PUFF: The Autonomous Agent For EEL 5666 Intelligent Machine Design Lab

> Steve McKinnon Instructor: Keith L. Doty TA: Scott Jantz FALL 97

Table of Contents

bstract
xecutive Summary
troduction
tegrated System
Tobile Platform
ctuation
ensors
IR 8
Bump
Ultrasonic
CDS Photo Resistor
ehaviors
Collision Avoidance
Bump Detection
Hiding/Searching
Predator/Prey Detection
onclusion
ppendix1
Source Code.

Abstract

This document is a basic summary of a project completed for EEL 5666: Intelligent Machine Design Lab (IMDL). The project required for this course was the design, testing, and implementation of an autonomous agent. This agent must utilize four basic sensors to perform a variety of behaviors. These requirements are left simple and vague, to promote creativity and allow undergraduates like myself to participate in this unique class.

Executive Summary

For the completion of this project an autonomous agent must be designed and implemented. The agent must have four sensors, and one of these sensors must be of the student's design. Also, the agent must perform at least four different functions.

The project discussed in this document contains one basic robot platform with basic sensor suite.

Using this sensor suite the robot will be able to "sense" its environment. However, two algorithms will be used to simulate two different agents. One agent will be a predator who will seek out a prey. On the other hand, there will be a prey who will avoid the predator agent. After both algorithms have been designed and implemented, they will hopefully interact with each other in a similar relationship found in nature.

Introduction

This document contains the information obtained through the design and implementation of the autonomous agent to be developed for IMDL. The scope of this paper is confined to the basic robot platform and the algorithms to be used. The paper discusses the integrated system and the individual sensors used to perceive the agent's environment. This document also discusses the variety of behaviors that were performed with the basic sensor suite. Finally, the paper closes with a summary of work accomplished and discusses the limitations of the work performed. Future work on this project is also mentioned in the conclusion.

Integrated System

The goal of this project was to design an autonomous agent with a variety of functions and behaviors. Specifically, this agent could simulate predator and prey behaviors depending on the arbitrator process imbed in the machine's code. Mekatronix's Talrik Junior was the platform for this robot's design. A M68HC11 microprocessor is the heart of the TJ. The TJ is also has two types of sensors, and the modified design in this project adds two additional sensors. Using all of these sensors, the microprocessor is able to sense some characteristics about its environment and behavior accordingly. The figure below shows the sensors as inputs to the microprocessor which uses this to perform the associated behaviors.

Figure 1: Fuctional Block Diagram of system

Mobile Platform

The platform used is Mekatronix Talrik Jr shown below in Figure 2. This robot has a very compact design making it agile and very maneuverable. In fact, the wheels are placed in a manner allowing the agent to spin on its center. The TJ has a single chip computer board (Novasoft MSCC11), and a battery supply located beneath its topside. For this project the TJ platform was modified with two additional sensors. The modified TJ platform is shown in Figure 3 below.

Figure 2b

Figure 3: Modified TJ Platform

Actuation

The robot is driven by two independent servo motors. These servos act essentially as DC motors with feedback circuitry. A 50Hz signal is used to drive the servos in a given direction. Depending on the duty cycle of this signal the servos will drive the wheels at a given speed. The servos are the only type of actuation in the system. The software for the motor drivers can be found in the TJ application package from Novasoft.

Sensors

IR Emitters and Detectors:

The TJ also detect infared light, or IR. Two infared IR emitters are used to project 40kHz IR light.

Moreover, there are two IR detectors which can detect this projected light. There are one of these detectors mounted on the right side of the robot and another sensor mounted on the left side. In this arrangement, the TJ can detect which direction the light is coming from. Furthermore, the IR detectors (Sharp GP1U58) are

modified to give an analog voltage corresponding to the amount of IR received. The nominal value for these IR detectors is 88 (decimal) on the A/D port and the saturation value is about 130. The left sensor and right sensors are connected to the A/D converter on pins PE6 and PE7 respectively. Software to modulated the IR emitters correctly can be found in the TJ applications package from Novasoft.

