
Speedy

by
Josue Peña

Keith L. Doty
EEL 5666

Intelligent Machines Design Laboratory

University of Florida
December 11, 1997

2

Table Of Contents

Abstract .. 3

Executive Summary ... 4

Introduction .. 5

Integrated System ... 6

Mobile Platform ... 7

Actuation .. 8

Sensors ... 10

Behaviors.. 14

Experimental Layout and Results... 16

Conclusion.. 19

Documentation ... 20

Appendix A: Behavior Code ... 21

3

Abstract

Following is a discussion of the development of an obstacle avoidance system for an autonomous
high speed RC car using infrared emitters and sensors. The car, known as Speedy, has two basic
modes of operation. Speedy can operate in autonomous mode or full radio control mode.
Speedy’s high speed requires unique circuitry to power the high current motor. In addition the
radio control mode is complicated by RF noise produced by the motors and the micro-controller
which dictates Speedy’s behavior.

4

Executive Summary

Speedy is an autonomous car designed to travel at high speeds. A powerful rear motor and

differential gears provide good traction at high speeds. This motor is controlled and powered by

a special high current electronic speed control. A high current delivering battery is used to

operate at fast speeds with long run time. The original steering mechanism was replaced with a

standard servo and torque coupling to provide tighter steering and reliable control.

Speedy’s navigational system consists of IR emitters and receivers. Since Speedy will travels at

high speeds, obstacle avoidance becomes a challenge. Upon detecting an obstacle Speedy will

reduce its speed while adjusting the steering to avoid the obstacle. Speedy will reverse the motor

for a fraction of a second if necessary to slow down. The integrated IR system can provide 140

degrees of frontal visibility up to 24 inches ahead. Even though an IR sensor is located on the

back of Speedy, rear visibility is not a priority since Speedy will generally travel in the forward

direction.

Speedy can also run in full radio control mode. Upon receiving valid RF signals from an FM

transmitter, Speedy will switch from autonomous mode to full radio control mode. Upon losing

the RF signal Speedy will switch back to full autonomous mode. Speedy can switch between

both modes as often as desired.

Speedy uses the Motorola 68HC11 micro-controller to analyze all sensors and then control the

speed and direction accordingly.

5

Introduction

My primary goal for Speedy is to be able to switch to radio control automatically and then

maintain radio control at a reasonable distance. Prior RC designs have been unsuccessful due to

EMF noise produced primarily by the Motorola 68HC11 micro-controller. Speedy can operate in

two modes which are selected automatically. Mode one is full RC control. One will be able to

control Speedy’s movements from a far distance (about 50 feet). Mode two is full autonomous

mode. In this mode Speedy will roam around the room avoiding obstacles looking busy. Speedy

will increase speed whenever he detects that there is enough room to navigate in safely without

crashing.

Following are separate sections describing Speedy. The Integrated System section gives an

overview of the separate systems which makes Speedy come to life. The Mobile Platform

section describes the physical structure of Speedy and what makes it moves around. The

Actuation section discusses the steering mechanism and throttle mechanism. The Sensors section

lists and describes the different sensors used in determining Speedy’s direction and speed of

travel. The Behaviors section describes the behaviors and modes which Speedy exhibits. The

Experimental Layout and Results section discusses the experiments and results conducted in

getting Speedy to work properly. The Conclusion section is a brief summary of what was

accomplished and what was not accomplished. The Documentation section lists the books and

papers used as a reference or guide while designing Speedy. Finally, the Appendix A contains

the behavioral code which makes Speedy run around looking important.

6

Integrated System

Speedy’s control system is a rather simple one as shown in Figure 1 below. Speedy first

initializes the control of the steering and motor. This initialization makes sure Speedy does not

ram into an obstacle at startup. Speedy then cycles through four processes continuously. The

first process calculates which direction Speedy should go. The second process determines at

what speed to travel in. The third process determined whether to be in autonomous or full radio

control mode. Finally, the fourth process is the arbitrator which analyzes all the information

generated by the other processes and determines what Speedy will actually do.

Initialize Control
Calculate

Autonomous
Steering

Calculate
Autonomous

Speed

Determine
 Mode

(Autonomous / Radio)
Arbitrator

Figure 1: Control Flow

The autonomous steering and the autonomous speed data are calculated directly from the IR

sensor readings. When the arbitrator is invoked it actuates the steering and throttle mechanisms

which moves the motors. When in radio control mode the arbitrator simply passes the signals

coming in from the receiver to the steering servo and the electronic speed control.

7

Mobile Platform

Due to Speedy’s fast speed a strong and crash resistant platform is needed. The “Black Phantom

II” RC truck by Radio Shack was therefore used. The rear bumper was removed and the top half

of the front bumper was removed. Only the frame, wheels assembly with shocks, front bumper,

and rear motor assembly were kept. The steering steeper motor was removed because it did not

provide the proportional steering needed for good obstacle avoidance. The battery and battery

casing were removed because it was too small to provide enough power for a successful run. The

front bumper was trimmed low in order to increase the IR sensor range. The rear bumper was

removed because it was too heavy and dragged occasionally slowing Speedy down. Finally the

RF electronics were removed because they were cheaply designed and very prone to interference.

After many crashes (mostly accidental) Speedy’s frame has proven to be very reliable and sturdy.

The excellent forward and floating rear suspension maintains Speedy from flipping over is

mostly any driving condition. Since Speedy does not have a rear bumper a rear collision can

cause damage to the rear motor assembly. This is not a major concern since Speedy mostly

travels in a forward direction and is allowed to travel only slowly in reverse.

8

Actuation

Front Steering Mechanism

Speedy’s original steering mechanisms was very problematic. The wheels were turned left or

right by applying a voltage to the appropriate coil on the steeper motor. The range of motion was

very limited and very hard to control in this design. The steeper motor was replaced with a

standard servo form the IMDL lab. A couple modifications to the car body were needed to

accommodate and secure the new servo. The torque coupling from the old motor was removed

and attached to the new servo. This torque coupling allows the wheels to give a little if the turn

is too tight. This has a couple of advantages. First, if the wheels are stuck then the servo won’t

overheat trying to turn the wheels. The servo will simply turn and the torque coupling will give a

bit. The second advantage is that when making a sharp turn this little bit of give keeps the car

from flipping over. The only disadvantage is that the tighter the curve the wider the turn. Even

with these modifications Speedy still has a wide turning diameter of 20 inches as shown in

Figure 2 below. This wide turning radius is due to Speedy’s over sized tires and wide axles.

