each sensor. The sensors deliver a 4 millisecond

active low signal for each zone change detected. They have been spaced

and mounted to provide maximum area coverage to the forward direction of

the robot, without having significant overlap in the searched areas. These

detectors provide the input to allow the robot to search for and detect the

moving prey object.

10

Figure 1: Motion Detector placement on robot body

CDS Light Detectors

Five Cadmium Sulfide photo resistors are mounted along the top of

the motion sensors. These CDS resistors are arranged in a voltage divider

circuit, each with a 100 K-Ohm resistor as shown in figure 2. The resistors

decrease their resistance as light input increases. They are used to detect the

flashing lamps on the prey vehicle. As light increases the resistance

decreases across the CDS cell and thus the voltage at point A in figure 2

decreases.

11

Figure 2: CDS cell voltage divider for light detection

Behaviors

The robot exhibits the following behaviors using the indicated

sensors as inputs.

Bump

The robot backs away from objects which it has bumped into. The

priority of this behavior is determined by the value of the binary inputs of

the bump switches. This behavior overrides all behaviors except the attack

behavior, in which case the robot must bump its forward section into the

prey to cause the prey to be disabled.

Object Avoidance

12

Using the 44 kHz Sharp sensor output values as inputs, this behavior

allows the robot to maneuver about in its environment as it wanders,

searches for the prey, or attacks the prey without running into obstacles.

Since the prey vehicle is small and virtually non-detectable by reflected IR

(due to its dark color) the robot will not attempt to avoid the prey as an

obstacle. Even if it did, the object avoidance maximum priority is less than

the attack behavior’s priority.

Motion Chasing

By using the motion detectors the robot attempts to locate the relative

direction of the prey vehicle and then moves in that direction, hoping to get

a positive detection by the 32 kHz IR sensor. When a motion is detected by

the center sensor the robot moves forward for a fixed time then stops and

waits for another motion detection. A detection by either of the left or right

sensors causes the robot to pivot in that direction and then move forward as

in the case of the center sensor. If no detection is registered before the time-

out then the robot will pivot counter clockwise and start the detection timing

cycle again.

Light Chasing

By using the 5 CDS cells located at on the top of the robot the robot

can detect the light of the lamps on the prey object as being brighter than the

surrounding ambient light. This provides an additional input as to the

direction of the prey in relation to the predator.

Wandering

13

When the robot completes a full circle of motion detection pauses it

will become bored with detection and begin wandering about in its

environment by pivoting in a pseudo random direction and moving forward

for a finite period of time. At the end of the wandering phase the robot

reverts to motion chasing.

Attacking

When the robot has detected an increase in the 32 kHz sensor reading

it interprets this input as confirmation that the prey vehicle is “near” and

“dead-ahead”, in which case the robot goes into a full forward lunge to

attempt to capture its prey. In this mode all object avoidance and bump

detection is overridden.

Conclusion

Although test runs of the behaviors separately were generally

successful, the overall integrated behavior did not function properly at the

time of the writing of this report. Several hours of testing and debugging

remain before the project will function as anticipated. The processor seems

to have difficulty detecting the motion sensor signals, and the servo motors

are in such bad shape that the one running in reverse has a speed of about 50

% that of the forward servo. This results in insufficient speed to catch up

with the prey.

Appendix A: Source Code

14

/* This is the global variables and constants, as well as the main
program
for the control of Darren Walton’s predator robot. */

 /* global defined values */

int on = 1;
int off = 0;

int min_IR = 90;
int max_IR = 125;

int zone = 6;
int priori_T = 25;

int pivot_time = 1500; /* the time of each pivot in mseconds */
int pivot_dir = 0; /* Direction of the pivot */

float fmax_motor_port = 100.0; /* The max port and stbd motor commands
*/
float fmax_motor_stbd = 70.0; /* to achieve "straight" movement */
float rmax_motor_port = -80.0;
float rmax_motor_stbd = -100.0;

 /* The behaviour priorities */

int avoid_pri = 1;
int bump_pri = 2;
int search_pri = 3;
int wander_pri = 4;
int attack_pri = 5;
int pivot_pri = 6;
int end_pri = 7;

int priorities[10]={0,0,0,0,0,0,0,0,0,0}; /* The priority
Array */

int max_pri = 1;
int old_max_pri = 1;