Using the analog output from the IR detectors the direction and intensity of incoming light can be measured. If the TJ approaches an object at close range the IR from the emitters is reflected off the object and back to the IR detectors. As a result, an object can be detected and avoided through arbitration of the motors. One of the major drawback to this sensor is its occasional problems sensing its environment. For example, if the object is of the dark in color less light will be reflected. It is almost impossible to determine range without complex algorithms. Moreover, the TJ has problems detecting some shapes such as skinny or round due to lack of reflected light. It is important to leave the TJ in a non-complex environment for reliable interaction.

Bump Detectors:

The bump detectors are the simplest sensor located on the TJ. There are three forward facing bump switches and one on the rear. Each sensor is simple a switch that is either closed or open. The forward looking bump switches are all interconnected with a pull down resistor and then connect to the PC5 of the microprocessor. Therefore, if the switch becomes closed at any time the signal becomes high on the input pin.

A bumper is placed around the outside of the TJ over these bumper switches, so that collisions can be detected from other areas besides the switches themselves. It is important to have a properly placed bumper, so that if a collision does occur the bumper returns to its original position after the TJ has separated itself from the object. This sensor has the most priority over the other sensors in this project. If I collision is detected by the switches the TJ immediately backs up before returning to its original function.

Ultrasonic Motion Detector:

This sensor is a modified version of a electronics kit provided from Jameco Electronics. The part number for this motion detector kit is 125090 and can be purchased by calling the vendor at 1-800-831-

4242. The kit itself contains a matched pair of ceramic transducers which convert movement to electrical energy and vice versa. Through some modification, the basic functionality inherent to these transducers will be used in a way for one robot to detect the direction and range of another robot. Furthermore, this will allow them the robots to interact in a specific algorithm chosen.

JAMECO'S ULTRASONIC MOVEMENT DETECTOR:

The kit provided by Jameco provides two ultrasonic transducers advertised to detect motion from 4-7m away. A crystal provides an operation frequency of 40kHz to the two transducers. The kit also provides a variety of additional characteristics. First, an LED provides visual evidence that movement has been sensed. Second, there is a PCB-mounted switch which can be used to switch between an automatic reset about 0.3 seconds after the detector has been triggered or to stay latched on. Finally, the unit provides pads which allow for additional circuits such as buzzers or lights.

The transmitter circuit consists of a crystal-locked cmos gate oscillator feeding a 40kHz square wave to a cmos driver. This in turn drives the transmitter in anti-phase to get the maximum output. The transmitter circuit is shown below in Figure 4.

The receiver circuit (Figure 5) takes the electrical output of the transducer and amplifies the signal over a transistor and operational amplifier. Then, the output is converted to DC in a peak detector and taken to the non-inverting input of another operation amplifier. The feedback circuit of this operation amplifier can be adjusted by a potentiometer. This second op amp quickly adjusts to a steady high output if there is no change in the incoming signal.

Figure 5: Receiver Circuit

Sound waves reflected by objects arrive at the receiver in different phases. Moreover, if the sound waves are in phase they create a larger signal whereas if the sound waves return out of phase they cancel each other out. Due to this characteristic if an object moves towards or away from the receiver it cause the receiver signal to alternate cycles from high to low. This is the change that triggers the device. They steady high output of the second op amp is pulled down causing the cmos gates to switch.

KIT MODIFICATION AND INDENTED ALGORITHM:

The transmitter and receiver circuits will be separated for use with the autonomous agents. Since, circuitry is common to both the transmitter and receiver some hardware modifications will be made. The predator robot will carry two receiver circuits and will listen for the prey. The receiver pair will be located on different sides of the robot, so that the direction of the signal can be quickly perceived by the agent. The algorithm to sense direction is similar to the IR obstacle avoidance, except that the robot's arbitrator will

turn the motors in the direction of the strongest signal, rather than avoiding this. The predator will "listen" for the signal that the prey will transmit.

