
Thomas Cosenza

EEL 5666

Dr. Keith L. Doty

TA: Scott Jantz

Final Report, 12/12/97

EEL 5666 Thomas Cosenza

Final Report Dr. Keith L. Doty

2

DEDICATION 4

ABSTRACT 5

EXECUTIVE SUMMARY 6

INTRODUCTION 7

THE PHYSICAL 8

Overview of the Physical 8

Parts of the Overall Robot. 8

Power source: 8

Motors: 8

Servos: 9

Sensors: 9

Inferred Detectors (IR) 9

Bump Sensors 9

Cadmium Sulfide Cells (CDS) 9

Collimated IR: 16

THE METAPHYSICAL 17

Overview 17

Behaviors 17

Collision Avoidance 17

Darkness Finding 17

Hole Finding 18

Hole Filling 18

Hole Checking/Flattening 18

EEL 5666 Thomas Cosenza

Final Report Dr. Keith L. Doty

3

Arbitration System 18

CONCLUSION 18

WORKS CITED 19

APPENDIX A- SOFTWARE 20

EEL 5666 Thomas Cosenza

Final Report Dr. Keith L. Doty

4

Dedication

To a fellow Engineer that was taken before his time. Dickens was a graduate of

University of South Florida in the Fall of 1996. Four weeks before graduation he was

diagnosed with Lymph node cancer. I meet him in February when he was told that the

cancer was in remission. We worked together on a project and every day I saw a little bit

of him die every day but he was never down and never shook his fists at god and asked

the question why me he just did his job. Instead of lying down and giving up, he faced

each day with honor and courage. Dickens finally past away in August of 1997He

showed me that nothing was impossible if we were to fight and that life is worth living

and not to worry about tomorrow(even if the robot is due). I will always remember him

and his big ol’ ear to ear smile. Good bye my friend I will see you at some point.

EEL 5666 Thomas Cosenza

Final Report Dr. Keith L. Doty

5

Abstract

This paper is on the design and construction of an autonomous robotic platform for

EEL5666 - Intelligent Machine Design Lab at the University of Florida. The goal of the

project was to create a robot that will act as an autonomous agent that will go around and

fill holes in the ground. The robot will run around and search out dark areas on the

ground. If it finds a "dark area" it will then head towards that area and see if it can pick

up anything. Once at the hole it has several routines that have been built to do the hole

filling and flattening.

EEL 5666 Thomas Cosenza

Final Report Dr. Keith L. Doty

6

Executive Summary

The motivation for this project was the creation of an autonomous agent capable

performing a very dangerous task that is normal preformed by a human. In particular, the

robot is designed to repair an airport runway after an enemy has bombed it.

The critical part of this project was the robot’s ability to find the holes in the ground. By

using two sets of sensors in conjunction the robot can complete this task.

The first way that I approached this problem was by looking at the distinguishing aspects

of a hole. The first one is that a hole has shadow on the inside of it. The other is depth.

Using collimated IR the robot can see the depth of the hole. Finding the darkness of the

hole one must come up with another approach. I developed a way of switching

resistance’s on a stander Cadmium Sulfide Resistor (CDS Cell). The design is easy to

build but the software gets quite complicated.

Along with the above mentioned sensor this autonomous agent has a complete sensor

suite consisting of four analog IR sensors and bump sensors used for obstacle avoidance.

The “brain” of the agent is a memory and I/O expanded MC68HC11E9 evaluation board

from Motorola. The software, including both drivers and behavior code is written entirely

in the Image Craft ‘C’ compiler for the HC11. Includes a master process that occurs at a

regular interval to insure consistency in sensor reading and actuation. A variety of

behaviors are implemented in a subsumption architecture. The following simple

behaviors are implemented: Hole Finding, Hole Filling, Hole Checking, collision

avoidance, and Hole Positioning.

EEL 5666 Thomas Cosenza

Final Report Dr. Keith L. Doty

7

Introduction
During war time airfields may be bombed and suffer damage. People would need

to put their lives in jeopardy to go out and repair these runways. The main task of the
Dickens Rover will be to go out and find those holes and fill them with sand.

The basic problems with this design is can we answer the problem, ”Is there a
hole”. There will also be the normal amount of avoidance behaviors that are part of any
robot and a return to base feature that is still in the brainstorming phase. The hope of this
project is to build a robot that can go out and do many tasks that would otherwise cause
human fatalities.

