
Intelligent Machines Design Laboratory
 Dr. Keith L. Doty, director.

EEL 5666

SPOT
An autonomous mobile platform

Rodrigo J. Osorio

December 12, 1997

2

Table of Contents

Abstract..3

Executive Summary...3

1. Introduction..4

2. Integrated System ..6

3. Actuation..7

4. Sensors...9

5. Behaviors ...10

6. Conclusion ...11

Appendix A..11

Appendix B..17

Appendix C..19

Hardware..19

Software ...19

3

Abstract

Spot is a mobile platform with four legs for autonomous agents. Each leg has two

degrees of freedom and two sensors. Walking is achieved by maintaining static balance.

Static balance is maintained by pivoting the body of the platform. Legs are controlled

with two Motorola microcontrollers communicating through the serial port.

Executive Summary

Spot is an attempt to create a platform for autonomous agents capable of traveling over

various surfaces and obstacles. Mobility is achieved with four legs, each actuated by

two servos. In order to walk static balance must be maintained. This is done by tilting

body from side to side. Legs each have a pressure sensor to permit control static balance.

Servos are driven by an M68HC11E2, which in turn is controlled by an M68HC11E9

with expanded memory.

Due to friction, pressure sensors did not perform adequately. As a result, the platform

was only able to walk with hard-coded balance control. Infrared obstacle avoidance was

implemented to demonstrate walking abilities.

4

1. Introduction

Mobile platforms for autonomous agents are usually based on wheeled designs, and

sometimes on legged designs. There are many reasons for a preference toward wheeled

platforms. Foremost probably is the ease of construction and control, thereby permitting

the experimenter to devote the majority of his time to behavior development. Most

wheeled autonomous agents consist of nothing more than a collection of processors and

sensors that have been joined to a commercially available geared motor. In its simplest

incarnation, the wheeled implementation is merely a modified servomotor controlled with

Pulse Wave Modulation (PWM). Other benefits that cannot be ignored are adequate

travel speed, and greater energy efficiency and reliability than other translation methods.

Wheeled platforms do have some limitations. They usually must remain within the

smooth and level environment of the laboratory floor, since the wheels cannot forge any

but the most trivial obstacles. This limitation is usually of little concern, since there is

much research that can be performed on the laboratory floor. Nevertheless, there is much

to be learned about autonomous agents and machine intelligence by designing platforms

if greater mobility than that of wheeled platforms.

There have been some attempts to increase mobility by constructing legged autonomous

agents. These platforms to some degree and with varying success seek to reproduce the

mobility of biological organisms. Leg implementation introduces complexities and

problems that cannot be ignored. Mechanically, legs are more difficult to construct and

are unquestionably less reliable than wheels. Legs are also less efficient and much

5

slower over level surfaces than wheels. Legs, on the other hand, are particularly adept at

traversing uneven terrain and at forging obstacles.

The complexity of construction and control of legged platforms does not necessarily

depend on the number of legs used. The legged spectrum ranges from one-legged

platforms to platforms that have six or more legs. The complexity spectrum, however, is

not congruent with the leg-number spectrum. For example, the active balance required

by an one-legged platform necessitates high-speed actuators and complex sensors and

control algorithms. Likewise, platforms with six or more legs are complex because of

the total number of legs, but their inherent stability obviates the need for active balance

control.

Agents with four legs present an interesting balance between mechanical complexity and

control complexity. Mechanically, four legs are more reliable and more easily

constructed than six or more legs. In practice, although the inherent stability possessed

by six-legged agents is lost, the active balance of one- and two-legged agents is not

absolutely required. Essentially, if the limitation that at any particular time at least three

legs must be on the ground, balance control consists of nothing more than ensuring the

center of gravity of the agent is within the support tripod of the legs.

This is an experiment into the viability of such a design. Without complex sensors,

actuators, or control algorithms, a four-legged platform should be able to move robustly

through terrain and over obstacles that would immobilize wheeled platforms.

6

2. Integrated System

Spot is an autonomous agent platform supported and propelled by four legs. The legs are

actuated by servomotors, which in turn are controlled with two Motorola MC68HC11

microprocessors. Legs are constructed of hollow brass tubes, while the body is made of

lightweight plywood.