PERFORMANCE AND OBSERVATION OF SENSOR CHARACTERISTICS:

An experiment was used to determine some of the characteristics of this ultrasonic motion detector. The Jameco kit provides a LED which lights up every time the device is triggered by movement, and provided an easy method of testing the limitations of the sensor.

IR sensors have a limitation when searching for a reflected signal. For example, a stronger IR signal can be measured off a light surface than a dark surface. However, these ultrasonic transducers do not have this same limitation. Sound waves are not effected by the color of a reflecting surface. However, they are effected by the shape. A concave object will provide a stronger reflected signal than a flat object. Moreover, a flat object will reflect a stronger signal than a convex object.

The receiver circuit's sensitivity can be adjusted by the potentiometer. Varying the sensitivity of the device, a flat and concave object were used to determine the greatest distance that could be detected.

The following data was obtained,

RESISTANCE(OHMS)) DISTANCE OF DISTANCE OF FLAT OBJECT(FT) OF CONCAVE OBJECT(FT		
100	4	6	
2.5K	4.5	6.5	
5K	5	7.25	
7.5K	6	8	
10K	7	9.5	

This data shows one of the limitations of the sensor. For if used for collision avoidance, a robot would not easily detect some objects due to shape. Moreover, if this sensor was used to range object error should be expected. The receiver circuit is very sensitive, and would result in greater range errors with greater distances.

This motion detector sensor is the most elaborate sensor found in this project. Modifications must be made from the current design however. Through implementation of this sensor with the robot a problem has been observed. The A/D converter samples at a given rate which is much slower than oscillating signal given from the receiver circuitry. The output waveform would probably be readily usable if a low pass

filter was used on the current output waveform. Despite this problem, the TJ can detect motion consistently. Range and directions problems will hopefully be rendered at a later date.

CDS Photo Resistor:

The CDS photo resistor sensor is very simple. The sensor itself is a simple voltage divider as shown in Figure 6. The value of the resistor can be adjusted to give a variety of sensitivities to different types of light. For example, a 1k and 100k resistor force the circuit to be sensitive to bright and dark light respectively.

The voltage over the CDS cell is taken to the A/D converter on the microprocessor. There are three of these sensors placed on the robot, and they all vary in their direction.

Behaviors

Collision Avoidance:

Collision Avoidance is accomplished with the IR system. The IR detectors are connected to the analog port of the microprocessor. When a tolerance is exceeded on one of the detectors the system's arbitrator "senses" an object and sends the proper speed and direction outputs to the motors. For example, if the left IR detector give a value above a certain tolerance the arbitrator tells the robot to turn right, or away from the object.

One of the biggest problems with this behavior is called the "Braitenburg Trap." This situation occurs when both the right and left detectors sense a value above threshold. The system's arbitrator wants to go both direction, so when implemented the robot just seems to shake back and forth. To solve this problem the arbitrator looks to see when this situation happens and then tells the motors to back up for a set amount of time (see source code in ARBIT_SR).

13

Bump Detection:

This behavior depends on the bump switches located around the outside of the TJ. If they are triggered the arbitrator simply backs up for a set amount of time. In fact, this behavior has the highest priority in the system.

Hiding/Searching:

This behavior can either be seen as hiding or searching depending on if the algorithm being used is that of the prey or predator respectively. In either case, the system uses the CDS cells to search for the darkest part of the room. Once all three CDS sensors register a dark reading, then the robot knows it has reached its destination. In the prey's case, it now hides until a predator robot comes. In contrast, when the predator robot reaches its destination it will poke around searching for the prey who should have left by then.

Predator/Prey Detection:

The ultrasonic motion receivers are used for this behavior. The prey uses this sensor when it is hiding. Once it detects a prey in its vicinity it begins to run away. Similarly, the predator uses this sensor to detect the prey. However, with a better output signal from the motion detector the predator should be able to chase the prey with this same signal.

