
University of Florida
Department of Electrical Engineering

EEL 5666
Intelligent Machines Design Lab

NavBot (Final Report)
by

Kenton Newby

Instructor: Dr. Antonio A. Arroyo

2

Table of Contents

Abstract Page 3

Executive Summary Page 4

Introduction Page 5

Integrated System Page 6

Mobile Platform Page 6

Actuation Page 7

Sensors Page 8

Behaviors Page 14

Conclusion Page 15

Appendix 1: Robot Program Code Page 16

Appendix 2: Beacon Program Code Page 24

3

Abstract

NavBot is a mobile, autonomous agent controlled by the Motorola 68HC11
microcontroller. Its primary function is navigation from place to place by triangulating
off of three beacons. To accomplish this, the robot is equipped with multiple IR emitters
to communicate with the beacons and several sonar transducers to receive sonar pulses
from the beacons. NavBot operates by sending a certain number of IR pulses to request a
beacon to pulse its sonar. The beacons each only respond to a specific number of IR
pulses. Once the robot sends its IR pulses, it starts a timer. Once the beacon receives the
IR pulses, it sends a sonar signal. The time it takes for the sonar to get back to the robot
is how the distance is calculated.

4

Executive Summary

NavBot consists of a Motorola MC68HC11 EVBU board and the ME11 expansion

boards. Along with these boards, a special board was constructed which contains the

components for the IR cannon circuit. NavBot’s purpose is to navigate from place to

place within a room by triangulating off of three beacons. Two sensors let NavBot

respond to obstacles-IR and bump. The IR sensors allow the robot to detect objects at a

distance and allow it to avoid bumping into an object altogether. The bump switches

were incorporated as a back up system to the IR in case the IR happens to fail for some

reason. The beacons consist of a Mekatronix MSCC11 single-chip board, an IR receiver,

and a sonar transmitter circuit. The IR receiver allows the beacons to recognize when the

robot wants their sonar pulse to be sent.

Once the robot is ready to receive a pulse of sonar from a particular beacon, it turns on its

32kHz IR cannon and pulses them a specific number of times. The number of times the

IR cannon is pulsed depends on the beacon that is being requested. The IR cannon’s

emitters are arranged in such a manner such that the IR signal is transmitted in a complete

circle. Once the robot sends the IR pulses, it starts its timer.

The beacons quietly (sonar off) wait for an IR pulse to be received. Once the first IR

pulse is received, the beacon begins to count all subsequent pulses for a given length of

time. Once that time has elapsed, the beacon compares the number of pulses counted to

the its beacon number. If the two are not equal, it resets its counter and continues to wait

for another IR pulse to restart the entire process. If that comparison does show the two

values to be the same, then the beacon turns on its sonar. It then turns the sonar off,

resets the count, and awaits another IR pulse to start the process again.

5

Introduction

NavBot is an experiment in one of the most challenging aspects of robotics-robot

navigation. It explores the feasibility of using beacons with both sonar and IR to let a

robot calculate its position within a room. A system such as this has many potential uses.

For instance, in an industrial environment, robots could be used to load and unload

supplies. The robot could be preprogrammed with the positions of its destinations and

could avoid any objects that it would encounter along the way. This is but one example

where a system like this would be useful. However, almost any situation where a robot

would be used for extended periods of time and where it would remain in the same

general settings could benefit from this type of system.

The main objectives of the project were to build a robot that could function in its

environment by using the basic collision avoidance and bump detection algorithms. Then

I wished to expand its functionality by giving it the ability to move from a specific point

to any other point within a room. Three beacons mounted in the corners of the room

would define the room. This would allow for a user to preprogram the path that the robot

was to take. Using its collision avoidance and bump detection, combined with its

knowledge of where it is at any given instant, the robot would be able to make it safely

from point “A” to point “B”.

6

Integrated System

NavBot is made using the Talrik Platform as its main body. This platform supports both

the MC68HC11 and the ME11 expansion boards. Eight Nickel-Cadmium batteries

power the robot and two hacked servos provide the robot motion. A wide array of

sensors were planned for NavBot including the following:

Sensor Primary Function #

40kHz IR Emitters Collision Avoidance 4

40kHz Hacked IR Detectors Collision Avoidance 3

Micro Switches Bump Detection 7

Sonar Transducers Sonar Reception 6

32kHz IR Cannon Beacon Communication 8

Total Number of Sensors 28

The beacon also consists of several parts. The main part of the beacon, and that which

provides all the control, is the MSCC11 single-chip board. Connected to this board are a

sonar transmitter circuit and an IR receiver.