40.0"

Figure 2: Turning Diameter

9

Rear Drive Motor

Speedy rear wheels were originally powered by a 9.6 volt bi-directional DC motor. This motor is

connected to a differential gear assembly which delivers good traction on sharp turns and

different road surfaces. The motor typically draws 0.45 Amps at maximum speed. The stall

current of the motor is around 11 Amps. This high stall current requires a special electronic

speed control discussed in the sensor section of this report. Even though this motor originally

was powered with a 9.6 volt battery pack, it is now powered with a 7.2 volt Piranha battery pack.

This was done to meet the electronic speed control input voltage maximum and also because this

battery pack can supple twice the original power (1.4 Amp-Hrs). In order to accommodate this

larger battery pack the bottom battery compartment was widened and the new battery was

fastened using bell wire and electrical tape.

10

Sensors

Sharp IR Detectors

Speedy uses IR emitters and detectors as it’s main form of obstacle avoidance. There are four

Sharp IR sensors located on Speedy. Three in front and one in the back as shown in Figure 3

below. Directly below these sensors are four IR emitters calumniated inside a black tube. In

addition to these four emitters there are four uncalumniated emitters. Two of the emitters point

forward and two point to each side. These last four emitters were added experimentally to

improve Speedy’s IR blind spots on it’s sides. The IR emitters are connected in series with a 330

ohm resistance to the ME11 board which produces a 40kHz signal suitable for the Sharp sensors.

Figure 3: Sharp IR Sensors

These IR emitter/sensor combination gives Speedy 24 inches of obstacle detection. This IR short

range is a problem at high speeds because obstacle avoidance is sometimes unavoidable. Future

modifications might include ultrasonic emitters and detectors to increase range.

11

Bump Sensors

Speedy was equipped with a couple of bump sensors behind a fender attached to the front

bumper. This enabled Speedy to determine when a low or dark obstacle not detectable by IR was

in its path. After a couple of test runs and crashes, the bumper shattered. Therefore, the bump

sensor no longer plays a role in obstacle avoidance.

Electronic Speed Control

A Traxxas XL-1 electronic speed control (ESC) is used to in order to power Speedy’s high speed

motor. This speed control can with stand stall currents of about 75 Amps. This speed control

consists mainly of two rows of 8 MOSFETS in parallel. Even thought this electronic speed

control (ESC) is very powerful it has one major disadvantage in its control. If this ESC does not

receive a 20ms period waveform with a pulse width between 1.2 and 1.8 ms it will start

oscillating. Once the ESC starts to oscillate, the motor as well as the speed control begin to

overheat. Table 1 below shows how the ESC responds to pulse widths between 1.2ms to 1.8 ms.

Throttle Pulse Width (ms) 68HC11 FRC Counts
Maximum Forward 1.20 2400

1.24 2480
1.28 2560
1.32 2640
1.36 2720
1.40 2800
1.44 2880

Stopped 1.48 2960
Stopped 1.52 3040

1.56 3120
1.60 3200
1.68 3360
1.72 3440
1.76 3520

Maximum Reverse 1.80 3600

Table 1: Throttle Control

12

The 68HC11 FRC column indicates how long the free running counter on the 68HC11 must run

to produce the desired pulse width.

The electronic speed control power line was tapped to power the steering servo and the FM

receiver. A resistor is placed in between the electronic speed control and the 68HC11. This

resistor serves two purposes. The first purpose of the resistor is to reduce the signal voltage to

about 4.2 volts which is the expected signal input voltage of the ESC. The second purpose is to

reduce voltage spikes cause by the motor. When observing the signal on the oscilloscope a spike

is visible feeding into the 68HC11 output compare pin. After installing this resistor the spike

disappeared. With out this resistor the speed control does not work, and will begin to oscillate.

This resistor caused two months of trouble shooting and patience to figure out.

Futaba RF Receiver

Speedy originally came with a Radio Shack 27 MHz AM radio and receiver. The maximum

control range was about 30 feet. After applying power to the 68HC11 complete control of

Speedy was lost. This lost of control was due primarily for two reasons. First, the 68HC11

micro-controller emits a lot of RF/EMF noise which floods out the radio signal. Second, the

cheap Radio Shack receiver used, responds to a wide band and doesn’t zero in on the 27MHz

signal. A Traxxas 27 AM MHz radio and receiver from an old Grasshopper RC car was then

tried. With this receiver Speedy can be controlled from 50 feet. Once again after applying power

to the 68HC11 micro-controller 5 second continuous glitches occurred. These glitches usually

leads to Speedy ramming into a wall.

Finally a FM model airplane receiver was used. This receiver is a Futaba FP-R127DF FM 7-

channel receiver. The crystals were changed from Channel 44 (76.670 MHz) to Channel 52

(72.830 MHz) to eliminate RF noise bled on by local radio stations. The Futaba receiver has a

13

narrow response band of only 20kHz. This receiver gives Speedy an RF range of about 50 feet

with very few glitches.

Custom Sensor Interconnections

The major components making up the customs sensors is shown Figure 4 below. The 68HC11

receives data from the electronic speed control and the radio receiver. The rear wheel motor is

powered by the electronic speed control which is under direct control of the 68HC11. The

steering servo is powered by the radio receiver and is under direct control of the 68HC11 also.

Motor

Servo

Radio Receiver

Electronic
Speed Control

68HC11

Gnd

Gnd

GndGnd

Gnd

7.2 V

7.2 V

7.2 V

5 V

5 V

OC3

OC2

IC3

IC2 CH1

CH3

VCC(FRW) / GND(REV)

 GND(REV) / VCC(FRW)

5 VPWM

Figure 4: Sensor Wiring

14

Behaviors

Obstacle Avoidance

Speedy’s high speed and high turning radius makes it hard to avoid obstacles. The A/D

converters are put in multiple channel scanning mode to provide up to date IR data. Speedy

analyzes the difference between the left and right sensors to determine how hard and which way

to steer. If the difference is not significant then Speedy will remain in its current course. This

prevents Speedy from jerky steering. Due to Speedy’s high speed, obstacle avoidance was not

easy and not yet full proof.

Maximum Speed Navigation

Speedy relies heavily on the IR sensor reading to determine his speed. Depending on how much

headway room there is in front of Speedy he will roam at different speeds. If Speedy is going

down a tight passage then he will set his throttle to the slowest speed possible. Setting the speed

accordingly will give Speedy enough time to turn and avoid obstacles. If Speedy goes into a tight

passage way which is too tight he will simple stop. Since speedy only has one sensor in the back

he cannot travel in reverse and get out of a windy situation. However if Speedy is approaching

an obstacle at a high speed he will apply the reverse (unless the rear is blocked) to slow him

down enough to clear the turn.