/* The variables for the motor_control function. These are global so
that
the motion detection behaviour can tell when the robot is really
stopped. */

float slew = 10.0;
float port = 0.0;
float stbd = 0.0;

 /* The global variables */

int detect_p; /* The detection boolean values */
int detect_c;
int detect_s;
int detect = 0;

float detect_time; /* The times for detection */

int IR_out = 0x7000; /* The IR output latch address
*/
int binary_out = 0x4000; /* The binary out port address
*/
int binary_in = 0x4000; /* The binary in port address
*/
int bin_out = 0;

15

int bin_in = 0; /* The binary i/o values
*/
int bump_bar = 0; /* The bumper/ also bin_in
*/
int pivots = 0;
int searches = 0;

float motor_port = 0.0;
float motor_stbd = 0.0; /* The motor driver commands
*/

 /* the motor value arrays */
float port_motor[10] = {0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0.,0.0};
float stbd_motor[10] = {0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0.,0.0};

int port_move = 200;
int center_move = 200;
int stbd_move = 200; /* The motion detect values
*/

int nose = 0; /* The 32 kHz IR detector
*/

int port_ir = 100; /* The 44 kHz IR detectors
*/
int port_cntr_ir = 100;
int stbd_cntr_ir = 100;
int stbd_ir = 100;

/* The 44 kHz IR input array index and value array */
int biggest = 0;
int ir[4];

/* CDS cells
int cds_hard_port = 0;
int cds_mid_port = 0;
int cds_center = 0;
int cds_mid_stbd = 0;
int cds_hard_stbd = 0;

*/
/* This file is the function library for Darren Walton’s predator robot
*/
/*===*/
/* Included functions and calling mechanisms

void wait(int milli_seconds) This function causes the processor to
 wait for milli_seconds milliseconds, but allows
 the processor to continue on with other
processes

int analog7(int x) This function sets the analog mux input to input
 number x (0 - 7) and returns the value that is
 detected there. The delay is for the A/D port
 to setup.

int binout(int bit, int val)
 This function sets the binary output 0-3 to on
 or off: 0 or 1. no return value, however the
 global variable bin_out is modified.
*/

/*===*/

16

/* The waiting function, better than sleep because it allows other
processes to proceed immediatly */
void wait(int milli_seconds)
{
long timer_a;

timer_a = mseconds() + (long) milli_seconds;
while(timer_a > mseconds()) {
 defer();
 }
}

/*===*/

/* analog7(int x) input: x is an integer in the range 0-7
 output: return value is the value at the
multiplexed
 analog input pin x, OR 255 if error.
*/
int analog7(int x)
{
/* Check that the input value is in range 0 - 7
*/
if ((x >= 0) && (x <= 7))
{ /* First clear the lower 3 bits in the global variable */
 bin_out = bin_out & 0xf4;

 /* Now set the bits according to x */
 bin_out = bin_out | x;

 /* Write to the output to set the select lines */
 poke(binary_out, bin_out);

 /* Read and return the value */
 return analog(7);
}
/* If input out of range return an impossible A/D value of 255
*/
else return 255;

}

/*==*/

/* binout() Writes to the 0x4000 output port for the unused binary
 output values...bits 5, 6, and 7.
 input: bit, the bit number to write out 0-2 (bit 5-7)
 val, the value of the bit to output 1 or 0
 output: returns 1 if successful, 0 if unsuccessful
*/

int binout(int bit, int val)
{
 int mask;

/* No sense screwing around with improper values */
 if ((val <= 1)&&(val >= 0)&&(bit >= 0)&&(bit <= 2))
 { /* Set the mask value for that bit */
 mask = (1 << (5+bit));

 /* determine if clearing or setting */
 if (val == 0)
 { /* complement the mask and clear bit */
 mask = ~mask;
 bin_out = bin_out & mask;

17

 }
 else /* set the bit */
 { bin_out = bin_out | mask;
 }

 /* Now write to the memory location */
 poke(binary_out, bin_out);