Similar to the IR system, there are two receivers placed on opposite sides of the robot. This should give the arbitrator some sense of direction. However, due to the fact the receiver circuit is too sensitive or the A/D converter does not sample fast enough this sensor can only be used to detect motion.

Conclusion

The goals of this project have been achieved for the most part. The final robot platform has a great sensor suite which has many possible functions. However, the M68HC11E2 only has 2K EEPROM and 256 bytes of RAM, so the memory capacity is limited. With a bigger memory, the entire sensor suite could be utilized to perform elaborate and more "intelligent" behaviors. Moreover, modification still needs to be done on the ultrasonic sensor. This sensor has some advantages over using IR for collision avoidance or object chasing. If the output of this sensor was passed through a low pass filter the signal may actually be used for a more useful function. Eventually, both the prey and predator algorithms will be completed, and both designs will be implemented together to hopefully simulate some behaviors found in nature.

Appendix

Source code in assembly:

CDS_CENTER RMB

MOTOR_LEFT RMB

CDS RIGHT RMB

1

1

2

```
*Steve McKinnon
*IMDL
*12/1/97
*shell v1.4 collison avoidance WITH BUMP DETECTION (FINAL)
************************
EEPROM
                   EOU
                         $B600
RAM
            EQU
                   $0000
RAMEND
                   EQU
                         $01FF
REGS
            EQU
                   $1000
OPTION
                   EQU
                         $1039
            EQU
ADCTL
                   $1030
            EQU
ADR1
                   $1031
            EQU
                   $1032
ADR2
ADR3
            EOU
                   $1033
ADR4
            EQU
                   $1034
            EQU
TMSK1
                   $1022
TMSK2
            EQU
                   $1024
TFLG2
            EQU
                   $1025
PACTL
            EQU
                   $1026
PORTC
            EQU
                   $1003
      Constants
NSAMP
            EQU
                   100
BIT0
            EQU
                   %0000001
BIT1
            EQU
                   %00000010
            EOU
BIT<sub>6</sub>
                   %01000000
                                :LEFT SENSOR
            EQU
BIT7
                   %10000000
                                :RIGHT SENSOR
INV6
            EQU
                   %10111111
STSIZE
            EQU
                   20
***** DATA *****
      ORG
            $00
PID
      RMB
            1
                   ;PROCESS ID
            2
SP1
                   STACK POINTER FOR IR READ
      RMB
SP2
      RMB
            2
                   STACK POINTER FOR SONIC READ
SP3
            2
                   STACK POINTER FOR PHOTO READ
      RMB
SP4
      RMB
            2
                   STACK POINTER FOR ARBITRATOR
SP5
      RMB
            2
                   STACK POINTER FOR MOTOR ROUTINE
STACK1
            RMB
                   STSIZE
                   STSIZE
STACK2
            RMB
                   STSIZE
STACK3
            RMB
STACK4
            RMB
                   STSIZE
STACK5
            RMB
                   STSIZE
BUMP RMB
            1
                   1
IR_LEFT
            RMB
IR_RIGHT RMB 1
SONAR LEFT RMB
                   1
SONAR RIGHT RMB
                   1
CDS LEFT RMB
                   1
```

```
MOTOR_RIGHT RMB 2
ACTUAL LEFT RMB 2
ACTUAL_RIGHT RMB 2
_SERVOS_BUSY:
      RMB
_SIGNAL_STATE:
      RMB
_CURRENT_WIDTH:
      RMB
            2
_WIDTH:
      RMB
            4