Automatic Radio Mode

Speedy is constantly using the RF receiver to monitor the airways for any valid data. Whenever

Speedy determines that there is valid RF data coming in he switches over from autonomous

mode to full radio control mode. Whenever Speedy stops receiving a good signal he sets a timer

and waits for about 30 ms. If another good RF signal does not come in then Speedy switches

over to autonomous mode. Due to all the noise produced by the motor and the 68HC11 micro-

15

controller the RF signal coming in varies a bit. Speedy determines if the signal is good by

checking the period of the signal and also the duty cycles of the signals coming in. Since this

will vary a bit due to noise and other factors such as the transmitter/receiver distance Speedy

does not compare it to a fixed number but makes sure it’s within certain limits. By adjusting

these limits most glitches can be eliminated. If one makes these limits too tight them all glitches

will be eliminated but then Speedy will never switch into radio control mode.

Radio Mode with Autonomous Override

Due to time constraints and RF problems I was not able to implement this mode successfully.

It’s goal was to be able to maneuver Speedy remotely and still leave some autonomous routines.

If I were to ram into a wall then Speedy should of either stopped or turned to avoid the wall.

Also if I were to travel at a higher speed than Speedy thought was safe to maneuver in, then he

would of reduced the speed. The major setback in implementing this mode was in the ability to

enable it remotely with the RF radio. Even though the radio/receiver has an extra channel to send

data over when I tried to send data, there was too much noise to make sense of it. I believe that

this is due to the way I am powering the RF receiver.

16

Experimental Layout and Results

IR Testing

The first experiment conducted on Speedy was too get some base data for the IR sensors. All the

IR emitters were turned on and then an object was placed in front of each of the IR sensors at

different distances ranging from 24 inches to 0 inches. After the object was placed in front of the

emitter and the distance was measured, the appropriate sensor output voltage was measured using

the 68HC11’s analog-to-digital converter. The data readings from the A/D converter is shown

below in Table 2.

Distance Analog 1 (Left) Analog 1 (Center) Analog 2 (Right) Analog 3 (Rear)
0 129 130 130 130
1 130 130 129 130
2 130 131 128 130
3 129 130 124 130
4 126 127 123 126
5 122 123 119 123
6 118 120 118 119
7 113 117 115 116
8 108 113 112 112
9 104 110 108 107

10 99 106 104 104
11 96 102 100 101
12 93 98 97 98
13 91 96 94 95
14 90 94 92 93
15 88 93 91 93
16 87 92 89 92
17 87 90 88 92
18 86 89 87 91
20 86 88 86 91
21 86 87 86 91
24 86 86 86 91

Table 2: IR Sensor Data

17

As can be seen by the IR sensor data plot, shown in Figure 5 below, all four of the IR sensors

readings have a similar format. Between 5 and 13 inches the sensors are relatively linear. Below

5 inches and above 13 inches the sensors begin to exponentially saturate at a given voltage value.

IR Sensors

80

85

90

95

100

105

110

115

120

125

130

135

140

0 2 4 6 8 10 12 14 16 18 21

Distance (Inches)

A
/D

 R
ea

d
in

g Analog 1 (Left)

Analog 1 (Center)

Analog 2 (Right)

Analog 3 (Rear)

Figure 5: Analog IR Readings

Different resistors were tried in series with the IR emitters. Resistors ranging from 10 ohms to

500 ohms were used. After testing various resisters a resistance of 330 ohms produced the

maximum range. For some reason, resistors greater than 330 ohms seemed to decrease the range

of the IR emitter/sensor combination. This lack of resistance in the latch output introduced some

noise in the A/D system which hindered consistent readings. Therefore, a 330 ohm resistor pack

was placed on the latch output for the IR emitters.

18

RF Testing

Testing the RF components was a bit tricky. The first test was to reduce RF noise emissions.

This was done mostly by trial and error. Every time a new cable was added, the RF signal was

observed on the oscilloscope and checked for noise. Simple things such as long power wires

caused noise in the RF signal. Another thing that eliminates RF noise was using shielded wire

to power the 68HC11. After much of the RF noise was eliminated, observation of the actual RF

signal was done. Even though the signal appears pretty constant on the oscilloscope, as the

distance between Speedy and the RF transmitter changes the RF signal varies slightly. Different

periods and pulse widths were recorded as Speedy moved along in radio control mode. Even

though an ideal RF signal has a period of 20 ms and pulse width between 1 ms and 2 ms this is

not usually the case. Therefore waveforms with a period of 20 ms ± 0.05 ms and pulse widths

between 2.025 ms and 0.975 ms are considered good and valid.

Electronic Speed Control (ESC) Testing

The electronic speed control had one problem which took a lot of time to figure out. Even

though the ESC takes in a standard servo signal, it did not work and began to oscillate. After

many trials and error I determined that a resistor between the 68HC11 output compare and the

ESC was needed. Once again different resistor values were tried. Even though a resistance value

of 3000 ohms stabilized the ESC and made it usable when I observed the output compare signal

on the oscilloscope I noticed a faint voltage spike on the center of the waveform. When I

increased the resistance to 6600 ohms the voltage spike went away. As a result of the added

resistance, when the motor is stopped is does not turn on or off as harsh and noisy as it did with

the 3000 ohm resistor.

19

Conclusion

Building Speedy has taught me many things. The most important lesson I learned is the

difference between theory and reality. In a theoretical or ideal world it’s easy to design a robot.

In an actual world sensors, motors, and devices work very differently. All the non-ideal

characteristics of motors and sensors complicate the designing of a robot. Speedy is now a high

speed autonomous car which avoids obstacles at high speeds. In addition to begin fully

autonomous Speedy can switch automatically to radio control mode upon receiving a valid RF

signal.

The current distance limitations of the IR sensors limit Speedy’s performance in obstacle

avoidance. Future designs of this robot will include more powerful proximity sensors such as

ultrasonic transducers. Future design of this robot will also include a third mode which mix

autonomous mode with radio control mode.

20

Documentation

Books and Papers

[1] Joseph Jones & Anita Flynn, Mobile Robots: Inspiration to Implementation, A.K. Peters

Publishers, Wellesley, MA, 1993.

