
One-Armed Bandit:
A retrieval robot

By

Thomas R. Harrington

2

Table of Contents

Table of Contents………………………………………………………………………….2

Abstract……………………………………………………………………………………3

Introduction………………………………………………………………………………..4

Robotic Arm Hardware……………………………………………………………………5

Mini SSC II PCB……………………………………………………………………...5

Testing Data…………………………………………………………………………..6

Robotic Arm Software……………………………………………………………………8

General Control………………………………………………………………………8

Wrist Position Algorithm…………………………………………………………….9

Conclusion………………………………………………………………………………10

Appendix A (lynxarm.c)………………………………………………………………...11

3

Abstract

Bandit, a beacon retrieving robot, is made up of a TALRIK platform, EVBU M68HC11
with 32k of expanded memory, and a robotic arm manufactured by Lynxmotion, Inc.
The sensors used on this robot are front/rear bump sensors, a collimated IR detector, and
four general IR sensors. The behaviors are obstacle avoidance, collision avoidance,
beacon acquire, and beacon capture. The bump sensors are used for collision detection in
order to implement the collision avoidance behavior. The four IR sensors are involved in
the obstacle avoidance and beacon acquire behaviors--the dual role of these sensors
provides for less hardware and more complicated software. The collimated IR detector
allows the robot to position itself in order to carry out the beacon capture behavior. All of
these behaviors were implemented through C code compiled by Interactive C. Finally,
Bandit uses two gear head motors (hacked servos) and wheels for propulsion.

4

Executive Summary

The robot One-Armed Bandit is a beacon-retrieving robot. It is a simple robot

that satisfies the requirements of the Intelligent Machine Design Lab. These requirements

include four sensors, as well as four integrated behaviors. The complete system designed

and built allows the robot to wander around in its environment (searching for a beacon

signal) and interact with the objects it encounters.

For this course, the four sensors were collision-avoidance bump sensors, obstacle-

avoidance/beacon-acquire IR sensors, a beacon-capture collimated IR detector, and a

beacon-capture robotic arm. The four behaviors are collision avoidance, obstacle

avoidance, beacon acquire, and beacon capture. There are four IR sensors mounted on

the mobile platform along with 10 micro-switches in order to implement the obstacle-

avoidance/beacon-acquire and collision-avoidance behaviors. The robotic arm is mounted

on a platform above the mobile platform and the collimated IR detector is mounted on the

robotic arm’s gripper.

5

Introduction

The objective of this project was to design a robot that would be able to retrieve a

beacon. This report starts with a general overview of the robot’s functions. It then

proceeds to discuss the physical systems of the robot including the robotic arm used to

pick up the beacon. From there, the sensors used on the robot are discussed and

explained. Finally, the behaviors that the robot exhibits and the experiments performed

are discussed.

Integrated System

The robot consists of two basic subsystems tied together by the M68HC11

microcontroller. These are the mobile platform and the robotic arm. The mobile

platform consists of a TALRIK body with four IR detectors mounted on the top around

ther perimeter in the front, back, left, and right positions. Underneath, there are a total

eight IR LED’s also mounted on the perimeter--two LED’s are positioned below each IR

detector. Also mounted on the underside is the battery pack, two casters (front and back),

and two “hacked” servomotors each connected to one wheel. Mounted around the edge

of the mobile platform is an acrylic bumper and 10 bump switches—five in front and five

in back. The bump switches are use to detect collisions while the IR sensors are used to

detect obstacles and the beacon.

The robotic arm functions as the retrieval system for this project by reaching out

and grasping the beacon once the mobile platform is in range of the beacon. The arm

consists of five servomotors, the Mini SSC II PCB servomotor controller, and a physical

structure made of plastic PVC tubing and plastic foam board. The following list denotes

the servomotor distribution to the joints of the arm:

6

• Shoulder—2 servo’s
• Elbow—1 servo
• Wrist—1 servo
• Gripper—1 servo with pushrod

Figure 1 shows the arm mounted to a base. Bandit’s arm is not mounted to this

base, but rather to the mobile platform. The Mini SSC PCB is visible below the wrist

joint and next to the shoulder joint. The pushrod is the cable seen connected to the

gripper and disappearing behind the elbow joint.

Figure 1

The arm is designed and sold by Lynxmotion, Inc.

Actuation

Wheel Motors

Two motors were used to drive the robot. The motors are hacked MS410 Servos.