Each of the legs is actuated by two servomotors to effect rotations in the z-axis as well

another axis perpendicular to the z-axis (see fig.1 and fig. 2). Each leg, therefore, has

two degrees of freedom. In total, the platform uses eight servos. Within each leg and

protruding on the lower side of each is a pressure sensor to measure the amount of weight

resting on each leg. The sensor consists of a spring-loaded plunger connected to a

potentiometer (see fig. 4). Using a voltage divider, the potentiometer’s position is

digitized for use in the processor.

Walking gait is hard-coded and ensures that at any time only one leg is off the ground. In

order to maintain static stability, before a leg is raised the center of gravity of the body

must be within the support perimeter of the remaining three legs. The range of rotation

of each leg on the z-axis is divided into four positions. At any one time each leg is

assigned a different position. To move, the three legs supporting the body advance one

position, while the remaining leg advances four positions. This leg is subsequently

lowered, another leg is raised, and the cycle continues.

7

To control balance and permit the platform to raise one leg while remaining statically

stable, the center of gravity of the body must remain over the perimeter of the triangle

defined by the contact points of the supporting legs. The center of gravity of the body,

which is above the axis of rotation of the body, is shifted with respect to the legs by

tilting the body sideways. This enables balance control without using additional

components or weights. Although weight shifting is currently hard-coded, the ultimate

goal is to control balance with the pressure sensors.

Two microcontrollers are used to drive the legs and control the platform. The PWM

waves for the eight servos are generated by a single M6811E2 operating in single-chip

mode. This microcontroller receives signals through the serial port from an M6811E9

with additional RAM. All sensory inputs and behavior logic reside in the E9 chip.

3. Actuation

Standard Radio Control servos actuate all movements on the platform. These

components were chosen as actuators because of their ease of integration, their ease of

control, their power output, and their low cost. Being self-contained, gearhead motors,

mechanical integration usually consists on properly fixing the servos to the platform.

This greatly reduces design time and construction effort. In addition, the length of a

PWM wave defines servo position. These waves are easily generated with a

microcontroller with timer functions, and obviate the need for leg-position encoders.

Finally, with torque outputs ranging from 37-in-oz. to 42 in.-oz., the servos are powerful

enough to actuate small and lightweight platforms.

8

Eight distinct PWM waves are generated by the single-chip MCU to control all leg

movement. All waves depend on only one output-compare register. To do so, each

servo is assigned a 5000 cycle segment of a 40,000-cycle routine. In succession, the

rising edge for each servo starts in 5000 cycle intervals. In this manner, each servo

receives a signal every 40,000 cycles, or every 20 milliseconds. Upon start of the rising-

edge, pulse duration is scheduled according to desired position for the servo. Although

the MCU is constantly minding the PWM’s, the interrupt-driven nature of the program

reduces the required processing time and ensures accurate wave signals for the servos.

The single-chip MCU receives leg commands from another MCU through the serial SPI

port. No framing data is used to speed communications and to reduce processor

overhead. Instead, position for each servo is communicated by assigning a 32 level

integer and sending this integer through the SPI port. That is, integers from zero to 31

refer to servo number one; while integers from 32 to 63 refer to servo number two. This

scheme is likewise repeated for the remaining servos. In this manner, any number

between zero and 255 sent through the serial port refers to a position command for a

specific servo.

The leg control commands sent through the serial port are generated by the expanded

MCU, which generates movement commands from predefined walk tables.

9

4. Sensors

Sensors on each leg are necessary to control walking behavior and to provide “walking

reflexes” from which more complex behaviors may emerge. Minimally, these sensors

must measure pressure exerted on the ground by each leg, and must detect contact with

obstacles by prominent points on the side of the leg.

Pressure sensors for each leg consisted of a spring-loaded plunger connected to a

potentiometer. A voltage divider circuit produces voltages that are digitized by the

MCU. Plungers were machined from aluminum, and the potentiometers were removed

from servos.

