
University of Florida
Department of Electrical and Computer Engineering

EEL 5666
Intelligent Machines Design Laboratory

MOCTAR

Final Design Report

Justin McCollum
12/12/97

Instructor: Keith L. Doty
 TA: Scott Jantz

2

Table of Contents

 Page

Abstract 3

Executive Summary 4

Introduction 5

Integrated Systems 5

Mobile Platform 5

Actuation 6

Sensors 6

Behaviors 7

Experimental Layout and Results 7

Conclusion 8

Appendix 9

3

Abstract

MOCTAR is an autonomous robot. The robot uses a four independent wheel drive
system to propel itself around in search of items to collect. The steering of the platform is
controlled by a servo located under the collection bin. The location of the collection bin
is in the rear. Therefore, the MOCTAR also has rear wheel steering. It consists of eight
servo/motors and uses twenty-two AA size rechargeable batteries. The sensor array
includes several mechanical type sensors. These include: bump switches, IR detectors
(both a 32KHz and a 40KHz), a mechanical lift, and a mechanical grip. Behaviors which
are included in its programming are obstacle avoidance, object detection, object
gathering, object storage. Fundamental experiments done for MOCTAR have ranged
form testing spring constants to finding the right resistor and capacitor values for creating
a 32KHz signal. MOCTAR is an autonomous robot who purpose is to collect objects.

4

Executive Summary

MOCTAR, Mobile Object Collector and Transport Autonomous Robot, was designed

using a Cad utility and is cut out of wood. It was created, constructed, wired, and

programmed in three and a half months. The idea for this robot came form a general

want for the robot to be useful. It was then drafted and cut out of wood. Specialty parts

were then ordered. Once enough of the parts had been cut or arrived, construction began

on MOCTAR. After finishing the structural aspect of the robot , the electrical

components were added. After adding some of the electrical components, teasing on

certain parts of the robot were constructed. This included the spring forces on the clamp,

the steering mechanism, and the lowering mechanism.

These test proved that the overall concept of MOCTAR could be accomplished.

However, some of the original ideas had to be changed due to unaccounted for forces,

structural limitations, and the amount of time and money to spend. The final prototype is

lined with a large number of wires. Future mockups of this robot would have fewer wires

and look more appealing to the eye.

5

Introduction

MOCTAR, Mobile Object Collector and Transport Autonomous Robot, collects and

stores reasonable sized objects. This Autonomous robot completes its objective using

sensors to interact with its environment. The way in which MOCTAR reacts to a

situation is determined by programmed behavior routines which will guide, but not direct

(control), the robot in the completion of its goal. The robot’s design enables it to grab,

lift, and place the objects in an on-board bin. This report describes the integrated

systems, mobile platform, methods of actuation, sensors, and behaviors of this robot.

Integrated System

The MC68HC11 micro-controller with 32k of SRAM is the housing and processing

center for all of MOCTAR’S functions. These functions are programmed using

Interactive C. This allows for easy debug of both sensory and behavior routines. Two

micro-controllers are needed to meet the requirements of this robot. One is mounted on

the EVBU board, the micro-controller which houses and executes the main functions,

and the other on a MSCC11 board. The one affixed on the MSCC11 will control the

robot’s motors and servos. The two controllers communicate through a SPI (Serial

Peripheral Interface) connection. These boards are attached to the top platform of the

mobile platform for easy maintenance. MOCTAR uses several senses to navigate in its

environment. This feed back is then run into the micro-controller, where it is processed

and then gives a response.

6

Mobile Platform

The robot’s is designed as a front open belly truck. The structure consists of two main

static platforms relative to the its wheels. The top one holds the controller boards.

Unlike the upper platform, the lower is cut in the shape of a “U”. This shape allows the

vehicle to roll over its detected object while enabling the back to be dedicated for a

steering. Between the two platforms is the object acquisition mechanics. The platform

also has extended front wheel to match the steering ones in the back. This also gave an

addition benefit; more room. The open pockets in the sides and top allow for easy

maintenance and repair. The platform houses the eight servo/motors used to run

MOCTAR, which brings us to our next topic.

Actuation

Four motors and four servos (three of which are partially hacked) are constructed into

MOCTAR. Two of the four motors are use as the front two drive motors. The other two

can be located it the claw mechanism. One of the hacked servos is used with a gear-head

that acts like the rack in a rack and pinion system. The other two hacked servos control

object movement form the back making MOCTAR four wheel drive. The two motors that

drive the claw mechanism use string instead of other devices for two reasons. One, it is

cheap, and the second is all of the forces are in tension, not compression. The actuation

of the lift by ball screw was a bad concept. There was too much force do to moments for

this to work in the configuration I needed. This concludes the description of the

mechanical actuation.