The servos were hacked by removing the circuit board in them and cutting the stop on

one of the gears. They were then mounted to the underside of the TALRIK board.

7

One problem encountered with running these motors at the same speed was that

the robot would travel in a severe arc. After experimenting with different speeds, I found

that the robot traveled close to straight by running both the motors at 30%.

Robotic Arm Controller

The robotic arm uses the Mini SSC II PCB servomotor controller to control its

motion. Figure 2 depicts the Mini SSC II with the important components identified. An

important modification was made to the controller by cutting the trace depicted. Since

this application does not use a base servomotor, channel #0 (a spare channel) trace was

cut and then tied to channel #1. This action alleviated the necessity of splicing together

the two servos moving the shoulder joint. This combination of channels for the shoulder

joint is illustrated along with the other joint control channels in Fig. 2.

Shoulder Channels (Channel #0 & #1 tied)

Cut this trace

Elbow (Channel #2)

Wrist (Channel #3)

Gripper (Channel #4)

Baud rate select

Range of motion select

Serial Input

PCB power Servo power

Figure 2

The following list defines the other functions depicted in Fig. 2:

• Range of motion select—Jumper on selects 90º ROM for servos (jumper off 180º)
• Baud rate select—Jumper on selects 9600 (Bandit’s setting), jumper off selects 2400
• PCB power—9 VDC

8

• Servo power— 4.8-6 VDC

• Serial input—Mini SSC II accepts only input (Rx line).

The serial input accepts servo-position-control data in three bytes of data with the

following format:

<sync. byte> <servo #> <position>

The <sync. byte> equals 255 decimal, the <servo #> equals the servo number to be

moved, and the <position> equals the position where the servo is to be moved.

NOTE: these numbers are not in ASCII format, but byte format.

Sensors

Overview

The sensors on the robot consist of four IR detectors, eight IR LED’s, 10

microswitches, and a collimated IR detector. The obstacle sensor is comprised of the

four IR detectors along with the eight IR LED’s. The collision sensor is made up of the

10 microswitches and the acrylic bumper. The acquire sensor consists of the same four

IR detectors used in the obstacle sensor. The collimated IR detector along with the

robotic arm constitutes the capture sensor.

Obstacle Sensor

On the robot there are four Sharp IR detectors facing outward. They are mounted

on the TALRIK platform in the front, rear, left, and right. These sensors are hacked so

that an analog reading can be taken from them. On the underside of the robot, two IR

LED’s are attached underneath each IR detector and are pointing 45 degrees from the

center lines of the robot. The idea behind the sensor is that if there is an obstacle the IR

from the LED’s would be reflected off the object and into the IR detector, signaling that

9

there is an obstacle. These IR detectors were connected to the following A/D pins on the

EVBU:

• Front—PE4
• Back—PE5
• Left—PE6
• Right—PE7

The LED’s were connected to the ME11 digital output port.

Note: the acquire sensor uses these same IR detectors to detect a beacon signal and will be discussed in the
Behaviors section.

Collision Sensor

This sensor consisted of a front bump sensor (PE0) and a back bump sensor

(PE1)—each using five switches. Both of the sensors were constructed identically, so

only one will be described in detail. The front bump sensor used a resistor ladder

network of 10K, 50K, 100K, 150K, and 200K resistors. These resistors made a voltage

divider circuit in which the output was connected to the EVBU’s A/D. With each

different combination of closing switches came different output voltages. With this

knowledge the robot could tell which side of it collided with an object and react

accordingly.

Capture Sensor

The collimated IR detector (PE3) along with the robotic arm constitutes this

sensor. The IR detector is collimated with a 0.5” tube to give it a narrow range of vision.

This detector is scanned horizontal and vertically to give until the beacon is right in front

of it—thereby positioning the robotic arm precisely from picking up the beacon.

10

Behaviors

Obstacle Avoidance/Beacon Acquisition

The robot takes 35 samples per IRD to detect if there is an obstacle or a beacon

signal. The reason for taking 35 samples is because the IR beacon signal is 8 Hz (period

of approx. 120ms) and in order to ensure that an entire period is sampled, a 16 Hz

sampling rate is required (approx. 35 samples). With these samples, the robot takes the

maximum values and subtracts the minimum values—called delta.

The robot will avoid an obstacle if delta is below threshold1 and the max value of

the IRD is above thershold2. Threshold1 would be zero ideally, but ranges between 0

and 3 in reality. Threshold2 is the value of an IRD with no beacon signal present and an

obstacle placed 5” in front of the IRD. These threshold values were obtained

experimentally.