Side-contact sensors were not constructed because pressure sensors did not work as

expected. The combination of the aluminum plungers, springs, and potentiometers with

their associated linkages introduced too much friction into the operation of each sensor.

As a result, the sensors did not have the sensitivity required to detect slight movements in

the relative position of the body’s center of gravity. The parallelogram leg geometry and

the necessity to tilt the body to shift the center of gravity aggravated this situation.

Tilting the body to shift the center of gravity also tilts the legs, thereby decreasing the

force perpendicular to the spring, and increasing friction by increasing side loads on the

plunger.

10

5. Behaviors

Initially, the primary low-level behavior envisioned was to maintain a predefined force

on each leg. From this ability it was hoped to derive the ability to maintain the center of

gravity within any three legs. Combining the control of static balance with obstacle

detection on each leg, higher behaviors are easily envisioned. The platform could have

walked along terrain of varying grade while maintaining balance. In addition, with

obstacle detection on each leg, the leading leg could determine if obstacles could be

climbed or if it was necessary to walk around.

Unfortunately and as previously stated, the pressure sensors did not work. Without them

it is not possible to control balance while climbing obstacles.

To demonstrate the capability of the leg design, open loop walking over smooth and level

surfaces was achieved using walk tables. To do so, the platform sifts its weight on to

three legs and lifts up the remaining leg. As the legs on the ground advance through ¼ of

their total travel, the leg in the air advances fully. At the end of its travel, this leg is

lowered and the process is repeated with another leg.

Using this scheme it was possible to walk straight both forwards and backwards, to turn

while walking, and to turn in place. Walking and turning was accomplished by

advancing the legs on one side less than the legs on the other side. Turning in place was

accomplished by advancing the legs on one side while retarding the legs on the other

side.

11

In order to demonstrate the walking abilities, a simple infrared sensor/emitter

combination was installed on the front of the platform. Based on the data received from

the sensor, the platform retreats and changes direction.

6. Conclusion

I believe that in its current incarnation the device I have constructed does not qualify as

an autonomous agent. Although a sensor controls walking direction, the walking

behavior is fixed and independent of the environment. The fact that it walks depends on

a carefully synchronized sequence of movements and on a relatively level surface.

Although I am satisfied with the mechanical accomplishments, the device lacks the

“walking reflexes” I highly desired to develop. Nevertheless, I still have hope of

obtaining suitable pressure transducers that will permit the control of static balance.

In retrospect, I believe a superior leg design would poses three degrees of freedom and

three actuation servos. Such a leg can be controlled to move its contact point linearly,

something the legs on my current design cannot do. Furthermore, although it is apparent

that a four-legged platform is feasible, a six-legged platform is more stable and highly

more desirable in spite of the added complexity.

Appendix A

/* Servo Control program for SPOT */
/* written for ICC and compiled for single chip board */

12

/* NOTE: 6811E2 chip running in BOOTSTRAP mode */
/* program receives data through serial port and generates PWM’s*/
/* Written by: Rodrigo J. Osorio for EEL5666 */
/* Last revision: December 10, 1997 */
/* */

#include<hc11.h>
#include<mil.h>

#define TOC2_ISR servo_driver
#define SCI_ISR serial_driver
#pragma interrupt_handler servo_driver
#pragma interrupt_handler serial_driver

void servo_driver();
void serial_driver();
void init_serial();
void init_servos();
void init_board();

static int state,i;

int mask[8]={0x01,0x02,0x04,0x08,0x10,0x20,0x40,0x80};
int data[8];

main(void){
 init_board();
 INTR_OFF();
 init_servos(); // Initialize servos & start servo
interrupts
 init_serial(); // Initialize serial ports & start
interrupts
 INTR_ON();

 while(1);

}

void servo_driver()
{
 if(state) // Turn-off port
 {
 PORTC=0x00;
 PORTB=0x00;
 TOC2=TCNT+5000; // Progran next rising-edge
 state=0;
 }
 else
 {
 PORTC=mask[i]; //
 PORTB=mask[i]; // Turn-on port
 TOC2=TCNT+data[i]; // Progran pulse width
 state=1;
 i++; // i indexes servo widths and port masks
 i%=8; // i must be between zero and seven
 }