There are four main behaviors that are involved with the rover. The first one is
collision avoidance. This is a normal behavior that is stated in the syllabus of the class.
Well let’s be honest, it would be a pretty useless although funny robot without this
behavior.

The second behavior is “Find the Hole”. This behavior will have the robot roving
around looking for holes in the ground. If it sees a hole it will then go to the next behavior
“Fill the Hole”. The “Fill the Hole” behavior will have the robot dump sand in the hole
and then try and smooth out the sand.

The final behavior is “Return to Base”. This behavior will be used to have the
robot return after it has run out of sand, more about this later.

The platform of the Dickens Rover is a combination of different things. The
robot’s base is from a Tonka Bulldozer. It has a front servo that will control the blade on
the bulldozer. This will allow the robot to raise and lower the blade to do different tasks.
There are also two motors that will drive the right and left treads that are already part of
the bulldozer. I am going to use the leads off of those motors/servos and hook them into
the HC11 board in some way.

The top of the bulldozer has been removed and I have placed a piece of wood
there as a platform. This is where the Hc11 board will go. I will also place some type of
container in the front of the bulldozer to hold the sand. This container may be half of a
two-liter soda bottle or something to that effect.

Most of the motors/servos are already in place. One place that I will need to add
an extra servo is when the robot goes to “Fill the Hole”. I am going to add a servo to
control the flow of the sand out of the previously mentioned container. When the robot
“Finds a Hole” it will then lift some type of door to allow the sand to flow out the
container. After a fix period of time the robot will shut off this valve and spread the sand
with its blade.

There are several types of sensors that I plan to use. I am going to use IR sensors
and bump sensors to do obstacle avoidance. I also plan to have CDS sensors for doing
hole detection. It is my hope that I can use the ambient light to detect the holes in the
ground. However, since when you smell smoke you still want to be able to see the fire, I
plan to use “End of the World” sensors to give my robot a little more accuracy.

Since the robot will need to know when it is out of sand I am going to have some
type of pressure sensor to tell when the container of sand is empty. The sensor will most

EEL 5666 Thomas Cosenza

Final Report Dr. Keith L. Doty

8

likely go under the storage device. The robot will then need some way of “Finding Base”.
I have not yet decided on what to do for this and since it will be one of the last behaviors
so I will think about it and let you know at a later date.

The Physical

Overview of the Physical

As a great man once said "A rock is the greatest computer in the world, the I/O is just

poorly designed"1. The rover is not the greatest computer in the world but it has an A/D

port and cool features that make it come alive.

Parts of the Overall Robot.

Power source:

Since the motors of the rover were already set to run off of another 6V Battery I

decided that the Rover should have two separate power sources. The first one is the

standard 12V supply that is given out in class. I used eight 1.5 V AA Nickel Cadmium

rechargeable batteries. This set of batteries was the main power for the processor and the

on board 32 K of Ram.

The other battery is a New Bright 6.0 V Nickel Cadmium rechargeable battery.

The only job for this powerhouse was to power the motor driver circuit and the motors for

the treads of the robot.

Motors:

The bulldozer that I purchased for this project already had the motors installed so I

saw no need to change them out. The stall current was .2A which would assure that the

motors will not blow up if they are stressed.

I also had to build a motor driver circuit for the motors. It was a design that I

received from Scott Jantz. I used a 5V DPDT relay and two 2n2222a npn transistors to

build a H-Bridge circuit that will handle any surge.

1 Dr Kenneth Doty, IMDL lecture (see I was paying attention)

EEL 5666 Thomas Cosenza

Final Report Dr. Keith L. Doty

9

Servos:
There is an Aristo Craft Tracker Servo used to open and close a door on the front

of the bulldozer. It is attached to the 12V supply at the point where it is known to be
between 5-7V. The servo use used implemented by using routines from the servo.c and
servo.icb libraries in Interactive C.

Sensors:

Inferred Detectors (IR)

Dickens has 4 analog-modified Sharp IR sensors where there are two mounted on the

front and two others mounted on the rear. These pick up reflections from 40-KHz

modulated IR LED's mounted robot in strategic positions. The four LED’s are connected

in series and driven from a latch at memory location 0x7000 on the ME11.