Sensors

7

The robot uses different four sensors. MOCTAR’S IR sensors detect obstacles for

avoidance and target acquisition. The IR for the object detection are 32KHz while the

obstacle avoidance are 40KHz. The 32KHz frequency signal was created using a 555

timer. Bump triggers are attached to the front only. The reason for only two bump

sensors is that there are two more IR detectors placed on the back side to detect obstacle

behind MOCTAR. Cadmium sulfide cells were scraped from my project do to the lack of

time. Wheel encoders were also scrapped since they were not necessary on this robot.

The circuit used for the 555 timer can be found in an engineering note book sold by Radio

Shack. The “new”, fourth sensor was my mechanical claw. The spring constant graphs

and structure can be seen under the Experimental layout and results category.

 Behaviors

Each sensor has at least one corresponding behavior. The main behavior designates a

search for objects to be collected. This process is ongoing until a certain number of

objects have been collected. However, while the search behavior is running, other

smaller behaviors can arise, such as MOCTAR’S obstacle avoidance routine. The actual

avoidance behavior is mixed in with the object detect behavior. Other behaviors include

the clamp and storage behavior. This behavior reacts with the internal environment of

MOCTAR. All of the code was written in IC. The SPI routines were written by Purvesh

Thakker. The behavioral code will be put in the appendix. All of these behaviors rely on

how well the robot senses its environment both internally and externally.

Experimental Layout and Results

There were several experiments need to determine how much MOCTAR’S clamp could

hold. To determine this, I used a specified amount of weight to pull against the force

8

springs. This allowed me to find the spring constant, and thus the pressure exerted on an

object at any distance. Figure 1. below shows a rough sketch of the claw and the

determined graph of the spring constant. The other major experiment was to determine

the resistor values for the 32Khz frequency generator. This was done by using a

potentiometer and a known value resistance.

Motor

Roll Pin
Hole

LEGO

slot

F= -kx ; known: F= 0.3875 lb. , x= .125 in.
So, k= F/x = 3.1

X inches
0 .5 1

4.6
5

1.5
5

Force

 in lb.
Slope = k = 3.1

9

Figure 1.

Conclusion

Throughout this project there are many experiences that caused me to learn and grow as

an engineer. Not just the electrical side of the project was challenging, but the

mechanical as well. The overall design of MOCTAR is sound, but the complexity of it

made it very difficult to do all the things I wanted. I had to sacrifice a lot of the electrical

additions due to the time constraint. However, during the course of the semester, I

learned AutoCAD, the 555 timer, and IC. All of these experiences made up an

interesting robot: MOCTAR.

10

Appendix

MOCTAR’S IC CODE:
float angle;
int direction, i, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10;
int left_front_ir, right_front_ir, left_rear_ir, right_rear_ir;
int object_left_ir, object_right_ir;
float steering_angle, fs, fm, ms, mm, ss, sm;
int bumped1, bumped2,z;

void main()
{
init_spi();

 zero_servo();
 inital_all();
 start_process(obs_locate());
 }

void irsense()
{
poke(0x7000,0xff);
poke(0x6000,0xff);
left_front_ir = analog(3);
right_front_ir = analog(2);
left_rear_ir = analog(6);
right_rear_ir = analog(7);
object_left_ir = analog(1);
object_right_ir = analog(0);
}

void obs_locate()
{
while (1)
 {
 straight();
 forward(fs,fm);

 if ((peek(0x5000) & 0b00000010) > 0)
 bumped1 = 1;
 else bumped1 =0;
 if ((peek(0x5000) & 0b10000000) > 0)
 bumped2 = 1;
 else bumped2 =0;

 reset_coms();
 z = 0;
 if (bumped1 == 0)
 {

11

 stop_moctar();
 reverse(fs,fm);
 while (z < 3000)
 {
 z=z+1;
 if ((analog(6)>109) || (analog(7) >109))
 stop_moctar();

 }
 left_turn(3);
 forward(fs,fm);

 }

 else if (bumped2 == 0)
 {
 stop_moctar();
 reverse(fs,fm);
 while (z < 3000)
 {
 z=z+1;

 if ((analog(6)>109) || (analog(7) >109))
 stop_moctar();