[2] Gene Miller, Microcomputer Engineering, Prentice-Hall Inc., Englewood Cliffs, NJ, 1993

[3] Fred Martin, “The 6.270 Robot Builder’s Guide”, The MIT Press, c.1992

21

Appendix A: Behavior Code

* 68HC11 Registers
TIC2 EQU $1012 ; Timer Input Capture 2 Register
TIC3 EQU $1014 ; Timer Input Capture 3 Register
TOC2 EQU $1018 ; Output compare 2 register
TOC3 EQU $101A ; Output compare 3 register
TOC4 EQU $101C ; Output compare 4 register
TCTL1 EQU $1020 ; Timer control register 1
TCTL2 EQU $1021 ; Timer control register 2
TMSK1 EQU $1022 ; Timer mask register
TFLG1 EQU $1023 ; Timer flag register
TCNT EQU $100E ; Timer Counter Register
SCSR EQU $102E ; Serial communication status register
SCDR EQU $102F ; Serial communication data register
OPTION EQU $1039 ; Hardware option control register
ADCTL EQU $1030 ; A/D control register
ADR1 EQU $1031 ; A/D first result register
ADR2 EQU $1032 ; A/D second result register
ADR3 EQU $1033 ; A/D third result register
ADR4 EQU $1034 ; A/D fourth result register
BAUD EQU $102B ; Baud Rate Register
SCCR1 EQU $102C ; SCI Control 1 Register
SCCR2 EQU $102D ; SCI Control 2 Register

* Masks
BIT0 EQU %00000001 ; Bit 0 mask used to isolate bit
BIT1 EQU %00000010 ; Bit 1 mask used to isolate bit
BIT2 EQU %00000100 ; Bit 2 mask used to isolate bit
BIT3 EQU %00001000 ; Bit 3 mask used to isolate bit
BIT4 EQU %00010000 ; Bit 4 mask used to isolate bit
BIT5 EQU %00100000 ; Bit 5 mask used to isolate bit
BIT6 EQU %01000000 ; Bit 6 mask used to isolate bit
BIT7 EQU %10000000 ; Bit 7 mask used to isolate bit
IBIT0 EQU %11111110 ; Bit 0 inverse mask used to isolate bit
IBIT1 EQU %11111101 ; Bit 1 inverse mask used to isolate bit
IBIT2 EQU %11111011 ; Bit 2 inverse mask used to isolate bit
IBIT3 EQU %11110111 ; Bit 3 inverse mask used to isolate bit
IBIT4 EQU %11101111 ; Bit 4 inverse mask used to isolate bit
IBIT5 EQU %11011111 ; Bit 5 inverse mask used to isolate bit
IBIT6 EQU %10111111 ; Bit 6 inverse mask used to isolate bit
IBIT7 EQU %01111111 ; Bit 7 inverse mask used to isolate bit

PERIOD EQU 40000 ; 20ms PWM period for servo & ESC

STRAIGHT_PWM EQU 3000 ; Straight PWM (3000)
SOFTLEFT_PWM EQU 3500 ; Soft Left PWM (3500)
SOFTRIGHT_PWM EQU 2500 ; Soft Right PWM (2500)
MEDLEFT_PWM EQU 3750 ; Medium Left PWM (3750)
MEDRIGHT_PWM EQU 2250 ; Medium Right PWM (2250)
HARDLEFT_PWM EQU 3875 ; Hard Left PWM (3875)
HARDRIGHT_PWM EQU 2125 ; Hard Right PWM (2125)

STOP_PWM EQU 3000 ; Stopped PWM (3000)
MAXFRW_PWM EQU 2500 ; Maximum Forward Speed PWM (2500)
MAXREV_PWM EQU 3500 ; Maximum Reverse Speed PWM (3500)
MEDFRW_PWM EQU 2650 ; Medium Forward Speed PWM (2750)
MEDREV_PWM EQU 3350 ; Medium Reverse Speed PWM (3250)
SLOWFRW_PWM EQU 2800 ; Slow Forward Speed PWM (2900)
SLOWREV_PWM EQU 3250 ; Slow Reverse Speed PWM (3150)

T_IR EQU 87 ; IR Threshold
S_DIFF EQU 10 ; Small IR difference
M_DIFF EQU 20 ; Medium IR difference
L_DIFF EQU 30 ; Large IR difference

22

CS EQU 0 ; Collision straight
CHL EQU 1 ; Collision hard left
CHR EQU 2 ; Collision hard right
CML EQU 3 ; Collision medium left
CMR EQU 4 ; Collision medium right
CSL EQU 5 ; Collision soft left
CSR EQU 6 ; Collision soft right
CSTOP EQU 0 ; Collision stop
CMAXF EQU 1 ; Collision maximum forward
CMAXR EQU 2 ; Collision maximum reverse
CMEDF EQU 3 ; Collision medium forward
CMEDR EQU 4 ; Collision medium reverse
CSLOWF EQU 5 ; Collision slow forward
CSLOWR EQU 6 ; Collision slow reverse

 ORG $100
TOTAL RMB 2

PWMSERVO RMB 2 ; Pulse width for steering servo
PWMESC RMB 2 ; Pulse width for electronic speed control
(ESC)
PWMRSERVO RMB 2 ; Pulse with from radio receiver for steering
PWMRESC RMB 2 ; Pulse width from radio receiver for ESC

LAST_TIC2 RMB 2 ; Last timer input capture 2 value
LAST_TIC3 RMB 2 ; Last timer input capture 3 value

COLLISION_DIR RMB 1 ; Collision Direction
COLLISION_SPEED RMB 1 ; Collision Speed

RADIO_MODE RMB 1 ; Are we in radio controlled mode?
L_TIC2 RMB 2

REVTIME RMB 1 ; Time to stay in reverse

* Interrupt Vectors

 ORG $FFE6 ; Output Compare 2 Interrupt Vector
 FDB OC2ISR

 ORG $FFE4 ; Output Compare 3 Interrupt Vector
 FDB OC3ISR

 ORG $FFE2 ; Output Compare 4 Interrupt Vector
 FDB OC4ISR

 ORG $FFEC ; Input Capture 2 Interrupt Vector
 FDB IC2ISR

 ORG $FFEA ; Input Capture 3 Interrupt Vector
 FDB IC3ISR

 ORG $FFFE ; Reset Vector
 FDB START

* Start of program

 ORG $8000 ; Starting RAM Address

START lds #$47 ; Initialize stack pointer
 ldaa #%10100000 ; Set OC2 & OC3 pin to low
 staa TCTL1 ; on successful compare
 ldaa #%00000101 ; Initialize IC2 & IC3 for
 staa TCTL2 ; low-to-high capture
 ldaa #%01110011 ; Enable OC2, OC3, OC4,
 staa TMSK1 ; IC2 and IC3 interrupts