The robot will follow the beacon if the delta is above threshold2. The robot

zigzags to the beacon until an IRD registers at a saturation value, then the Beacon

Capture behavior takes over.

Beacon Capture

Once the beacon is in range of the robot, the robot will spin in place scanning the

collimated IR detector horizontally until the beacon is directly in front of it. Next, the

robotic arm will scan the collimated IR detector vertically until it is at the same level as

the beacon. Once positioned precisely the arm will implemented a pre-arranged set of

motions to pick up the beacon.

11

Collision Avoidance

If the robot bumps into an object, the bump sensor will register a value telling the

robot where it collided. Knowing this information, the robot will execute the best

reaction to the collision event in order skirt the object.

Experimental Results

The servomotors in the joints of the robotic arm do not behave identically;

furthermore, they all have different characteristic values. Table 1 shows the maximum

and minimum position values for 90º and 180º range of motion.

 Table 1
Joint Range of Maximum Minimum

Motion Position Position

Shoulder 90º 225 25
Elbow 90º 225 20
Wrist 90º 254 1
Gripper 90º 180 40

Shoulder 180º 180 40
Elbow 180º 175 70
Wrist 180º 250 25
Gripper 180º 170 90

These values are illustrated in the following bar graph (Figure 3). The robot only uses a

90-degree range of motion.

12

Figure 3

The purpose in using this data is to supply the M68HC11 with maximum and minimum

values for joint positions in order not to hurt the arm.

Conclusion

This robot performed collision avoidance and obstacle avoidance well, but did not

behave very well when beacon acquisition was introduced. There was irreconcilable

conflict between obstacle avoidance and acquisition. If I had known earlier that there

was 32 kHz IRD available, I would have used these for beacon acquisition in order to

alleviate the previously mentioned conflict. Beacon Capture never came to fruition

because the Beacon Acquire never worked well enough.

225

25

225

20

254

1

180

40

0

50

100

150

200

250

300

P
o

si
ti

o
n

Shoulder Elbow Wrist Gripper

Joint

Robotic Arm Joints Max./Min. for 90º Range of
Motion

13

Documentation

J. L. Jones and A. M. Flynn, “Mobile Robots: Inspiration to implementation,” A. K.
Peters, ltd., Wellesley Ma, 1993.

F. G. Martin, “The 6.270 Robots Builder’s Guide” , F. G. Martin, 1992.

Motorola, MC68HC11 EVBU User’s Manual, Motorola, Inc., 1992

Appendix

/********************************/
/* COLLISION AVOIDANCE */
/* by THOMAS R. HARRINGTON */
/* */
/* INPUTS: front_bmp, rear_bmp */
/* OUTPUTS: bmp_move */
/* FLAGS: bmp_flg */
/********************************/

/* GLOBAL VARIABLES FOR COLLISION AVOIDANCE */

 int bmp_move;
 int bmp_flg = 0;
 long bmp_dur;

/* COLLISION AVOIDANCE PROCESS */

 void avoid_collision() {
 while(1) {

 if(front_bmp != 0 || rear_bmp != 0) {

 if(front_bmp != 0) {
 if(front_bmp < 70 || front_bmp >= 85 && front_bmp < 100 ||
front_bmp > 130 && front_bmp < 145) {
 bmp_move = REV_RGT;
 bmp_dur = 2000L;
 }
 else {
 bmp_move = REV_LFT;
 bmp_dur = 2000L;
 }
 }

 else {
 if(rear_bmp < 70 || rear_bmp >= 85 && rear_bmp < 100 ||
rear_bmp > 130 && rear_bmp <145) {
 bmp_move = FOR_LFT;
 bmp_dur = 2000L;
 }

14

 else {
 bmp_move = FOR_RGT;
 bmp_dur = 2000L;
 }
 }

 bmp_flg = 1;
 }

 else {
 bmp_flg = 0;
 }

 defer();
 }
 }

/********************************/
/* OBSTACLE AVOIDANCE */
/* by THOMAS R. HARRINGTON */
/* */
/* INPUTS: */
/* OUTPUTS: obst_move */
/* FLAGS: obst_flg */
/********************************/

/* GLOBAL VARIABLES FOR OBSTACLE AVOIDANCE */

 int obst_thr = 104;
 int obst_flg = 0;
 int obst_move;
 long obst_dur;