This sensor arrangement provides necessary information about nearby objects critical to

the implementation of a collision avoidance behavior. This is the method used

throughout the EEL 5666 class, and has proven quite successful. Given reasonable

constraints on the size of the objects (must be higher than the bumper of the robot, and of

significant size) and the reflective properties of the objects, the agent is capable of

detecting obstacles with more than enough time to prevent collisions.

Bump Sensors

There are two bump sensors on the front of the robot. They are pulled high and go low

when they bump some thing.

Cadmium Sulfide Cells (CDS)

 While this sensor is not a new one for EEL5666 - Intelligent Machine Design Lab the

way in which it was implemented was new and innovated even if I do say so myself

A normal CDS cell has two main properties

EEL 5666 Thomas Cosenza

Final Report Dr. Keith L. Doty

10

• Use Voltage to see what the sensor is actually doing. Use R2 to regulate the range of

the sensor

• As Light Levels increase the CDS cell losses it’s resistively

Figure 1

 This sensor basically works as a voltage divider where the voltage will be VDD-Voltage

drop over R. This in it's self is a very useful device when using the Motorola 68HC11

2 See Figure 1

EEL 5666 Thomas Cosenza

Final Report Dr. Keith L. Doty

11

board. You can take that voltage and send it to one of the analog pins in port E on the

board. I have decided to use pin 50 connected by a another analog multiplexer to read the

voltage change. Now there are certain problems towards this approach. The resistance of

the CDS cell has a very large swing in resistance. This swing makes it very easy to

saturate the sensor so that it is effectively blind. The range of the cell would be any where

from:

À Low end 1.5 KΩ
À Normal was about 58 KΩ
À High end 160 KΩ
The next 5 figures illustrate the behavior of this sensor with varying values for R and

stable values of resistance of the CDS.

EEL 5666 Thomas Cosenza

Final Report Dr. Keith L. Doty

12

Figure 2, Saturation Findings at 1.5 KΩ

Figure 3, Saturation Findings at 22KΩ

Voltage/Resistance

0

0.5

1

1.5

2

2.5

3

0 50 100 150 200

Resistance (KOhms)

V
o

lt
ag

e
(V

)

Voltage

Voltage/Resistance

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

0 50 100 150 200

Resistance (KOhms)

V
o

lt
ag

e
(V

)

Voltage

EEL 5666 Thomas Cosenza

Final Report Dr. Keith L. Doty

13

Figure 4, Saturation Findings at 48KΩ

Figure5, Saturation Findings at 68KΩ

Vo lta g e /R e s is ta n ce

0

1

2

3

4

5

6

0 50 10 0 15 0 20 0

R e sista n ce (K O h m s)

V
o

lt
ag

e
(V

)

V o ltage

Voltage/Resistance

0

1

2

3

4

5

6

0 50 100 150 200

Resistance (KOhms)

V
o

lt
ag

e
(V

)

Voltage

EEL 5666 Thomas Cosenza

Final Report Dr. Keith L. Doty

14

Figure 6: Behavior at 150 K Ω.

Figure 6: Behavior at 150 K Ω.

In Table 1 you can see some of the experimentation that occurred when introducing

different amounts of light to the sensor.

Table 1:Observed Effects of CDS Resistor

Resistance (R) Dark Normal Bright

1.5 KΩ Saturation Some Saturation OK

6.8 KΩ Saturation Less Saturation OK

10 KΩ Saturation Can start to use Starting to saturate

22 KΩ Some Saturation OK Saturated

48 KΩ Can Start to use OK Saturated

68 KΩ Ok Starts to Saturate Saturated

100 KΩ Ok Saturated Saturated

150 KΩ Ok Saturated Saturated

Voltage/Resistance

0

1

2

3

4

5

6

0 50 100 150 200

Resistance (KOhms)

V
o

lt
ag

e
(V

)

Voltage

EEL 5666 Thomas Cosenza

Final Report Dr. Keith L. Doty

15

The above figure contains the basic design of the CDS sensor. The chip used above is not

the same mux that I am using to make the sensor array. I am using the 74HC4051 analog

mux. There is a slight amount of resistance to the mux but that should not effect the

sensor too much. This sensors basic design is a resistor network that can be switched to

select different values of resistance.