 /* Now the successful return value */
 return 1;
 }
 /* bad input values begets a "0" return value */
 else return 0;
}
/*==*/
/* Control the arms of the robot for extension and retraction. The
 arm motor is controlled by bits 3 and 4 of output port 0x4000.
 By setting bit 3 high the motor turns on
 By setting bit 3 low the motor turns off
 By setting bit 4 high the arms extend
 By setting bit 4 low the arms retract */

void arms_out(void)
{
 int mask = 0x18;
/* Change the binary output value */
 bin_out = bin_out | mask;
/* Now write to the output port */
 poke(binary_out, bin_out);
}

void arms_in(void)
{
 int mask = 0x08;
/* Change the binary output value */
 bin_out = bin_out & 0xE7;
 bin_out = bin_out | mask;
/* Now write to the output port */
 poke(binary_out, bin_out);
}

void arms_stop(void)
{ int mask = 0xE7;
/* Change the binary output value */
 bin_out = bin_out & mask;
/* Now write to the output port */
 poke(binary_out, bin_out);
}

/*===*/
/* This file is the file containing the behaviours and modules which
need
to be called using "start_process()" function.
The "behaviours" and other called processes which are each called as a
process in the main program of the Predator robot

void motor_control(void) This is the main motor controlling
function that
 causes the motor speed and direction to ramp to
 the new value and not cause instantaneous
changes
 to motor speed and direction.

void sensor() This function gathers the incoming data from all

18

 the physical sensors and stores them in global
 variables.

void arbitrator() The arbitrator function to arbitrate between the
 active behaviours.

void pivot() Pivots the robot aprox 45 degrees in the
direction
 set by the global variable: pivot_dir 0 = none
 -1 = port
 1 = stbd

void object_avoid() Avoids objects using the IR detectors values
from
 the sensor() function.

void search() The motion detection following behaviour which
moves
 the robot in the direction of detected motion.
This
 also affects the pivot behaviour to enable
pointing
 the robot towards the moving objects direction.

void bump() Causes the robot to move away from an object
that
 it has bumped into.

void wander() The robot wanders aimlessly if there is no input
 from the search() behaviour after waiting for
the
 motion detection in eight directions.
*/

/*===*/
/* The following functions are in this file and have been tested:

motor_control()
arbitrator()
sensor()
object_avoid()
bump()
search()
pivot()
wander()

These are being tested:
attack()

*/
/*==*/
/* Motor Control function. Directly controls the motor commands based
upon the global variables set by the arbitrator function
*/
/*===*/
void motor_control()
{
while(1)
{
 port = (port*slew + motor_port)/(slew + 1.0);
 stbd = (stbd*slew + motor_stbd)/(slew + 1.0);

 motor(0, port);
 motor(1, stbd);
 defer();

19

}
}
/*===*/
/* The arbitrator function */
/*===*/
/* The arbitrator function that compares the behaviour priorities and
then determines which behaviour determines controll of the robot
movement */
void arbitrator(void)
{
int i;
while(1)
{
i = 1;
old_max_pri = max_pri;
while(i < 10)
{ if((priorities[i]) > (priorities[max_pri]))
 max_pri = i;
 i++;
}
if(old_max_pri != max_pri)
 tone(500., 0.50);
motor_port = port_motor[max_pri];
motor_stbd = stbd_motor[max_pri];
defer();
}
}

/*###*/
/* Sensor function to gather all function data and assign it to global
 variables for use by the arbitrator function and other functions
*/

void sensor()
{
while(1)
{
/* The motion detectors */
 port_move = analog(4);
 center_move = analog(5);
 stbd_move = analog(6);
/* The 32 KHz IR detector */
 poke(0x4000, 0x00);
 nose = analog(7);

/* The bump switch all about the perimeter */
 bin_in = bump_bar = peek(binary_in);

/* The 44 KHz IR detectors */
 port_ir = analog(0);
if((port_move > 190)&&(stbd_move > 190)&&(center_move > 190))
{
 port_move = analog(4);
 center_move = analog(5);
 stbd_move = analog(6);
}

 port_cntr_ir = analog(1);

if((port_move > 190)&&(stbd_move > 190)&&(center_move > 190))
{
 port_move = analog(4);
 center_move = analog(5);
 stbd_move = analog(6);
}

20

 stbd_cntr_ir = analog(2);

if((port_move > 190)&&(stbd_move > 190)&&(center_move > 190))
{
 port_move = analog(4);
 center_move = analog(5);
 stbd_move = analog(6);
}

 stbd_ir = analog(3);

if((port_move > 190)&&(stbd_move > 190)&&(center_move > 190))
{
 port_move = analog(4);
 center_move = analog(5);
 stbd_move = analog(6);
}