/* OBSTACLE AVOIDANCE PROCESS */

 void avoid_obstacle() {
 while(1) {

 if(max_front > obst_thr && delta_front < 3) {

 if(max_lft > obst_thr && delta_lft < 3 && max_rgt > obst_thr &&
delta_rgt < 3) {
 obst_move = TURN_RGT;
 obst_dur = 1000L; /*180 deg.*/
 }

 else if(max_rgt > obst_thr && delta_rgt < 3) {
 obst_move = TURN_LFT;
 obst_dur = 600L;
 }

 else {
 obst_move = TURN_RGT;
 obst_dur = 600L;
 }

15

 obst_flg = 1;
 }

 else {
 obst_flg = 0;
 }

 defer();
 }
 }

/********************************/
/* BEACON ACQUIRE */
/* by THOMAS R. HARRINGTON */
/* */
/* INPUTS: */
/* OUTPUTS: acq_move */
/* FLAGS: acq_flg */
/********************************/

/* GLOBAL VARIABLES FOR BEACON ACQUIRE */

 int acq_flg = 0;
 int acq_move, acq_max;
 long acq_dur;

/* BEACON ACQUIRE PROCESS */

 void bcon_acquire() {
 while(1) {

 if(delta_front > 4 || delta_rear > 4 || delta_lft > 4 ||
delta_rgt > 4) {

 acq_max = max_front;
 if(acq_max < max_rear) acq_max = max_rear;
 if(acq_max < max_lft) acq_max = max_lft;
 if(acq_max < max_rgt) acq_max = max_rgt;

 if(acq_max == max_front) {
 acq_move = FORWARD;
 acq_dur = 0L;
 }
 else if(acq_max == max_rear) {
 acq_move = TURN_RGT;
 acq_dur = 1000L;
 }
 else if(acq_max == max_lft) {
 acq_move = TURN_LFT;
 acq_dur = 600L;
 }
 else {
 acq_move = TURN_RGT;
 acq_dur = 600L;
 }

16

 acq_flg = 1;
 }

 else {
 acq_flg = 0;
 }

 defer();
 }
 }

/*GLOBAL VARIABLES FOR LYNXARM*/

 int dest_pos[6];
 int act_pos[]={0,125,125,125,0,125};

 /*VARIABLES FOR 90ø RANGE OF ARM MOTION*/

 int home[]={0,225,255,140,0,180};
 int max[]={0,225,225,254,0,180};
 int min[]={0,25,20,1,0,40};

/*SUBROUTINES FOR LYNXARM CONTROL*/

 void bend_joint(int joint, int position) {
 int sync=255;

 if (position < min[joint]) position=min[joint];
 if (position > max[joint]) position=max[joint];

 put_char(sync);
 put_char(joint);
 put_char(position);
 }

 void bend_arm(int position[]) {
 int i;
 for (i=5; i>=1; i--) bend_joint(i, position[i]);
 }

 void init_serial(int baud) {
 bit_clear(0x1028, 0x20);
 poke(0x102D, 0x0C);
 if (baud==9600) poke(0x102B, 0x30);
 if (baud==2400) poke(0x102B, 0x32);
 }

 void put_char(int outchar) {
 int test = 0;
 while (test == 0) {
 test = peek(0x102E);
 test = test & 0x80;
 }
 poke(0x102F, outchar);
 }

17

/********************************/
/* MAIN CONTROL PROGRAM */
/* by THOMAS R. HARRINGTON */
/* */
/* INPUTS: */
/* OUTPUTS: */
/* FLAGS: */
/********************************/

/* GLOBALS FOR MAIN PROGRAM */

 int move;
 long duration;

/* ARBITRATOR PROCESS FOR MAIN PROGRAM */

 void arbitrator() {
 while(1) {

 if(bmp_flg) {
 move = bmp_move;
 duration = bmp_dur;
 }
 else if(obst_flg) {
 move = obst_move;
 duration = obst_dur;
 }
 else if(acq_flg) {
 move = acq_move;
 duration = acq_dur;
 }
 else {
 move = FORWARD;
 duration = 0L;
 }

 steer();
 defer();
 }
 }

/* MAIN CONTROL PROGRAM */

 void main() {
 init_serial(9600);
 bend_arm(home);
 start_process(sensor_input(), 1000);
 start_process(avoid_collision(), 1000);
 start_process(avoid_obstacle(), 1000);
 start_process(bcon_acquire(), 1000);
 start_process(arbitrator(), 1000);
 }