23

 ldaa #$30 ; baud = 9600
 staa BAUD
 clr SCCR1 ; 1 start 1 stop 8 data bits
 ldaa #$0c
 staa SCCR2 ; enable Tx and Rx

 ldaa #$FF
 staa $7000 ; Turn on IR emitters

 cli ; Turn on interrupts

 ldaa #BIT7 ; Power-Up A/D using E-clock
 staa OPTION
 ldaa #%00110000 ; Scanning multiple channels
 staa ADCTL ; START A/D CONVERSION

 jsr INIT_CONTROL ; Set initial speed & steering

MAIN jsr DIRECTION ; Check steering for collision
 jsr SPEED ; Check speed for collision
 jsr MODE ; Check if in Radio control mode
 jsr ARBITRATOR ; Carry out steering and throttle
 bra MAIN ; Repeat cycle forever

 sei ; disable interrupts
 swi ; Terminate program execution

**
* SUBROUTINE: ARBITRATOR *
* FUNCTION: Analyzes all information and decides what direction and speed *
* robot should go. *
* INPUT: None. *
* OUTPUT: None. *
* DESTROYS: None. *
* CALLS: None. *
**
ARBITRATOR psha ; Save register
 ldaa RADIO_MODE ; Check if in radio control mode
 beq AUTONOMOUS

RADIO_CONTROL ldd PWMRSERVO ; Get steering from radio receiver
 std PWMSERVO ; Set steering accordingly
 ldd PWMRESC ; Get throttle from radio receiver
 std PWMESC ; Set throttle accordingly
 bra RARBITRATOR

AUTONOMOUS ldaa COLLISION_DIR
GOSTRAIGHT cmpa #CS
 bne GOHARDLEFT
 jsr Straight ; Set steering to straight
 bra GOSTOP
GOHARDLEFT cmpa #CHL
 bne GOHARDRIGHT
 jsr HardLeft ; Set steering to hard left
 bra GOSTOP
GOHARDRIGHT cmpa #CHR
 bne GOMEDLEFT
 jsr HardRight ; Set steering to hard right
 bra GOSTOP
GOMEDLEFT cmpa #CML
 bne GOMEDRIGHT
 jsr MedLeft ; Set steering to medium left
 bra GOSTOP
GOMEDRIGHT cmpa #CMR
 bne GOSOFTLEFT
 jsr MedRight ; Set steering to medium right

24

 bra GOSTOP
GOSOFTLEFT cmpa #CSL
 bne GOSOFTRIGHT
 jsr SoftLeft ; Set steering to soft left
 bra GOSTOP
GOSOFTRIGHT cmpa #CSR
 bne GOSTOP
 jsr SoftRight ; Set steering to soft right

GOSTOP ldaa COLLISION_SPEED
 cmpa #CSTOP
 bne GOSLOWR
 jsr Stop
 bra RARBITRATOR
GOSLOWR cmpa #CSLOWR
 bne GOSLOWF
 jsr SlowRev
 bra RARBITRATOR
GOSLOWF cmpa #CSLOWF
 bne GOMEDF
 jsr SlowFrw
 bra RARBITRATOR
GOMEDF cmpa #CMEDF
 bne GOMAXF
 jsr MedFrw
 bra RARBITRATOR
GOMAXF cmpa #CMAXF
 bne RARBITRATOR
 jsr MaxFrw

RARBITRATOR pula ; restore register
 rts ; return from subroutine

**
* Subroutine: MODE *
* Function: Determines whether we are in radio control mode by analyzing *
* signals coming out of the radio receiver and checking if it *
* is a valid pulse modulated signal. *
* Input: None. *
* Output: None. *
* Destroys: None. *
* Calls: None. *
**
MODE psha ; Save register
 pshb ; Save register
 clr RADIO_MODE ; Disable radio mode
 ldd PWMRSERVO
 cpd #4050 ; Is the servo pulse to wide?
 bhi RMODE
 cpd #1950 ; Is the servo pulse to narrow?
 blo RMODE
 ldd PWMRESC
 cpd #4050 ;Is the ESC pulse to wide?
 bhi RMODE
 cpd #1950 ;Is the ESC pulse to narrow?
 blo RMODE
 ldd TOTAL ;Is the total period around 20ms?
 cpd #39900
 blo RMODE
 cpd #40100
 bhi RMODE
 ldaa #1 ; Enable radio mode
 staa RADIO_MODE
RMODE pulb ; restore register
 pula ; restore register
 rts ; Return from subroutine

25

**
* SUBROUTINE: DIRECTION *
* FUNCTION: Read IR sensors and determine whether robot should go straight,*
* left, or right. This function does not actually move the wheels*
* but sets a direction variable for later analyzing. *
* INPUT: None. *
* OUTPUT: None. *
* DESTROYS: None. *
* CALLS: None. *
**
DIRECTION psha ; Save register
 pshb ; Save register

STRAIGHT_TEST ldaa ADR1 ; Read Left IR Sensor
 cmpa #90 ; Check if path is clear to left
 bhs HARD_LEFT_TEST ; Test failed so do next test
 ldaa ADR2 ; Read Center IR Sensor
 cmpa #90 ; Check if path is clear in front
 bhs HARD_LEFT_TEST ; Test failed so do next test
 ldaa ADR3 ; Read Right IR Sensor
 cmpa #90 ; Check if path is clear to right
 bhs HARD_LEFT_TEST ; Test failed so do next test
 ldaa #CS ; Test passed and therefore path is clear
 staa COLLISION_DIR ; Set Collision direction to straight
 bra RDIRECTION ; Done with collision direction

HARD_LEFT_TEST ldaa ADR3 ; Read Right IR Sensor
 suba #L_DIFF ; Large difference in left & right sensors
 cmpa ADR1 ; Read Left IR Sensor
 bls HARD_RIGHT_TEST ; Test failed so do next test
 ldaa #CHL ; There is a close object on right side
 staa COLLISION_DIR ; Set Collision direction to hard left
 bra RDIRECTION ; Done with collision direction

HARD_RIGHT_TEST ldaa ADR1 ; Read Left IR Sensor
 suba #L_DIFF ; Large difference in left & right sensors
 cmpa ADR3 ; Read Right IR Sensor
 bls MED_LEFT_TEST ; Test failed so do next test
 ldaa #CHR ; There is a close object on left side
 staa COLLISION_DIR ; Set Collision direction to hard right
 bra RDIRECTION ; Done with collision direction

MED_LEFT_TEST ldaa ADR3 ; Read Right IR Sensor
 suba #M_DIFF ; Medium diff in left & right sensors
 cmpa ADR1 ; Read Left IR Sensor
 bls MED_RIGHT_TEST ; Test failed so do next test
 ldaa #CML ; Somewhat close object on right side
 staa COLLISION_DIR ; Set Collision direction to medium left
 bra RDIRECTION ; Done with collision direction