The software design of this type of sensor is a more important part of this robot then the

actual hardware design.

Flow Chart

Figure 8: Block diagram of code

Start

Init
Sensor

Take
Reading

Darknes

Yes

No

Bright
No

Suggest
Move Towards

Darkness

D_Bordom

Reset D_bordom

Yes

Dark

No

Increment

D_Bord

1

2

No

Yes

Yes

3

3

EEL 5666 Thomas Cosenza

Final Report Dr. Keith L. Doty

16

Figure 8 cont.

The beta code3 for this type has several attributes that you will need to under stand how it

works.

1. I have expended the I/O capabilities of my robot by memory mapping another mux at

address Ox4000 using the lower three data bits to select which of the cds sensors to

select.

2. I am using three different CDS sensors.

3. The version of IC that I am using does not support octal notation.

Collimated IR:

This is just another application of the IR sensor mentioned above. Instead of using a

broad beam of 40kHz light the beam is tightened to a dot. The theory that was later

proved in testing was that by using this method one could see a drop in the floor. The

3 Appendix A

1 Incrament

No

Bright

3

2

Yes

EEL 5666 Thomas Cosenza

Final Report Dr. Keith L. Doty

17

hypothisis was that the drop would have to go all the way down to 80% of the normal

reading but it was later determined that it was only 95% (a 5% drop).

The Metaphysical

Overview

As in any entity there must not only be an existence but a purpose. The rover has a

stated purpose and has behaviors to match. So there has to be some type of coding

method that has to be used. I decided to implement the waterfall model when writing the

code. This process is slightly longer then just a functional approach and found it to be

effective for results but too long to implement for this class. I myself wish that I would

have just used the simpler functional approach.

Behaviors

A number of simple behavior routines were written to take advantage of the sensors and

actuators implemented on the agent.

Collision Avoidance

This behavior is the essential element of the robots self-preservation instinct. Too actually

write this code I went walking on the North Lawn to see how I would look at the world if

I could only see three feet or less in front of me. I realized that if I had another task on

my mind I would go and avoid the obstacle and then continue. I decided to use hard line

rules since they were simple to implement. I use the combination of this behavior and the

dark finding behavior to determine direction.

Darkness Finding

This behavior is used to point the robot in the right direction. While you really will not

see this part of the code work directly I have proven in the second demo of this year that

the behavior or better yet, tendency is there for the robot to head towards darkness. This

behavior uses the CDS cells.

EEL 5666 Thomas Cosenza

Final Report Dr. Keith L. Doty

18

Hole Finding

This is a routine that will actually see the change in depth of a hole. The routine is

implemented by using the collimated IR. Once the routine sees a hole it returns a

Boolean true to the calling function.

Hole Filling

This routine is called after the robot finds a hole. It use two other sub behaviors position

and dump. I call this a sub behaviors because without one you can not have the other.

The position of the robot takes the last set of data and traces back to the last known

position of land. After it considers itself over the hole it then starts to dump material in

too the hole using the servo routines.

Hole Checking/Flattening

After the robot fills the hole it goes ahead and smooth out the stuff around the hole. After

that is competed it then checks the hole to see if it is full and then takes the proper action

if it sees a hole still

Arbitration System

The robot stays in collision avoidance or darkness finding during most of its running

time. This gives a preference for moving forward. If the bump sensors were to go off or it

were to find a hole the other behaviors. I would like to make this more of a mathematical

approach and I believe that it can evolve into that.

Conclusion

The development of Dickens Rover has reached the stage where it satisfies the criterion

set forth in the EEL 5666 syllabus. The robot has a complement of 4 sensors: analog IR

detectors, Bump sensors, collimated IR. Finally, four main behaviors have been

successfully implemented on the platform: collision avoidance, darkness finding, hole

filling, and finally hole checking.

EEL 5666 Thomas Cosenza

Final Report Dr. Keith L. Doty

19

A number of improvements could be made to the hardware of the robot. First, a more

complete array of IR detector/emitter pairs should be placed on the robot and integrated

into the behaviors. These should be mounted allow the robot to make better decisions

when roving.