13

 CLEAR_FLAG(TFLG1,0x40); // Clear TOC2 flag
}

void serial_driver(){
 int com_data;
 com_data=SCDR;
 if(com_data<32) data[0]=-com_data*63+3874; //4000
 else if(com_data<64) data[4]=(com_data-32)*63+2000;

 else if(com_data<96) data[1]=(com_data-64)*63+2126; //2000
 else if(com_data<128) data[5]=-(com_data-96)*63+4000;

 else if(com_data<160) data[2]=-(com_data-128)*63+4000;
 else if(com_data<192) data[6]=-(com_data-160)*63+4000;

 else if(com_data<224) data[3]=(com_data-192)*63+2000;
 else data[7]=(com_data-224)*63+2000;
 CLEAR_FLAG(SCSR,0x20); // clear receive-data-register-full
flag
}

void init_serial(){
BAUD=0xb0; // Baud=9600

 SCCR2=0x2c; // Enable Transmit and Receive
 // Enable interrupts on receive-full
}

void init_board(){
 CLEAR_BIT(HPRIO,0x40); //Remap interrupts to 0xffd6
 DDRC=0xff; // Configure PORTC for output
}

void init_servos(){
 TOC2 = 0; // First OC2 int will occur at TCNT=0
*/
 SET_BIT(TMSK1,0x40); // Enable OC2 interrupt
 data[0]=3000;data[1]=3000;data[2]=3000;data[3]=3000;
 data[4]=3000;data[5]=3000;data[6]=3000;data[7]=3000;
 state=0;

}

/* Leg Control program for SPOT */
/* written for Interactive C */
/* program communicates with single-chip board using serial port*/
/* Written by: Rodrigo J. Osorio for EEL5666 */
/* Last revision: December 10, 1997 */
/* */

int px[4]; /* these arrays keep track of servo possition */
int pz[4];
int hold_flag;
int k,l,m,n; /* these vars. keep track of location on walk table */
/* Walk Table v[] is leg roll

h[] is leg yaw

14

 h5[] is yaw cycling backwards
*/
int v[20] ={10,10,10,21,21,21,21,10,10,10,10,10,10, 3,19,19,
3,10,10,10};
int h[20]
={18,18,18,18,18,14,14,14,14,14,10,10,10,10,10,22,22,22,22,22};
int
h5[20]={14,14,14,14,14,18,18,18,18,18,22,22,22,22,22,10,10,10,10,10};
int s[20] ={ 2,4,4,4,4, 2,4,4,4,4, 2,4,4,4, 2, 2, 2,4,4,4};

int main(void){

int i;
int ir=0;
int ir_left=0;
int ir_right=0;

 init_serial();
 center_legs();
 pause(1000);

 while(1){
 if(k==2 || k == 7 || k == 12 || k == 17) ir=analog(1);
 if(ir<95) forward();
 if(ir>=95) {
 if(ir>110) backward();
 else{
 for(i=0;i<=25;i++) turn_left();
 ir=0;
 ir_left=analog(1);
 for(i=0;i<=50;i++) turn_right();
 ir_right=analog(1);
 if(ir_left<ir_right) for(i=0;i<=100;i++)
turn_right();
 else for(i=0;i<=100;i++) turn_left();
 }
 }
 }

return 0;
}

/* launch processes to move specific leg from current to target
 number is leg number (1-4)
 z is leg height
 x is leg rotation
 when received, numbers between 0 and 31 are decoded for leg 1 roll,
 numbers between 32 and 63 are decoded for leg 1 yaw,
 numbers between 64 and 95 are decoded for leg 2 roll,
etc.
*/
void move_leg(int number, int z, int x, int s){
 int i;
 i=(number-1)*64;
 start_process(move_servo(px[number-1]+i ,x+i ,s)); /* launch
roll */

15

 start_process(move_servo(pz[number-1]+i+32,z+i+32,s)); /* launch yaw
*/
 px[number-1]=x;
 pz[number-1]=z;
}