/********************************/

18

/* SENSOR INPUT */
/* by THOMAS R. HARRINGTON */
/* */
/* INPUTS: < None > */
/* OUTPUTS: front_bmp, rear_bmp,*/
/* max_front, max_rear,*/
/* max_rgt, max_lft, */
/* arm_ird */
/* */
/* FLAGS: < None > */
/********************************/

/* GLOBAL VARIABLES FOR SENSOR INPUTS */

 int i;
 int N = 34;
 int front_bmp, rear_bmp;
 int front_ird[35], rear_ird[35], lft_ird[35], rgt_ird[35];
 int max_front, max_rear, max_lft, max_rgt;
 int min_front, min_rear, min_lft, min_rgt;
 int delta_front, delta_rear, delta_lft, delta_rgt;

/* SUBROUTINES FOR SENSOR INPUT PROCESS */

 int maximum(int value[]) {
 int max = value[0];
 for(i=1; i<=N; i++) {
 if(max < value[i]) max = value[i];
 }
 return max;
 }

 int minimum(int value[]) {
 int min = value[0];
 for(i=1; i<=N; i++) {
 if(min > value[i]) min = value[i];
 }
 return min;
 }

/* SENSOR INPUT PROCESS */

 void sensor_input() {
 while(1) {

 poke(0x7000, 0xff);

 front_bmp = analog(0);
 rear_bmp = analog(1);

 if(front_bmp == 0 && rear_bmp == 0) {

 for(i=0; i<=N; i++) {
 front_ird[i] = analog(4);
 rear_ird[i] = analog(6);
 lft_ird[i] = analog(7);
 rgt_ird[i] = analog(5);

19

 }

 max_front = maximum(front_ird);
 max_rear = maximum(rear_ird);
 max_lft = maximum(lft_ird);
 max_rgt = maximum(rgt_ird);

 min_front = minimum(front_ird);
 min_rear = minimum(rear_ird);
 min_lft = minimum(lft_ird);
 min_rgt = minimum(rgt_ird);

 delta_front = max_front - min_front;
 delta_rear = max_rear - min_rear;
 delta_lft = max_lft - min_lft;
 delta_rgt = max_rgt - min_rgt;
 }

 defer();

 }
 }

/********************************/
/* STEERING SUBROUTINES */
/* by THOMAS R. HARRINGTON */
/* */
/* INPUTS: */
/* OUTPUTS: */
/* FLAGS: */
/********************************/

/* GLOBALS FOR STEERING SUBROUTINE */

 int left = 1;
 int right = 0;

 int STOP = 0;
 int FORWARD = 1;
 int FOR_RGT = 2;
 int FOR_LFT = 3;
 int REV_RGT = 4;
 int REV_LFT = 5;
 int TURN_RGT = 6;
 int TURN_LFT = 7;

 float lft_speed, rgt_speed;
/* float act_lft_speed, act_rgt_speed;*/

/* STEERING SUBROUTINE */

 void steer() {

 if(move == STOP) {
 lft_speed = 0.0;
 rgt_speed = 0.0;
 }

20

 else if(move == FORWARD) {
 lft_speed = 30.0;
 rgt_speed = -30.0;
 }
 else if(move == FOR_RGT) {
 lft_speed = 30.0;
 rgt_speed = -10.0;
 }
 else if(move == FOR_LFT) {
 lft_speed = 10.0;
 rgt_speed = -30.0;
 }
 else if(move == REV_RGT) {
 lft_speed = -30.0;
 rgt_speed = 10.0;
 }
 else if(move == REV_LFT) {
 lft_speed = -10.0;
 rgt_speed = 30.0;
 }
 else if(move == TURN_RGT) {
 lft_speed = 30.0;
 rgt_speed = 30.0;
 }
 else if(move == TURN_LFT) {
 lft_speed = -30.0;
 rgt_speed = -30.0;
 }

 drive_motors();
 msleep(duration);
 }

/* void drive_motors() {

 int k;
 float inc_lft, inc_rgt;

 inc_lft = (lft_speed - act_lft_speed) / 10;
 inc_rgt = (rgt_speed - act_rgt_speed) / 10;

 for(k=0; k < 10; k++) {
 act_lft_speed += inc_lft;
 act_rgt_speed += inc_rgt;
 motor(left, act_lft_speed);
 motor(right, act_rgt_speed);
 }
*/
 void drive_motors() {
 motor(left, lft_speed);
 motor(right, rgt_speed);
 }