The code written for the agent is not yet fully mature. It could be improved in a number of

ways. First, the motor control and collision avoidance routines could be improved to take

advantage of the work done by Dr. Keith Doty and Scott Jantz in non-linear dynamics

control of small autonomous agents. Further, the arbitration network could be improved

by the integration of a neural. Also, implementing a simple local mapping algorithm

would dramatically increase the sophistication of the agent’s hole finding ability. Also the

addition of a home base and a way that the robot would know that it was full could be an

improvement.

Works Cited

 [2] Drew Bellesar. Final Report: Hacking the Hero.

IMDL Final papers, http://www.mil.ufl.edu. 1996

[3] M68HC11 Reference Manual

Motorola 1991

[4] MC68HC11E9 Technical Data

Motorola 1991

[5] High-Speed CMOS Data

Motorola 1993

* Special thanks to Ian A Arroyo for his help during crunch time. Also special

thanks to the TA’s of the class for putting up with me through the first ten weeks.

EEL 5666 Thomas Cosenza

Final Report Dr. Keith L. Doty

20

Appendix A- Software
/* This is the main routine for the obstical avoidence routine

There are four behaviors that are involved with this automaktone:
they are
1) Obstical Avoidence
2) Find hole
3) Fill hole
4) Check to see if the hole is filed
There are 5 files that are included before the
arbatrator is added.
The files are Motor.c,obstical.c,finddark.c, findhole.c
common.c these will all be included in this file due
to failures of IC compiler. In icc11 I would suggest
breaking up these packets*/
/*arbatrator constants*/
int expanded_IO = 0x4000;
/*arbatrator variables*/
int motorr[5],motorl[5],urg[5]={0,0,0,0,0},dark_bord=0;
/*Arbatrator routines*/
/*Drive Motors use an Exponental approach to reving up the motors*/
void drivemotors(int left, int right, int urgency) {
 int i;
 lmotor += urgency*(left - lmotor)/100;
 rmotor += urgency*(right - rmotor)/100;
 motor(0,lmotor);
 motor(1,rmotor);
 sleep(0.05);
}
/*Reverse course is a routine that will allow the robot to back up if
there is trouble*/
void reverse_course(){
int i;
drivemotors(0,0,100);
for(i = 0; i<3; i++){

if(irsensor[1] < nthresh){
drivemotors(-30,-90,32);

}
else{

if(irsensor[2] < nthresh){
drivemotors(-90,-30,32);

}else{
drivemotors(-90,90,65);

 }}}}

/* obstical avoidence routines*/
/* Motor control/object avoidance
 by Thomas Cosenza

 Sensors: 0 3

 1 4 (Could not fit at2)

 Motors: 0 1

*/

EEL 5666 Thomas Cosenza

Final Report Dr. Keith L. Doty

21

/* constants */

/* Global Variables */
int irsensor[4]; /*IR Array */
int vfthresh = 105, lowthresh = 95;
int nthresh = 125, fthresh = 115;

/*masks */
int vnl = 0x80, nl = 0x40, fl = 0x20,vfl = 0x10;
int vnr = 0x8, nr = 0x4, fr = 0x2,vfr = 0x1;

/*IR will look at all of the IR sensors
and store in the IR sensor array*/

void ir() {
 int i;
 for (i=1;i<=4;i++) {
 irsensor[i-1] = (analog(i-1));
 }
 irsensor[2] = analog(4);
}

/*Much to the chagrin to one of the TA’s in the class I have decided
that I would use if then else statelments for the robot. Note ic does
not have case statement this is the reason why I did it this way*/
int read_front() {
int i,direction = 0;
ir();
/*check the right side*/
if(irsensor[3] > nthresh) {direction |= vnr;} /*case really close on the
right*/
else if(irsensor[3] <= nthresh && irsensor[3] >= fthresh) {direction
|=nr;} /*case that we are close */
 else if(irsensor[3] <= fthresh && irsensor[3] >= vfthresh)
{direction |= fr;} /*case that we can see something not close*/

 else if(irsensor[3] <= vfthresh && irsensor[3] >= lowthresh)
{direction |= vfr;} /*case unsure how close maybe nothing*/

 else if(irsensor[3] < lowthresh) {direction |= 0;} /*case
of nothing seen*/

/*check the left side*/
if(irsensor[0] > nthresh) {direction |= vnl;} /*case really close on the
right*/
else if(irsensor[0] <= nthresh && irsensor[0] >= fthresh) {direction
|=nl;} /*case that we are close */
 else if(irsensor[0] <= fthresh && irsensor[0] >= vfthresh)
{direction |= fl;} /*case that we can see something not close*/

 else if(irsensor[0] <= vfthresh && irsensor[0] >= lowthresh)
{direction |= vfl;} /*case unsure how close maybe nothing*/

 else if(irsensor[0] < lowthresh) {direction |= 0;} /*case
of nothing seen*/
return(direction);
}