_current_mode
      rmb 1
***** INTERRUPT VECTORS ******
      ORG
            $FFFE
      FDB
            MAIN
     tdb _IRREAD
ORG $FFF
      ORG $FFE4
      FDB
            _SERVO_HAND
      ORG
            $FFF0
      FDB
            RTI ISR
ORG
            $F800
MAIN LDX
            #REGS
*Turn on A/D System
            LDAA #%10000000
                                     ; Bit 7 (ADPU) of OPTION
            STAA OPTION-REGS.X
* Wait 100 ms for Pump Charge to Stabilize
      LDAA #40
                               ; 2 E cycles
WAIT1 DECA
                               ; 2 E cycles
                               ; 3 E cycles
      BNE
            WAIT1
*
      BCLR PACTL,X BIT1 ;SET INTERRUPT RATE FOR 8.19MSEC...
      BSET
            PACTL,X BIT0
            TMSK2,X BIT6 ;ENABLE RTI INTERRUPT
      BSET
            #STACK1+STSIZE-1
                               :INITIALIZE STACK POINTERS FOR PROCESSES
      LDX
      STX
            SP1
            #STACK2+STSIZE-1
      LDX
      STX
            SP2
      LDX
            #STACK3+STSIZE-1
      STX
            SP3
      LDX
            #STACK4+STSIZE-1
      STX
            SP4
      LDX
            #STACK5+STSIZE-1
      STX
            SP5
                               :INITIALIZE ALL STACKS
            SP5
      LDS
                        ;ASSUME PREVIOUS PID WAS 5
            #MOTOR SR
      LDX
      PSHX
            #0
      LDY
      PSHY
                        ;IY
      PSHY
                        :IX
      PSHY
                        ;A AND B
      LDAA #BIT6
                        ;CCR WITH X=1 AND I=0
```

```
PSHA
                        ;CCR
      STS
            SP5
      LDS
            SP4
                        ;ASSUME PREVIOUS PID WAS 4
      LDX
            #ARBIT_SR
      PSHX
      LDY
            #0
      PSHY
                        :IY
      PSHY
                        ;IX
      PSHY
                        ;A AND B
      LDAA #BIT6
                        ;CCR WITH X=1 AND I=0
      PSHA
                        ;CCR
      STS
            SP4
      LDS
            SP3
                        ;ASSUME PREVIOUS PID WAS 3
      LDX
            #PHOTO SR
      PSHX
      LDY
            #0
      PSHY
                        ;IY
      PSHY
                        ;IX
      PSHY
                        ;A AND B
      LDAA #BIT6
                        ;CCR WITH X=1 AND I=0
      PSHA
                        ;CCR
      STS
            SP3
      LDS
            SP2
                        ;ASSUME PREVIOUS PID WAS 2
            #SONIC_SR
      LDX
      PSHX
      LDY
            #0
      PSHY
                        ;IY
      PSHY
                        :IX
      PSHY
                        ;A AND B
      LDAA #BIT6
                        ;CCR WITH X=1 AND I=0
      PSHA
                        ;CCR
      STS
            SP2
      LDAA #1
      STAA PID
      LDS
            SP1
                        ;INITIALIZE CURRENT PROCESS AS 1
      LDY
            #3000
      STY
            ACTUAL_LEFT; INITALIZE CURRENT MOTOR WIDTH
      STY
            ACTUAL_RIGHT
            _INIT_SERVOS ;INTIALIZE SERVOS
      JSR
      JSR
            INIT IR
                        ;INTIALIZE IR EMITTERS
      JSR
            IR ON
                        ;TURN ON IR
      CLI
                        :TURN ON INTERRUPTS
      JMP
          IR SR
                        :GO TO PROCESS 1
************
***********
RTI_ISR LDX #REGS
      BRCLR TFLG2,X BIT6 ENDRTI ;IGNORE ILLEGAL INTERRUPT
      BCLR TFLG2,X INV6
                              ;CLEAR FLAG
      LDAA PID
                              ;FIND CURRENT PID
      CMPA #1
```