 }
 right_turn(3);
 forward(fs,fm);

 }
sleep(3.0);
straight();
forward(fs,fm);

irsense();

if ((left_front_ir > 100) && (right_front_ir > 100))
{
z=0;
stop_moctar();
reverse(fs,fm);
while (z < 3000)
{
z=z+1;
if ((analog(6)>109) || (analog(7) >109))
stop_moctar();
}
right_turn(3);
forward(fs,fm);
}
sleep(5.0);
straight();

if (left_front_ir > 95)
 {
 stop_moctar();
 right_turn(3);
 forward(fs,fm);
 }
else if (left_front_ir > 95)
 {

12

 stop_moctar();
 left_turn(3);
 forward(fs,fm);
 }
if (object_left_ir > 95)
{

while (object_right_ir <92)
{
left_turn(3);
motor(0,0.0);
}
claw_routine();
}
else if (object_right_ir > 95)
{

while (object_left_ir <92)
{
right_turn(3);
motor(0,0.0);
}
claw_routine();
}

straight();
forward(fs,fm);
}
}

void inital_all()
{
fs=175.0;
fm=50.0;
ms=150.0;
mm=65.0;
ss=125.0;
sm=45.0;
reset_coms();
zero_servo();
reset_coms();
zero_motors();
reset_coms();
reset_claw();
reset_coms();
}

void zero_motors()
{
set_motor(7,0,0);
set_motor(6,0,0);
reset_coms();
motor(0,0.0);
motor(1,0.0);
}

void reset_claw()
{
 if ((peek(0x4000) & 0b00010000) > 0)

13

 s5 = 1;
 else s5=0;
 while (s5 == 1)
 {
 set_motor(7,150,0);
 reset_coms();
 if ((peek(0x4000) & 0b00010000) > 0)
 s5 = 1;
 else s5=0;
 }
 set_motor(7,0,0);
 reset_coms();

 if ((peek(0x4000) & 0b00000001) > 0)
 s1 = 1;
 else s1 = 0;
 while (s1 == 1)
 {
 set_servo(4,75.);
 reset_coms();
 if ((peek(0x4000) & 0b00000001) > 0)
 s1 = 1;
 else s1 = 0;
 }
 set_servo(4,59.8);
 reset_coms();

 if ((peek(0x4000) & 0b00000100) > 0)
 s3 = 1;
 else s3 = 0;
 while (s3 == 1)
 {
 set_motor(6,150,0);
 reset_coms();
 if ((peek(0x4000) & 0b00000100) > 0)
 s3 = 1;
 else s3 = 0;
 }
 set_motor(6,0,0);
 reset_coms();
}

void zero_servo()
{

 set_servo(3,54.);
 set_servo(2,71.2);
 set_servo(5,93.7);
 set_servo(4,59.8);
 steering_angle = 93.7;

reset_coms();
defer();
}

void right_turn(int sharpness)
 {

14

 float x;
 reset_coms();
 if (sharpness == 3) /* note 3 is shapest */
 for (x = steering_angle; x < 125.0; x++)
 {
 set_servo(5,x);
 msleep(20L);
 reset_coms();
 }
 else if (sharpness == 1)
 for (x = steering_angle; x < 104.1; x++)
 {
 set_servo(5,x);
 msleep(20L);
 reset_coms();
 }
 else if (sharpness == 2)
 for (x = steering_angle; x < 114.6; x++)
 {
 set_servo(5,x);
 msleep(20L);
 reset_coms();
 }
 steering_angle = x;
 }

void straight()
 {
 float x;
 reset_coms();
 if (steering_angle < 93.7) /* note 3 is shapest */
 for (x = steering_angle; x < 93.7; x = x+1.0)
 {
 set_servo(5,x);
 msleep(20L);
 reset_coms();
 }
 else if (steering_angle > 93.7) /* note 3 is shapest */
 for (x = steering_angle; x > 93.7; x=x-1.0)
 {
 set_servo(5,x);
 msleep(20L);
 reset_coms();
 }
 steering_angle = x;

 }

void left_turn(int sharpness)
 {
 float x;
 reset_coms();
 if (sharpness == 3) /* note 3 is shapest */
 for (x = steering_angle; x > 62.4; x=x - 1.0)
 {
 set_servo(5,x);
 msleep(20L);
 reset_coms();
 }
 else if (sharpness == 1)
 for (x = steering_angle; x > 83.3; x=x-1.0)