/* changes speed to required values for lmotor and rmotor. Change is
 more gradual when urgency is smaller. */

void object_avoid_init(){

EEL 5666 Thomas Cosenza

Final Report Dr. Keith L. Doty

22

 poke(0x7000,0xff); /*Turn on IR emmiters */
}
void object_avoid_behavior () {
 int i, sensor, next=100;
 sensor = read_front(); /*Read the IR Sensors */

if(sensor == 0x88)/*Danger to close*/
{
 drivemotors(0,0,100);
 motorl[0] = -101;
 motorr[0] = -101;
 urg[0] = 100;
 return;
}
if((sensor & vnl)||(sensor == 0x44))/*Case that we are near to

colition on the left*/
{
 motorl[0] = 100;
 motorr[0] = -35;
 urg[0] = 65;
 return;
}
if(sensor & vnr)/*Case that we are near to colition on the right*/
{
 motorl[0] = -35;
 motorr[0] = 100;
 urg[0] = 65;
 return;
}
if(sensor & nl)/*Case that we are near on the left*/

 {
 motorl[0] = 100;
 motorr[0] = 10;
 urg[0] = 45;
 return;
}
if(sensor & nr)/*ase that we are near on the right*/

 {
 motorl[0] = 10;
 motorr[0] = 100;
 urg[0] = 45;
 return;
}
if(sensor & fl)/*Case that we see something on the left*/

 {
 motorl[0] = 95;
 motorr[0] = 60;
 urg[0] = 23;
 return;
}

if(sensor & fr)/*Case that we see something on the left*/
 {

 motorl[0] = 60;
 motorr[0] = 95;
 urg[0] = 23;
 return;
}
 urg[0] = 10;

EEL 5666 Thomas Cosenza

Final Report Dr. Keith L. Doty

23

 motorr[0] = 75;
 motorl[0] = 75;

}

/*CDS Routines */
/* This is code that will control the CDS cells */
/* this is code version 1-2 level c*/
/* Bits 00 000 000

 NA Sensor Selector

Selector
000 = Right Sensor
010 = Left Sensor
001 = Center

Sensor
000 = 1.5KOhm
001 = 6.5KOhm
010 = 10 KOhm
011 = 22 KOhm
100 = 46 KOhm
101 = 68 KOhm
110 = 100KOhm
111 = 150KOhm

*/

/*Cds Sesors

Front
2 1 0
Rear

*/

/*Constants*/
int shift = 0x8;/*shifting property of the resistornet*/
/*Vars Global*/
int minrange[3]; /* minimum range */
int maxrange[3];/* maximum range */
int cds_value[3];/*Cds resistor */
int current_value[3];/*current value of the sensor*/
int motordelta_left;
int motordelta_right;
int lmotor=0,rmotor=0;
int light_bordom = 0;

/* min takes two integers and returns the lesser of the two unless they
are
equal then it will return the second value*/

int min(int a, int b)
{
 if(a<b){
 return a;
 }
return b;
}

EEL 5666 Thomas Cosenza

Final Report Dr. Keith L. Doty

24

int max(int a, int b)
{
 if(a>b){
 return a;
 }
return b;
}

/* Init values takes no arguments and initilizes all global variables*/
void init_cds()
{
int current = 0;
int value;
while((current & 3) != 3){/* look through all values of the cds
sensors*/
 poke(expanded_IO,current);
 value = analog(7); /* Get value at the sensor*/
 if(value > 150){ /*Tolerence is from 125- 175 for the start*/
 if((current & 0x38)==0x38) /*Check to see if it is really dark */