BEQ SAVEP1

```
CMPA #2
     BEO SAVEP2
     CMPA #3
     BEQ
           SAVEP3
     CMPA #4
     BEQ
           SAVEP4
     CMPA #5
     BEO
           SAVEP5
     BRA
           ENDRTI
                                  ;IGNORE ILLEGAL PID
SAVEP1
                                  ;SET NEXT PROCESS
           STS
                 SP1
     LDAA #2
     STAA PID
     LDS
           SP2
     BRA
           ENDRTI
SAVEP2
           STS
                 SP2
     LDAA #3
     STAA PID
     LDS
           SP3
     BRA
           ENDRTI
SAVEP3
           STS
                 SP3
     LDAA #4
     STAA PID
     LDS
           SP4
     BRA
           ENDRTI
SAVEP4
           STS
                 SP4
     LDAA #5
     STAA PID
     LDS
           SP5
     BRA
           ENDRTI
SAVEP5
           STS
                 SP5
     LDAA #1
     STAA PID
     LDS
           SP1
     BRA ENDRTI
ENDRTI
           RTI
***********
************
IR_SR BRA
           IR_SR
           #REGS
     LDX
LOOP1 LDAA #%00010110
                      ;SAMPL
     STAA ADCTL-REGS,X
                       ; 2 E cycles
     LDAA #6
WAITR DECA
                       ; 2 E cycles
                       ; 3 E cycles
     BNE
           WAITR
     LDAA ADR3
     STAA IR LEFT
     LDAA #%00010111
                      ;SAMPR
     STAA ADCTL-REGS,X
     LDAA #6
                       ; 2 E cycles
WAITL DECA
                       ; 2 E cycles
     BNE
           WAITL
                       ; 3 E cycles
     LDAA ADR4
     STAA IR_RIGHT
     BRA LOOP1
************
```