MED_RIGHT_TEST ldaa ADR1 ; Read Left IR Sensor
 suba #M_DIFF ; Medium diff in left & right sensors
 cmpa ADR3 ; Read Right IR Sensor
 bls SOFT_LEFT_TEST ; Test failed so do next test
 ldaa #CMR ; Somewhat close object on left side
 staa COLLISION_DIR ; Set Collision direction to medium right
 bra RDIRECTION ; Done with collision direction

SOFT_LEFT_TEST ldaa ADR3 ; Read Right IR Sensor
 suba #S_DIFF ; Small difference in left & right sensors
 cmpa ADR1 ; Read Left IR Sensor
 bls SOFT_RIGHT_TEST ; Test failed so do next test
 ldaa #CSL ; There is an object on right side
 staa COLLISION_DIR ; Set Collision direction to soft left
 bra RDIRECTION ; Done with collision direction

SOFT_RIGHT_TEST ldaa ADR1 ; Read Left IR Sensor

26

 suba #S_DIFF ; Small difference in left & right sensors
 cmpa ADR3 ; Read Right IR Sensor
 bls RDIRECTION ; Test failed so do next test
 ldaa #CSR ; There is an object on left side
 staa COLLISION_DIR ; Set Collision direction to soft right
 bra RDIRECTION ; Done with collision direction

RDIRECTION pulb ; Restore register
 pula ; Restore register
 rts ; return from subroutine

**
* SUBROUTINE: SPEED *
* FUNCTION: Read IR sensors and determine what speed the robot should be *
* going. Also determines whether it should be going forward or *
* reverse. This function does not actually move the wheels but *
* sets a direction variable for later analyzing. *
* INPUT: None. *
* OUTPUT: None. *
* DESTROYS: None. *
* CALLS: None. *
**
SPEED psha ; Save register
 pshb ; Save register

 ldaa COLLISION_SPEED
 cmpa #CSLOWR
 bne STOP_TEST
 inc REVTIME
 ldaa REVTIME
 cmpa #$FFFF
 beq STOP_TEST
 jmp RSPEED

STOP_TEST ldaa ADR1 ; Read Left IR Sensor
 cmpa #127 ; Check if path is blocked to left
 blo MAX_FRW_TEST ; Test failed so do next test
 ldaa ADR2 ; Read Center IR Sensor
 cmpa #127 ; Check if path is blocked in front
 blo MAX_FRW_TEST ; Test failed so do next test
 ldaa ADR3 ; Read Right IR Sensor
 cmpa #127 ; Check if path is blocked to right
 blo MAX_FRW_TEST ; Test failed so do next test
 ldaa ADR4 ; Read Rear IR Sensor
 cmpa #127 ; Check if path is blocked to the rear
 blo MAX_FRW_TEST ; Test failed so do next test
 ldaa #CSTOP ; Test passed and so path is totally blocked
 staa COLLISION_SPEED ; Set speed to stop
 bra RSPEED ; Done with collision speed

MAX_FRW_TEST ldaa ADR1 ; Read Left IR Sensor
 cmpa #90 ; Check if path is clear to left
 bhi MED_FRW_TEST ; Test failed so do next test
 ldaa ADR2 ; Read Center IR Sensor
 cmpa #90 ; Check if path is clear in front
 bhi MED_FRW_TEST ; Test failed so do next test
 ldaa ADR3 ; Read Right IR Sensor
 cmpa #90 ; Check if path is clear to right
 bhi MED_FRW_TEST ; Test failed so do next test
 ldaa #CMAXF ; Test passed and therefore path is clear
 staa COLLISION_SPEED ; Set speed to maximum
 bra RSPEED ; Done with collision speed

MED_FRW_TEST ldaa ADR1 ; Read Left IR Sensor
 cmpa #105 ; Check if path is somewhat clear to left
 bhi SLOW_FRW_TEST ; Test failed so do next test
 ldaa ADR2 ; Read Center IR Sensor

27

 cmpa #105 ; Check if path is somewhat clear in front
 bhi SLOW_FRW_TEST ; Test failed so do next test
 ldaa ADR3 ; Read Right IR Sensor
 cmpa #105 ; Check if path is somewhat clear to right
 bhi SLOW_FRW_TEST ; Test failed so do next test
 ldaa #CMEDF ; Test passed and so path is somewhat clear
 staa COLLISION_SPEED ; Set speed to medium
 bra RSPEED ; Done with collision speed

SLOW_FRW_TEST ldaa ADR1 ; Read Left IR Sensor
 cmpa #129 ; Check if path is somewhat blocked to left
 bhi SLOW_REV_TEST ; Test failed so do next test
 ldaa ADR2 ; Read Center IR Sensor
 cmpa #129 ; Check if path is somewhat blocked in front
 bhi SLOW_REV_TEST ; Test failed so do next test
 ldaa ADR3 ; Read Right IR Sensor
 cmpa #129 ; Check if path is somewhat blocked to right
 bhi SLOW_REV_TEST ; Test failed so do next test
 ldaa #CSLOWF ; Test passed and so path is somewhat blocked
 staa COLLISION_SPEED ; Set speed to slow
 bra RSPEED ; Done with collision speed

SLOW_REV_TEST ldaa ADR4 ; Read Rear IR Sensor
 cmpa #127 ; Check if path is clear to rear
 bls SLOW_REV_1 ; Test failed so do next test
 ldaa #CSTOP
 staa COLLISION_SPEED
 bra RSPEED
SLOW_REV_1 ldaa #CMEDR ; Test passed and therefore path is clear
 staa COLLISION_SPEED ; Set speed to reverse
 clr REVTIME
 bra RSPEED ; Done with collision speed

RSPEED pulb ; Restore register
 pula ; Restore register
 rts ; Return from subroutine

**
* SUBROUTINE: INIT_CONTROL *
* FUNCTION: Set throttle speed to zero and center steering. *
* INPUT: None. *
* OUTPUT: None. *
* DESTROYS: None. *
* CALLS: None. *
**
INIT_CONTROL jsr Stop ; Stop throttle
 jsr Straight ; Center Steering
 rts ; Return from INIT_CONTROL sub

**
* SUBROUTINE: Straight *
* FUNCTION: Center steering wheels. These wheels are controlled by a servo.*
* INPUT: None. *
* OUTPUT: None. *
* DESTROYS: None. *
* CALLS: None. *
**
Straight psha ; Save register
 pshb ; Save register
 ldd #STRAIGHT_PWM
 std PWMSERVO ; Store pulse width high time
 pulb ; Restore register
 pula ; Restore register
 rts ; return from subroutine

**
* SUBROUTINE: HardLeft *

28

* FUNCTION: Turn wheels all the way to the left. These wheels are *
* are controlled by a servo. *
* INPUT: None. *
* OUTPUT: None. *
* DESTROYS: None. *
* CALLS: None. *
**
HardLeft psha ; Save register
 pshb ; Save register
 ldd #HARDLEFT_PWM
 std PWMSERVO ; Store pulse width high time
 pulb ; Restore register
 pula ; Restore register
 rts ; return from subroutine