{ cds_value[current&3]= 0x7; /*put the value of the resistor in
the slot*/

 current &= 3;/*clear the reistor value*/
 current++;/*Increment the lower octet which is the cds

selector*/
}

 else{
 current += shift; /*go to the next highest resistor value*/
 }

 }
 else{
 maxrange[current&3] = (int)((float)(255-value)*.2 +
(float)value);
 minrange[current&3] = (int)((float)value -(float)value * .2);
 cds_value[current&3] = (current&0x38)>>3;
 current++; /* Go to the next Sensor */
 current = current & 0x03; /*Clear the resistor value*/
 }
}
}

/*read cds pokes the location 4000 with the to
switch to each of the cds cell of the given sensor*/
int readcds(int sensor)
{poke(expanded_IO,((cds_value[sensor]<<3)|sensor));/*or the sensor with
the current resistor found by the cds init routine*/
return(analog(7));/*return the value of that sensor*/
}

int find_the_dark()
{
int direction;
 if(maxrange[0] < current_value[0] &&
 maxrange[1] < current_value[1] &&
 maxrange[2] < current_value[2]){
 motordelta_left=100;
 motordelta_right=100;

EEL 5666 Thomas Cosenza

Final Report Dr. Keith L. Doty

25

 light_bordom++;
 return(-1);
 }

light_bordom=0;
 if(minrange[0]<=current_value[0] && maxrange[0]>=current_value[0] &&
 minrange[1]<=current_value[1] && maxrange[1]>=current_value[1] &&
 minrange[2]<=current_value[2] && maxrange[2]>=current_value[2])
 {
 motordelta_left = 75;
 motordelta_right = 75;
 return(1);
 }
 if(maxrange[0] < current_value[0]){
 if(maxrange[1] < current_value[1]){
 direction=decide_direction(0,1);
 if(direction == -1){

 motordelta_left = 0;
 motordelta_right = 100;
 return(1);
 }

 if(direction == 0){
 motordelta_left = 100;
 motordelta_right = 100;
 return(1);
 }

 if(direction == 1){
 motordelta_left = 100;
 motordelta_right = 0;
 return(1);
 }

}
 else if(maxrange[2] < current_value[2])

 {
 motordelta_left = 100;
 motordelta_right = 100;
 return(1);

 }
 else {

 motordelta_left = 0;
 motordelta_right = 100;
 return(1);
}}

 if(maxrange[1] < current_value[1]){
 if(maxrange[2] < current_value[2]){
 direction=decide_direction(2,1);
 if(direction ==-1){

 motordelta_left = 10;
 motordelta_right = 100;
 return(1);
 }

 if(direction == 0){
 motordelta_left = 100;
 motordelta_right = 100;
 return(1);
 }

 if(direction == 1){

EEL 5666 Thomas Cosenza

Final Report Dr. Keith L. Doty

26

 motordelta_left = 100;
 motordelta_right = 10;
 return(1);
 }}

 else{
motordelta_left = 100;
motordelta_right = 100;
return(1);
}

 }
 if(maxrange[2] < current_value[2]){
 motordelta_left = 100;
 motordelta_right = 0;
 return(1);
 }
motordelta_left = 0;
motordelta_right = 0;
return(0);
}

int decide_direction(int sena,int senb){
 int need;
 need = find_change((float)((255-current_value[sena])/(255-
maxrange[sena])),(float)((255-current_value[senb])/(255-
maxrange[senb])));
 return(need);
}

int find_change(float delta_one, float delta_two)
{
 if(delta_one == delta_two)
 {
 return 0;
 }
 if(delta_one < delta_two)
 {
 return 1;
 }
 return -1;
}

void darkness_behavior(){
int i;
int flag;

for(i=0;i<3;i++){/*get all cds values*/
 current_value[i]=readcds(i);
 }
flag=find_the_dark();
if(flag==1){
 motorr[1] = motordelta_right;
 motorl[1] = motordelta_left;
 urg[1] = 75;
 return;
}