/* Sample all of the CDS cells from the analog mux */
/* cds_hard_port = analog7(1);
 cds_mid_port = analog7(2);
 cds_center = analog7(3);
 cds_mid_stbd = analog7(4);
 cds_hard_stbd = analog7(5);
*/
/* Defer to the next process */

 defer();
}
}

/*##*/
void object_avoid(void)
{
int i;
while(1)
{
/* Put the IR readings into an array */
 ir[0] = port_ir;
 ir[1] = port_cntr_ir;
 ir[2] = stbd_cntr_ir;
 ir[3] = stbd_ir;
/* Determine the largest value */
i = 0;
while(i < 4)
{
 if(ir[i] > ir[biggest])
 biggest = i;
 i++;
}
/* Determine the priority of the IR signal */
 if(ir[biggest] < 100)
 priorities[avoid_pri] = 50;
 else if(ir[biggest] < 110)
 priorities[avoid_pri] = 75;
 else if(ir[biggest] < 115)
 priorities[avoid_pri] = 100;
 else if(ir[biggest] < 120)
 priorities[avoid_pri] = 125;
 else priorities[avoid_pri] = 135;

if(ir[biggest] < 100)
{ port_motor[avoid_pri] = fmax_motor_port;
 stbd_motor[avoid_pri] = fmax_motor_stbd;

21

}
else
{
if(biggest == 0)
{
 port_motor[avoid_pri] = fmax_motor_port;
 stbd_motor[avoid_pri] = (rmax_motor_port/3.0);
}

if(biggest == 1)
{
 port_motor[avoid_pri] = fmax_motor_port;
 stbd_motor[avoid_pri] = (rmax_motor_port/2.0);
}

if(biggest == 2)
{
 port_motor[avoid_pri] = (rmax_motor_port/2.0);
 stbd_motor[avoid_pri] = fmax_motor_stbd;
}

if(biggest ==3)
{
 port_motor[avoid_pri] = (rmax_motor_port/3.0);
 stbd_motor[avoid_pri] = fmax_motor_stbd;
}
}

defer();
}
}
/*==*/
/* The bump algorithm to cause the robot to move back away from an
object
that it has bumped into. The backward motion moves the front of the
robot
to point in a direction AWAY from the direction of the bumped into
object */
/*===*/
void bump(void)
{
while(1)
{
 if(bump_bar > 0)
 {
 priorities[bump_pri] = 150;
 if((bump_bar == 1)||(bump_bar == 3))
 {
 port_motor[bump_pri] = (rmax_motor_port/4.0);
 stbd_motor[bump_pri] = (rmax_motor_stbd);
 }
 else if(bump_bar == 2)
 {
 port_motor[bump_pri] = (rmax_motor_port/2.0);
 stbd_motor[bump_pri] = (rmax_motor_stbd);
 }
 else if(bump_bar == 6)
 {
 port_motor[bump_pri] = (rmax_motor_port);
 stbd_motor[bump_pri] = (rmax_motor_stbd*0.75);
 }
 else if(bump_bar == 4)
 {
 port_motor[bump_pri] = (rmax_motor_port);
 stbd_motor[bump_pri] = (rmax_motor_stbd/2.0);

22

 }
 else if((bump_bar == 8)||(bump_bar == 12))
 {
 port_motor[bump_pri] = (rmax_motor_port);
 stbd_motor[bump_pri] = (rmax_motor_stbd*0.25);
 }
 else if(bump_bar > 15)
 {
 priorities[bump_pri] = 0;

 }
 wait(4000);
 }
 priorities[bump_pri] = 0;
 defer();

}
}
/*===*/
/* pivot behaviour, pivots the robot based upon global variables so
other
behaviours can controll the direction of the pivot */
/*===*/
void pivot(void)
{
while(1)
{
if(pivot_dir != 0)
{
 if(pivot_dir == -1)
 { port_motor[pivot_pri] = -100.0;
 stbd_motor[pivot_pri] = 100.0;
 }
 else if(pivot_dir == 1)
 { port_motor[pivot_pri] = 100.0;
 stbd_motor[pivot_pri] = -100.0;
 }
 wait(pivot_time);
 pivot_dir = 0;
}
/* relenquish control of the robot motors */
priorities[pivot_pri] = 0;
defer();
}
}