Mobile Platform

NavBot’s body is constructed from the Talrik pattern and provides plenty of support for

all the parts required for the robot. This platform also has plenty of room for expansion

of the basic design in case extra sensors or other items need to be added later on. The

robot still remains light enough to not wear out the motors too quickly as well, which is a

nice feature that wasn’t exactly planned but proved beneficial. The circular shape also

makes it easy for the robot to negotiate its way into tight spots and not get stuck.

7

Actuation

Two hacked servos provide the propulsion for the robot. These are the only actuation

mechanisms. A stop on the servos had to be removed to allow it to spin in a complete

circle, thereby providing continuous rotation. This basically created a gearhead DC

motor. A non-powered wheel provides support in the rear of the robot. The ME11 board

uses an H-bridge to control the motors. This dual motor system yields a robot that can

turn about its own axis, which is a great feature if you need that maneuverability. It also

decreases the complexity of the design and isn’t too expensive to implement.

A motor control algorithm was used to smooth the operation of the motors and prevent

jerking as the direction changed. The algorithms two main functions are an increment

and a decrement function. These functions increment and decrement the speed of the

motor by a small amount with the final result of making a smoother operating curve than

the almost square curve found without such changes. These two functions are shown

below:

Increment: new_speed = 1 / (1-k)n+1 * old_speed

Decrement: new_speed = (1-k)n+1 * old_speed

Caution has to be taken when using the decrement function however because this

equation never gets to zero. Therefore, if you want the robot to stop, you have to wait

until you get “close enough to zero”, with that term being defined by the programmer.

8

Sensors

NavBot’s primary sensors are the three IR sensors mounted on the front of the robot. The

sensors were altered from their original design so that they would provide an analog

signal to the MC68HC11 instead of the original analog signal. The sensors are facing

outward from the robot with one in the center and the other two about 45 degrees left and

right of the centerline.

All three sensors are fed into an individual analog port on the MC68HC11. These values

can be directly interpreted by the software and provide most of the collision avoidance

data for the robot.

NavBot also has bump switches mounted along its outside edge. There are five mounted

in the front of the robot and the others are mounted in the rear. The switches were

mounted using hot glue. The switches are connected to a resistor network, which is

shown below:

Figure 1. Bump Switch Resistor Network

9

Each switch, or combination of switches, produces a different value on the A/D port.

This, in turn, lets the robot know which switch was pressed so it can respond accordingly.

The robot is able to use this design to determine if has accidentally run into some object

that the IR detectors did not pick up. This could happen, for instance, if the object is dark

in color or if the IR receiver gets knocked out of position somehow.

The main function of NavBot is to perform the navigation function mentioned earlier. To

perform that, the robot uses a sonar receiver circuit borrowed from Michael Apodaca’s

final IMDL report. The circuit shown below was the one found in that report and used on

NavBot.

Figure 2. Sonar Receiver Circuit

10

The circuit consists of a Maxim MAX266 IC, which acts as a resistor controlled filter for

the signal, which is input by the sonar transducer. The output of the MAX chip is run

through a comparator whose output is a digital output roughly between 0 and 5 volts.

This circuit produced extremely good results under somewhat surprising circumstances.

For instance, during a test in the lab, when the receiver was mounted at one end of the

table and the transmitter was at the other (about 15-20 ft away), a student did not realize I

was testing and proceeded to use the phone. The phone was placed directly in front of

my sonar transmitter and when I started to ask him to move it, I noticed that the signal on

the oscilloscope had not changed. Apparently the sonar receiver would receive even if

something were directly in front of the transmitter. The only time this was not the case

was when the transmitter was completely covered, say by your hand, so that there was no

gap inbetween it and the object covering it. This makes sense since the sonar transmitter

is using sound and sound can bend around objects. This is one of the main reasons for

using sonar for beacon navigation.

Six of these sonar transducers were mounted around the robot so that it could listen in a

complete circle. It turns out that the sonar transducers are rather directional, with a

useable arc of only 60 degrees or so.

The other circuit used on the robot is the IR cannon circuit. This is used to provide

communication between the robot and the three beacons. The IR cannon was used so that

the IR signal could travel farther, otherwise, the size of the room would be limited. The

IR cannon requires a 32kHz signal to modulate the LED’s. This ensures that their signal

does not interfere with the collision avoidance, which operates at 40kHz. However, the

signal is actually set at about 28kHz because the 40kHz IR receivers have a wide enough

11

bandwidth to still pick up 32kHz. The 28kHz center frequency is too low for them to

pick up, but is still within the bandwidth of the IR receivers used on the beacon. This is

how the two systems operate without interfering with one another. The 32kHz signal was

generated using a 555 timing IC and various other components. It was powered by one

of the leftover MC68HC11 pins so that the robot could control when it turned on the IR

cannon and could therefore control the pulsing of the cannon. Both the 32kHz generator

and the IR cannon circuit itself are shown in the following figures:

Figure 3. 32kHz Signal-Generating Circuit

12

Figure 4. IR Cannon Circuit

Discussion of the system’s sensors cannot be considered complete without mentioning

the beacons themselves. Even though they only have one sensor (by the strict definition),

they play an integral part in the overall operation of the system. The beacon has a 32kHz

IR detector that is kept in its original digital form. The beacon also has a sonar

transmitter circuit borrowed from the same final report as the sonar receiver. The sonar

transmitter is shown on the following page.