EEL 5666 Thomas Cosenza

Final Report Dr. Keith L. Doty

27

if(flag == -1)
 {
 if(light_bordom >=1000)
 {
 init_cds();/*reinitialise cds values*/
 light_bordom = 0;
 }
 }
 motorr[1] = 0;
 motorl[1] = 0;
 urg[1] = 0;

 return;
}

/*Bump Sensor */
/* this is the detection algorithm for a bump detection
I am taking the involentary resonse method to this */
/* bump sensors are wired to the analog ports 5 & 6*/

int bumped_something(){
if(analog(5) > 100 && analog(6) > 100)/*check to see if nothing is hit*/
{
 motorl[3]=motorr[3]=0;/*no danger no urgency*/
 urg[3] = 0;
 return(0);
}

return(1);
}

/* Robot Darkness Code Level 1.1 */
/* Definitions*/
int shift_dark=3;
int mask =7;

/*Global Variables*/
int dark_tol[3];

/* Check to see what the current depth is */
void init_depth(){
int i;
for(i=0;i<3;i++)
{
 poke(expanded_IO,i+shift_dark);
 dark_tol[i] = (int)((float)(analog(7)-80)*.95 + 80.0);
}
}

/*Take a reading of the current depth*/

int read_depth(){
int i,reading=0;

for(i=0;i<3;i++){
 poke(expanded_IO,i+shift_dark);
 if(analog(7)<dark_tol[i]){

EEL 5666 Thomas Cosenza

Final Report Dr. Keith L. Doty

28

 reading = reading | 1 << (2-i);
 }
}
return(reading);
}

/*This is the Stub for depth perception*/
int foundhole(){
return(read_depth());
}

/*arbtrator main*/

void init_robot(){
object_avoid_init();
init_cds();
init_depth();
}

void position(){
while(foundhole()){
drivemotors(-100,-100,10);
}
drivemotors(0,0,100);
}

void wait_for_it(int stop){
 int i;
 for(i=0;i<stop;i++){
 i=i+0;
 }
 }

/*Dump returns no values and opens the door and dumps the pellets.
 You will need to load lib_rw10.c servo.icb servo.c then this code*/
void dump(){
int close = 180;
int open = 0;
servo_on();
servo_deg((float)open);
wait_for_it(5000);
servo_deg((float)close);
wait_for_it(1000);
servo_off();
}

void flatten(){
int i;
for(i=0;i<10;i++){
 drivemotors(10,100,45);
 sleep(.2);
 }
for(i=0;i<10;i++){
 drivemotors(-10,-100,45);
 sleep(.2);

EEL 5666 Thomas Cosenza

Final Report Dr. Keith L. Doty

29

 }
for(i=0;i<10;i++){
 drivemotors(100,10,45);
 sleep(.2);
 }
for(i=0;i<10;i++){
 drivemotors(-100,-10,45);
 sleep(.2);
 }
}
/*rev takes the motors and gets them up to speed gently*/
void rev(int left,int right,int urg,int speed){
 int i;
 for(i=0; i< speed;i++){

 drivemotors(left,right,urg);
 wait_for_it(1000);

 }
 drivemotors(left,right,100);
}

void fillhole(int reading){
int i;

if((reading & 2) == 0){
 if(reading & 1){

rev(50,0,35,5);
drivemotors(50,0,100);
sleep(1.5);

}
else{

rev(0,50,35,5);
drivemotors(0,50,100);
sleep(1.5);

}
 }
 rev(0,0,30,4);
 position();
 dump();
 flatten();
 }

void main(){
int priority[4]={100,75,300,250};/*Array for priority
(Obs,CDS,Bump,Hole);*/
int Right,Left,Urg,denom,i,mask;

init_robot();
while(1){

if(bumped_something()){
/* reverse_course();

sleep(1.0);
write("Bumped\n");
put_char(13);*/

}
else{

if(mask = foundhole()){/*add found hole here*/
fillhole(mask);

}

EEL 5666 Thomas Cosenza

Final Report Dr. Keith L. Doty

30

else{
Right = Left = Urg = 0;
object_avoid_behavior();
darkness_behavior();

/*This is a very cheesy */
if(urg[0]*priority[0]>urg[1]*priority[1]){
 Right = motorr[0];
 Left = motorl[0];
 }
 else{
 Right = motorr[0];
 Left = motorl[1];
 }
if(urg[0]*priority[0]>priority[1]*urg[1]){
 Urg = urg[0];
 }
else{
 Urg=urg[1];
 }
drivemotors(Left,Right,Urg);

 sleep(1.0);
 if(Left < 0 && Right <0){
 sleep(2.0);
 }
 }}}}