/*##*/
/* SEARCH : The motion following algorithm */
/*===*/
void search(void)
{
 priorities[search_pri] = 65; /* set the searching
priority level */
 detect_p = 0;
 detect_c = 0;
 detect_s = 0;

while(1)
{
if((port >= 10.0)&&(stbd >= 10.0))
{ port_motor[search_pri] = 0.0;
 stbd_motor[search_pri] = 0.0;
}
else
{ detect = 0;

23

 detect_time = seconds() + 10.0;

 while(detect_time > seconds())
 {
 if((port_move > 190)&&(stbd_move > 190)&&(center_move > 190))
 {
 port_move = analog(4);
 center_move = analog(5);
 stbd_move = analog(6);
 }
 detect_p = (int)(port_move < 190);
 detect_c = (int)(center_move < 190);
 detect_s = (int)(stbd_move < 190);

 /* If motion to center then just lurch forward 1.5 seconds */
 if((detect_c)||((detect_p)&&(detect_s)))
 { port_motor[search_pri] = fmax_motor_port;
 stbd_motor[search_pri] = fmax_motor_stbd;
 tone(1000., 0.5);
 wait(1500);
 detect = 1;
 }
 /* If motion to port, pivot to port and lurch forward */
 else if((detect_p)&&!(detect_s))
 { pivot_dir = -1;
 priorities[pivot_pri] = 200;
 defer();
 port_motor[search_pri] = fmax_motor_port;
 stbd_motor[search_pri] = fmax_motor_stbd;
 tone(1500., 0.5);

 /* Wait for turning and forward times */
 wait((pivot_time + 1500));
 detect = 1;
 }
 /* If motion to stbd then pivot to stbd and lurch
forward */
 else if((detect_s)&&!(detect_p))
 { pivot_dir = 1;
 priorities[pivot_pri] = 200;
 /* Wait while pivoting */
 wait(pivot_time);
 port_motor[search_pri] = fmax_motor_port;
 stbd_motor[search_pri] = fmax_motor_stbd;
 tone(2000., 0.5);

 /* Wait for forward movement */
 wait(1500);
 detect = 1;
 }
 } /* End the while loop */
 if(!detect)
 {
 priorities[wander_pri] = 70;
 }
} /* End the else */
defer();
} /* End the while */
}

/*###*/
/*##*/
/* The wander behavior just wanders around for about 10 seconds while
the

24

robot tries to find a new location. Since the default value of the
priority
is 70 it out prioritizes search, and succumbs to the avoid and bump
behav’s. */
/*==*/
void wander(void)
{
while(1)
{
 if(priorities[wander_pri] == 70)
 { if(searches < 7)
 { searches++;
 priorities[wander_pri] = 0;
 pivot_dir = -1;
 priorities[pivot_pri] = 145;
 wait(pivot_time);
 }
 else
 {
 /* Setup the priority to pivot the robot */
 priorities[pivot_pri] = 145;

 /* Generate a psuedo random pivot direction */
 pivot_dir = ((peek(0x1000)%3)-1);

 /* Generate a psuedo random number of pivots */
 pivots = (peek(0x1000)%8);

 /* and pivot that number of times */
 while(pivots)
 { pivots--;
 wait(pivot_time);
 }

 /* Now move forward and avoid obstacles for 10 seconds
*/
 port_motor[wander_pri] = fmax_motor_port;
 stbd_motor[wander_pri] = fmax_motor_stbd;
 wait(10000);

 }
 /* Now end wandering */
 priorities[wander_pri] = 0;
 defer();

 }

}
}

/*##*//*##########
##*/
/* The attacking behaviour */
void attack(void)
{
 while(1)
{
 if(nose > 59)
 { priorities[attack_pri] = 300;
 port_motor[attack_pri] = fmax_motor_port;
 stbd_motor[attack_pri] = fmax_motor_stbd;
 wait(10000);
 priorities[attack_pri] = 0;
 }

25

}
}

/* The main program for the Predator Robot, BullPen by Darren Walton */
void main()
{
/* Init the IR leds */
 poke(0x7000, 0xff);

/* Init the analog mux */
 poke(0x4000, 0x00);

/* Start reading in the sensor data */
 start_process(sensor());

/* Start the behaviour usage processes */
 start_process(motor_control());
 start_process(pivot());

/* The behaviours */

 start_process(search());
 start_process(object_avoid());
 start_process(bump());
 start_process(wander());
 start_process(attack());
/* start_process(end()); */

/* The arbitrator to determine the controlling behaviour */
 start_process(arbitrator());

}