/* process to move servo at specified speed from current to target
 these are run as simultaneous tasks, up to eight at a time
 p is present servo possition
 x is target servo possition
 s is inverse of speed (delay) */
void move_servo(int p,int x,int s){

 int i;
 hold_flag++; /* hold flag keeps track of
number of

 processes running */
 if(p<x){
 for(i=p;i<=x;i++){
 put_char(i); /* send command to serial
port */
 pause(s);
 }
 }
 else if(p>x){
 for(i=p;i>=x;i--){
 put_char(i);
 pause(s);
 }
 }
 hold_flag--;
 defer();
}
 /* center legs and initialize position
vector */
void center_legs(){

put_char(15); put_char(47);
 put_char(79); put_char(111);
 put_char(143);put_char(175);
 put_char(207);put_char(239);
 px[0]=15; pz[0]=15;
 px[1]=15; pz[1]=15;
 px[2]=15; pz[2]=15;
 px[3]=15; pz[3]=15;
 hold_flag=0;
 k=0;l=5;m=10;n=15;

}

void pause(int a){ /* todo: replace pause with some timer
function */
 int b;

for(b=0;b<=a;b++);
}

16

void forward(){
k++;l++;m++;n++; /* advance walk table indices

*/
 if(k>19) k=0;
 if(l>19) l=0;
 if(m>19) m=0;
 if(n>19) n=0;
 move_leg(1,h[k],v[k],s[k]); /* move leg 1 to next position on
table */
 move_leg(2,h[l],v[l],s[l]);
 move_leg(3,h[m],v[m],s[m]);
 move_leg(4,h[n],v[n],s[n]);
 while(hold_flag >0); /* wait until all processes launched have
ended */
}

void turn_left(){
k++;l++;m++;n++;

 if(k>19) k=0;
 if(l>19) l=0;
 if(m>19) m=0;
 if(n>19) n=0;
 move_leg(1,h5[k],v[k],s[k]); /* h5[] cycles legs backwards */
 move_leg(2,h[l],v[l],s[l]); /* leg 1 ------- leg 2 */
 move_leg(3,h[m],v[m],s[m]); /* |front| */
 move_leg(4,h5[n],v[n],s[n]); /* | | */
 while(hold_flag >0); /* |back | */
} /* leg 3 ------- leg 4 */

void turn_right(){
k++;l++;m++;n++;

 if(k>19) k=0;
 if(l>19) l=0;
 if(m>19) m=0;
 if(n>19) n=0;
 move_leg(1,h[k],v[k],s[k]);
 move_leg(2,h5[l],v[l],s[l]);
 move_leg(3,h5[m],v[m],s[m]);
 move_leg(4,h[n],v[n],s[n]);
 while(hold_flag >0);
}

void backward(){
k++;l++;m++;n++;

 if(k>19) k=0;
 if(l>19) l=0;
 if(m>19) m=0;
 if(n>19) n=0;
 move_leg(1,h5[k],v[k],s[k]);
 move_leg(2,h5[l],v[l],s[l]);
 move_leg(3,h5[m],v[m],s[m]);
 move_leg(4,h5[n],v[n],s[n]);
 while(hold_flag >0);
}

17

Appendix B

18

19

Appendix C

Hardware
Actuators

four NES-L501 servos from JR Remote Controls of Japan
four Titan Shorty servos from Royal

Controllers
Motorola M68HC11EVBU microcontroller board
Novasoft ME11U memory expansion board http://www.mil.ufl.edu/novasoft/
BOTBoard single-chip 6811 board http://www.rdrop.com/users/marvin/
M68HC11E2 chip

Materials (available at most hobby stores)
1/8” aircraft grade plywood
K&S brass tubing of various outer diameters

Sensors
Potentiometers removed from surplus servos
Sharp 40 KHz Digital Infared Receiver http://www.mil.ufl.edu/novasoft/

Software

Interactive-C 3.1 http://www.mil.ufl.edu/novasoft/
 ICC11 C-Compiler for the MC68HC11 http://www.mil.ufl.edu/novasoft/

PCBUG11