**
* SUBROUTINE: HardRight *
* FUNCTION: Turn wheels all the way to the right. These wheels are *
* are controlled by a servo. *
* INPUT: None. *
* OUTPUT: None. *
* DESTROYS: None. *
* CALLS: None. *
**
HardRight psha ; Save register
 pshb ; Save register
 ldd #HARDRIGHT_PWM
 std PWMSERVO ; Store pulse width high time
 pulb ; Restore register
 pula ; Restore register
 rts ; return from subroutine

**
* SUBROUTINE: MedLeft *
* FUNCTION: Turn wheels half way to the left. These wheels are controlled *
* by a servo. *
* INPUT: None. *
* OUTPUT: None. *
* DESTROYS: None. *
* CALLS: None. *
**
MedLeft psha ; Save register
 pshb ; Save register
 ldd #MEDLEFT_PWM
 std PWMSERVO ; Store pulse width high time
 pulb ; Restore register
 pula ; Restore register
 rts ; return from subroutine

**
* SUBROUTINE: MedRight *
* FUNCTION: Turn wheels half way to the right. These wheels are controlled *
* by a servo. *
* INPUT: None. *
* OUTPUT: None. *
* DESTROYS: None. *
* CALLS: None. *
**
MedRight psha ; Save register
 pshb ; Save register
 ldd #MEDRIGHT_PWM
 std PWMSERVO ; Store pulse width high time
 pulb ; Restore register
 pula ; Restore register
 rts ; return from subroutine

**

29

* SUBROUTINE: SoftLeft *
* FUNCTION: Turn wheels a little to the left. These wheels are controlled *
* by a servo. *
* INPUT: None. *
* OUTPUT: None. *
* DESTROYS: None. *
* CALLS: None. *
**
SoftLeft psha ; Save register
 pshb ; Save register
 ldd #SOFTLEFT_PWM
 std PWMSERVO ; Store pulse width high time
 pulb ; Restore register
 pula ; Restore register
 rts ; return from subroutine

**
* SUBROUTINE: SoftRight *
* FUNCTION: Turn wheels a little to the right. These wheels are controlled *
* by a servo. *
* INPUT: None. *
* OUTPUT: None. *
* DESTROYS: None. *
* CALLS: None. *
**
SoftRight psha ; Save register
 pshb ; Save register
 ldd #SOFTRIGHT_PWM
 std PWMSERVO ; Store pulse width high time
 pulb ; Restore register
 pula ; Restore register
 rts ; return from subroutine

**
* SUBROUTINE: Stop *
* FUNCTION: Set throttle speed to off. Throttle is controlled by an *
* electronic speed control (ESC) which expects a pulse modulated *
* signal. *
* INPUT: None. *
* OUTPUT: None. *
* DESTROYS: None. *
* CALLS: None. *
**
Stop psha ; Save register
 pshb ; Save register
 ldd #STOP_PWM
 std PWMESC ; Store pulse width high time
 pulb ; Restore register
 pula ; Restore register
 rts ; return from subroutine

**
* SUBROUTINE: MaxFrw *
* FUNCTION: Set throttle to maximum forward speed. Throttle is controlled *
* by an electronic speed control (ESC) which expects a pulse *
* width modulated signal. *
* INPUT: None. *
* OUTPUT: None. *
* DESTROYS: None. *
* CALLS: None. *
**
MaxFrw psha ; Save register
 pshb ; Save register
 ldd #MAXFRW_PWM
 std PWMESC ; Store pulse width high time
 pulb ; Restore register
 pula ; Restore register

30

 rts ; return from subroutine

**
* SUBROUTINE: MaxRev *
* FUNCTION: Set throttle to maximum reverse speed. Throttle is controlled *
* by an electronic speed control (ESC) which expects a pulse *
* width modulated signal. *
* INPUT: None. *
* OUTPUT: None. *
* DESTROYS: None. *
* CALLS: None. *
**
MaxRev psha ; Save register
 pshb ; Save register
 ldd #MAXREV_PWM
 std PWMESC ; Store pulse width high time
 pulb ; Restore register
 pula ; Restore register
 rts ; return from subroutine

**
* SUBROUTINE: MedFrw *
* FUNCTION: Set throttle to medium forward speed. Throttle is controlled *
* by an electronic speed control (ESC) which expects a pulse *
* width modulated signal. *
* INPUT: None. *
* OUTPUT: None. *
* DESTROYS: None. *
* CALLS: None. *
**
MedFrw psha ; Save register
 pshb ; Save register
 ldd #MEDFRW_PWM
 std PWMESC ; Store pulse width high time
 pulb ; Restore register
 pula ; Restore register
 rts ; return from subroutine

**
* SUBROUTINE: MedRev *
* FUNCTION: Set throttle to medium reverse speed. Throttle is controlled *
* by an electronic speed control (ESC) which expects a pulse *
* width modulated signal. *
* INPUT: None. *
* OUTPUT: None. *
* DESTROYS: None. *
* CALLS: None. *
**
MedRev psha ; Save register
 pshb ; Save register
 ldd #MEDREV_PWM
 std PWMESC ; Store pulse width high time
 pulb ; Restore register
 pula ; Restore register
 rts ; return from subroutine

**
* SUBROUTINE: SlowFrw *
* FUNCTION: Set throttle to slow forward speed. Throttle is controlled by *
* an electronic speed control (ESC) which expects a pulse width *
* modulated signal. *
* INPUT: None. *
* OUTPUT: None. *
* DESTROYS: None. *
* CALLS: None. *
**
SlowFrw psha ; Save register

31

 pshb ; Save register
 ldd #SLOWFRW_PWM
 std PWMESC ; Store pulse width high time
 pulb ; Restore register
 pula ; Restore register
 rts ; return from subroutine

**
* SUBROUTINE: SlowRev *
* FUNCTION: Set throttle to slow reverse speed. Throttle is controlled by *
* an electronic speed control (ESC) which expects a pulse width *
* modulated signal. *
* INPUT: None. *
* OUTPUT: None. *
* DESTROYS: None. *
* CALLS: None. *
**
SlowRev psha ; Save register
 pshb ; Save register
 ldd #SLOWREV_PWM
 std PWMESC ; Store pulse width high time
 pulb ; Restore register
 pula ; Restore register
 rts ; return from subroutine