SONIC_SR LDX #REGS

```
LOOP2 SEI
     LDAA #%00010001
                       ;SAMPL
     STAA ADCTL-REGS,X
                       ; 2 E cycles
     LDAA #6
WAITR DECA
                       : 2 E cycles
     BNE
           WAITR
                       ; 3 E cycles
     LDAA ADR1
     STAA SONAR_LEFT
     LDAA #%00010101
                       ;SAMPR
     STAA ADCTL-REGS,X
     LDAA #6
                        ; 2 E cycles
WAITL DECA
                       ; 2 E cycles
     BNE
           WAITL
                       ; 3 E cycles
     LDAA ADR2
     STAA SONAR_RIGHT
     CLI
     BRA LOOP2
************
               #REGS
PHOTO SR LDX
LOOP3 BRA LOOP3
************
ARBIT SR LDX #REGS
     JSR
           LOOP4
     BRA
           ARBIT SR
LOOP4 LDAA PORTC
      ANDA #%00100000
                       :CHECK PC5
                             ;BUMP DETECTION IF NOT ZERO
     BNE GOBACK
     LDAA CDS RIGHT
     CMPA #253
     BLT
           STOPQU
                             ;IF CDSRIGHT DARK CHECK LEFT
     BRA
           SKIP
                       ;ELSE SKIP
STOPQU
           LDAA CDS_LEFT
     CMPA #253
     BLT
           MSTSTOP
                             ;IF CDSLEFT DARK TOO THEN STOP
     BRA
           SKIP
                       ;ELSE SKIP
MSTSTOP
                 STOP
           JSR
     RTS
SKIP
                             ;COLLISION AVOIDANCE
     LDAA IR_LEFT
     LDAB IR RIGHT
     CMPB #98
     BLT
           RLOW
     CMPA #98
     BLT
           GOLEFT
     LDAA IR_LEFT
     LDAB IR RIGHT
     CMPB #250
     BGT
           RHIGH
     CMPA #250
     BGT GOLEFT
     LDAA IR_LEFT
     CMPA IR_RIGHT
      BLT
           GOLEFT
     BRA
           GORIGHT
RHIGH CMPA #250
```

```
BGT
           GOBACK
     BRA
           GORIGHT
RLOW CMPA #98
     BLT
           FORWARD
     BRA
           GORIGHT
GOBACK
           LDY
                #3500
     STY
            MOTOR_LEFT
     LDY
           #2400
     STY
           MOTOR_RIGHT
     JSR
            DELAY
     RTS
GOLEFT
           LDY #3500
                              ;WORKS
     STY
           MOTOR_LEFT
     LDY
           #3500
     STY
            MOTOR_RIGHT
     RTS
LILLEFT
           LDAA CDS_LEFT
     SUBA CDS_RIGHT
     CMPA #150
     BPL
           STR
     LDY
            #3000
                        ;WORKS
     STY
            MOTOR_LEFT
     LDY
            #3500
     STY
           MOTOR_RIGHT
     RTS
GORIGHT
           LDY #2300
     STY
           MOTOR_LEFT
     LDY
           #2400
     STY
            MOTOR_RIGHT
     RTS
LILRIGHT LDAA
                 CDS_RIGHT
     SUBA CDS_LEFT
     CMPA #100
     BLT
           STR
     LDY
            #2300
           MOTOR_LEFT
     STY
     LDY
           #3000
     STY
            MOTOR_RIGHT
     RTS
FORWARD
           LDAA CDS_CENTER ;NO COLLSION, SO FIND DARKNESS
     CMPA #250
     BLT
           STR
                        ;GOSTRAIGHT IF DARK AHEAD
     LDAA CDS_LEFT
     SUBA CDS RIGHT
     BLT
           LILRIGHT
                        ;LEAN RIGHT
     BRA
           LILLEFT
                              :LEAN LEFT
                        STRAIGHT MOTOR VALUES
STR
     LDY
           #2300
     STY
           MOTOR_LEFT
     LDY
            #3500
     STY
           MOTOR_RIGHT
     RTS
STOP LDY
                        ;STOP ROUTINE
            #3000
     STY
            MOTOR_LEFT
            MOTOR_RIGHT
      STY
WAIT4 LDAA SONAR_LEFT ; WAIT FOR PREDATOR
```

```
CMPA #180
     BHI
           DONE4
                       ;DETECT WITH LEFT...RUN!
     LDAA SONAR_RIGHT
     CMPA #180
                       ;DETECT WITH RIGHT...RUN!
     BHI
           DONE4
     BRA
           WAIT4
DONE4 LDY
                       ;BACK UP OUT OF HIDING AND GO...
           #3500
           MOTOR_LEFT
     STY
     LDY
           #2800
     STY
           MOTOR_RIGHT
     JSR
           DELAY
                       ;WAIT TO FINISH BACKING UP...
     RTS
***********
MOTOR_SR
     LDD
           ACTUAL_LEFT
     CPD
           MOTOR LEFT
     BLT
           INCL
     BEQ
           FIXLEFT
     LDD
           ACTUAL LEFT
     SUBD #50
     STD
           ACTUAL_LEFT
     BRA
           FIXLEFT
INCL LDD
           ACTUAL_LEFT
     ADDD #50
     STD
           ACTUAL LEFT
FIXLEFT
           LDD #0
           ACTUAL_LEFT
     LDX
     PSHX
     JSR
           _SERVO
                            ;LEFT
     PULX
     LDD
           ACTUAL_RIGHT
     CPD
           MOTOR RIGHT
     BLT
           INCR
     BEQ
           FIXR
                       :DO NOTHING
     LDD
           ACTUAL RIGHT
     SUBD #50
     STD
           ACTUAL_RIGHT
     BRA
           FIXR
INCR LDD
           ACTUAL_RIGHT
     ADDD #50
     STD
           ACTUAL_RIGHT
FIXR
    LDD
     LDX
           ACTUAL_RIGHT
     PSHX
           _SERVO
     JSR
                            ;RIGHT
     PULX
     BRA MOTOR_SR
************
DELAY LDX
           #5
                       ;APPROX = 2 SEC
OUTER LDY
                       ;4 CYCLES
           #10000
INNER CMPA $00
                       ;3
     DEY
                       ;4
     BNE
           INNER
                       ;3
     DEX
                       ;3
     BNE
           OUTER
                       ;3
```

D	П	ГC

be found in the TJ applications software from Novasoft.