15

 {
 set_servo(5,x);
 msleep(20L);
 reset_coms();
 }
 else if (sharpness == 2)
 for (x = steering_angle; x > 72.8;x= x-1.0)
 {
 set_servo(5,x);
 msleep(20L);
 reset_coms();
 }
 steering_angle = x;
 }

void set_servo(int x, float z)
{
int y;

hog_processor();
y=degree_to_pulse(z);
out_spi(x);
out_spi(y>>8);
out_spi(y&0xff);
out_spi(x+(y>>8)+(y&0xff));
}

void set_motor(int num, int speed, int dir)
{
int temp;
int temp2;

hog_processor();
temp=num+40;
if (dir==1) temp=temp+8;
out_spi(temp);
out_spi(256 - speed);
if (num == 1) temp2=1;
if (num == 2) temp2=2;
if (num == 3) temp2=4;
if (num == 4) temp2=8;
if (num == 5) temp2=16;
if (num == 6) temp2=32;
if (num == 7) temp2=64;
if (num == 8) temp2=128;
out_spi(temp2);
out_spi(temp+256-speed+temp2);
}

void reset_coms()
{
out_spi(0);
out_spi(0);
out_spi(0);
}

void forward(float angle, float mot_speed)
{

 stop_moctar();
 reset_coms();

16

 set_servo(2, 0. + angle);
 set_servo(3, 180. - angle);
 motor(0, -mot_speed);
 motor(1, mot_speed);

}

void stop_moctar()
{

 reset_coms();
 set_servo(3,54.);
 set_servo(2,71.2);
 motor(0,0.0);
 motor(1,0.0);

}

void reverse(float angle,float mot_speed)
{

 stop_moctar();
 reset_coms();
 motor(0, -mot_speed);
 motor(1, -mot_speed);
 set_servo(2, 180. - angle);
 set_servo(3, 0. + angle);

}

void open_claw()
{
reset_coms();
if ((peek(0x4000) & 0b01000000) > 0)
s7 = 1;
else s7 = 0;
while(s7 == 1)
{
reset_coms();
set_motor(7,250,1);
if ((peek(0x4000) & 0b01000000) > 0)
s7 = 1;
else s7 = 0;
}
set_motor(7,0,1);
reset_coms();
}

void forward_find_claw()
{

int irsensor1_value, irsensor2_value;
poke(0x7000,0x00);
reset_coms();
straight();
while(irsensor1_value < 100)
{
poke(0x7000,0xff);
irsensor1_value = analog(4);
poke(0x7000,0x00);
forward(fs,fm);
}
poke(0x7000,0x00);
while(irsensor2_value < 100)
{
poke(0x7000,0xff);

17

irsensor2_value = analog(5);
poke(0x7000,0x00);
forward(fs,fm);
}
stop_moctar();
}

void close_claw()
{
reset_coms();
if ((peek(0x4000) & 0b00010000) > 0)
s5=1;
else s5=0;
if ((peek(0x4000) & 0b00100000) > 0)
s6=1;
else s6=0;
while(s5 == 1 || s6 == 1)
{
reset_coms();
set_motor(7,150,0);
if ((peek(0x4000) & 0b00010000) > 0)
s5=1;
else s5=0;
if ((peek(0x4000) & 0b00100000) > 0)
s6=1;
else s6=0;
}
set_motor(7,0,0);
reset_coms();
}

void raise_claw()
{
reset_coms();
if ((peek(0x4000) & 0b00001000) > 0)
s4=1;
else s4=0;
while (s4 == 1)
{
reset_coms();
set_motor(6,100,1);
if ((peek(0x4000) & 0b00001000) > 0)
s4=1;
else s4=0;
}
set_motor(6,0,1);
reset_coms();
}

void move_claw_back()
{
reset_coms();
if ((peek(0x4000) & 0b00000010) > 0)
s2 = 1;
else s2 = 0;
while (s2 == 1)
{
reset_coms();
set_servo(4,42.0);
if ((peek(0x4000) & 0b00000010) > 0)
s2 = 1;

18

else s2 = 0;
}
reset_coms();
set_servo(4,59.8);
reset_coms();
}

void claw_routine()
{
reset_coms();
open_claw();
forward_find_claw();
close_claw();
raise_claw();
move_claw_back();
open_claw();
close_claw();
reset_claw();
}