**
* SUBROUTINE: OC2ISR *
* FUNCTION: Produces pulse modulated signal on output compare 2 (pin 28). *
* This signal is used to control the throttle of the robot. *
* INPUT: None. *
* OUTPUT: None. *
* DESTROYS: None. *
* CALLS: None. *
**
OC2ISR psha ; Save register
 pshb ; Save register
 ldaa #BIT6 ; Clear OC2 Interrupt Flag
 staa TFLG1
 ldaa TCTL1
 ANDA #BIT6
 BEQ LASTLOW
 BRA LASTHI
LASTLOW ldaa TCTL1
 ORA #BIT6
 staa TCTL1
 ldd #PERIOD
 SUBD PWMESC
 ADDD TOC2
 std TOC2
 BRA RTOC2
LASTHI ldaa TCTL1
 ANDA #IBIT6
 staa TCTL1
 ldd TOC2
 ADDD PWMESC
 std TOC2
RTOC2 pulb ; Restore register
 pula ; Restore register
 RTI ; Return from OC2 ISR

**
* SUBROUTINE: OC3ISR *
* FUNCTION: Produces pulse modulated signal on output compare 3 (pin 29). *
* This signal is used to control the direction of the robot. *
* INPUT: None. *
* OUTPUT: None. *
* DESTROYS: None. *

32

* CALLS: None. *
**
OC3ISR psha ; Save register
 pshb ; Save register
 ldaa #BIT5 ; Clear OC3 Interrupt Flag
 staa TFLG1
 ldaa TCTL1
 ANDA #BIT4
 BEQ LSTLOW
 BRA LSTHI
LSTLOW ldaa TCTL1
 ORA #BIT4
 staa TCTL1
 ldd #PERIOD
 SUBD PWMSERVO
 ADDD TOC3
 std TOC3
 BRA RTOC3
LSTHI ldaa TCTL1
 ANDA #IBIT4
 staa TCTL1
 ldd TOC3
 ADDD PWMSERVO
 std TOC3
RTOC3 pulb ; Restore register
 pula ; Restore register
 RTI ; Return from OC3 ISR

**
* SUBROUTINE: OC4ISR *
* FUNCTION: Used as a timer to detect when the radio receiver signal goes *
* dead. Input capture will still be waiting for a rising edge *
* pulse so it will not trigger. This routine will set the radio *
* throttle and steering settings to zero to relinquish control *
* to the autonomous routines. *
* INPUT: None. *
* OUTPUT: None. *
* DESTROYS: None. *
* CALLS: None. *
**
OC4ISR psha ; Save register
 pshb ; Save register
 ldaa #BIT4 ; Clear OC4 Interrupt Flag
 staa TFLG1
 ldd #0 ; Radio receiver went dead so,
 std PWMRSERVO ; clear radio steering and
 std PWMRESC ; throttle pulses.
RTOC4 pulb ; Restore register
 pula ; Restore register
 RTI ; Return from OC4 ISR

**
* SUBROUTINE: IC2ISR *
* FUNCTION: Read the pulse modulated signal on input capture 2 (pin 33). *
* This is the receiver signal for the throttle of the robot. *
* INPUT: None. *
* OUTPUT: None. *
* DESTROYS: None. *
* CALLS: None. *
**
IC2ISR psha ; Save register
 pshb ; Save register
 ldaa #BIT1 ; Clear IC2 Interrupt Flag
 staa TFLG1
 ldaa TCTL2
 anda #BIT2
 beq WASHIGH ; Was capturing on high-to-low

33

 bra WASLOW ; Was capturing on low-to-high
WASHIGH ldd TIC2
 std L_TIC2
 subd LAST_TIC2 ; Calculate pulse width
 std PWMRESC ; Store throttle pulse width
 ldaa TCTL2 ; Set IC2 to capture on low-to-high
 anda #%11110111
 ora #%00000100
 staa TCTL2 ; Low-to-high capture
 ldd TCNT ; Store time to check if radio
 std TOC4 ; signal went dead
 bra RTIC2
WASLOW ldd TIC2
 subd LAST_TIC2
 std TOTAL
 ldd TIC2
 std LAST_TIC2

 ldaa TCTL2 ; Set IC2 to capture on high-to-low
 anda #%11111011
 ora #%00001000
 staa TCTL2 ; High-to-low capture

RTIC2 pulb ; Restore register
 pula ; Restore register
 RTI ; Return from IC2 ISR

**
* SUBROUTINE: IC3ISR *
* FUNCTION: Read the pulse modulated signal on input capture 3 (pin 34). *
* This is the receiver signal for the steering of the robot. *
* INPUT: None. *
* OUTPUT: None. *
* DESTROYS: None. *
* CALLS: None. *
**
IC3ISR psha ; Save register
 pshb ; Save register
 ldaa #BIT0 ; Clear IC3 Interrupt Flag
 staa TFLG1
 ldaa TCTL2
 anda #BIT0
 beq WSHIGH ; Was capturing on high-to-low
 bra WSLOW ; Was capturing on low-to-high
WSHIGH ldd TIC3
 subd LAST_TIC3 ; Calculate pulse width
 std PWMRSERVO ; Store steering pulse width
 ldaa TCTL2 ; Set IC3 to capture on low-to-high
 anda #%11111101
 ora #%00000001
 staa TCTL2 ; Low-to-high capture
 bra RTIC2
WSLOW ldd TIC3
 std LAST_TIC3
 ldaa TCTL2 ; Set IC3 to capture on high-to-low
 anda #%11111110
 ora #%00000010
 staa TCTL2 ; High-to-low capture
RTIC3 pulb ; Restore register
 pula ; Restore register
 RTI ; Return from IC3 ISR

**
* SUBROUTINE: IN_CHAR *
* FUNCTION: Waits for a character to be received from the SCI. When a *
* character is received, it is put into register A and *

34

* the subroutine exits. *
* INPUT: None. *
* OUTPUT: Register A = input from SCI *
* DESTROYS: A register. *
* CALLS: None. *
**
IN_CHAR ldaa SCSR ; check status reg.
 anda #%00100000 ; check if receive buffer full
 beq IN_CHAR ; wait until data present
 ldaa SCDR ; data -> A register
 rts ; return from subroutine

**
* Subroutine: OUT_CHAR *
* Function: Outputs the character in register A to the screen *
* once the transmission data register is empty. *
* Input: Data to be transmitted in register A. *
* Output: Transmitted data. *
* Destroys: None. *
* Calls: None. *
**
OUT_CHAR pshb ; Save register
L_OUT_CHAR ldab SCSR ; Check status register.
 andb #$80 ; Check if trans. buffer empty.
 beq L_OUT_CHAR ; Wait until empty.
 staa SCDR ; Output character.
 pulb ; restore register
 rts ; Return from subroutine

 end ; End of program