13

Figure 5. Sonar Transmitter Circuit

It should be noted, however, that the transformer in the above diagram is connected

backwards. It may not seem so by looking at the circuit diagram, but as many of us

found out in lab this semester, the above wiring will not work correctly. Once switched,

however, this circuit worked very well. The 40kHz signal needed for this circuit was

produced by using the same method used to get 40kHz IR signals on the TJ mobile agent.

However, instead of the IR LED, a sonar transducer was connected to the PORTB pin 2.

The sonar transmitter and receiver worked extremely well by themselves. However,

getting multiple receivers to work at the same time proved very challenging. I was

unable to get the six receivers on the robot to work so I was unable to have the robot

listen in the 360 degrees required. In hindsight, it would have probably been easier to

simply build six sonar receiver circuits.

14

Behaviors

The main behavior for NavBot is navigation using information from three beacons and

triangulating off of those beacons. This function would work in the following manner:

The robot would send a series of IR pulses out in a circle, which would be received by all

three beacons. The number of IR pulses sent would be (n+1), where n is the number of

the beacon to be requested. The IR would be pulsed on for 1ms, off for 2ms. This means

that the longest time the IR would be sent for (assuming beacon 3, so four pulses) would

be 12ms. Once the robot sent the IR pulses, it would start a timer. The beacons would

start off by looking for an IR pulse. They would have a counter that starts at -1 and

increments each time a pulse is received. After the first pulse, the beacon would start a

timer and would listen for 12ms. After that time had elapsed, the beacon would compare

the number of pulses counted to its own individual beacon number. If the two were

equal, it would send a sonar pulse back to the robot. If not, it would reset the counter and

start the process all over again. The robot would wait for the sonar pulse to be received

and would then stop the timer and calculate the distance based on the time it took. Both

reception systems (on the robot and the beacons) would use the input capture subsystem

and would look for the rising edges of those signals.

I believe this algorithm is feasible, but I also think there may be a better way to

accomplish this same goal. This is simply because this design is a bit limited in the size

of the room that can be used and the conditions under which the robot must operate (for

instance, it wouldn’t work outside as well as it would indoors)

15

Conclusion

NavBot’s main purpose was to navigate using the three beacons placed in the corners of a

room. However, the fact that I could not get the beacon and the robot to work together

very well wound up being a major stumbling block for my project. For this reason, my

robot as of right now cannot perform the navigation function. The motor control portion

of the final design works very well and was one of my main goals for the robot. Afterall,

smoother motion would yield better operation overall and longer battery life. However,

this hardly compensates for the fact that I could not get the robot and beacons to work

together. I think if anyone decides to do this type of project, they should have a crystal

clear design in mind. One of my problems was that I kept changing my mind on how

exactly I wanted to do it. With all the tools at an engineer’s disposal, it is up to them to

decide which ones are best for a given job. I suggest that this decision be made before

the semester starts! This is one thing I would do differently if I had it to do all over

again. I would also like to incorporate some sort of interactivity into the design as well.

For instance, maybe a remote control system where each key pressed on the remote

makes the robot go to a different place in the room. Imagine the possibilities! I might

also change the way in which the robot triangulates off of the beacons, if I found a better

way than IR/sonar that would work in various locations fairly well.

16

Appendix 1: Program Code for NavBot

int too_close=115;
int six_inches=110;
int twelve_inches=100;

int diff=10;
int irmin=90;

int left;
int right;
int center;
int bump;

int r_motor=0;
int l_motor=1;

float init_speed;
float final_speed;
float n=0.0;
float old_speed;
float new_speed;
float x;
float k=0.05;
float stopped=1.0;
float speed;

float incr_speed(float old){
 if (old == 0.0){
 old=1.0;
 }
 x=(1.0/(1.0-k)^(n+1.0));
 new_speed=x * old;
 n++;
 old_speed=new_speed;
 return new_speed;
}

17

void go_fwd (float old_speed, float final_speed)
{
 speed=incr_speed(old_speed);
 motor(r_motor,speed);
 motor(l_motor,speed);

 while(speed < final_speed){

 speed=incr_speed(old_speed);
 if (speed > final_speed){
 speed=final_speed;
 }
 motor(r_motor,speed);
 motor(l_motor,speed);
 }
 n=0.0;
}

float decr_speed(float old){
 x=((1.0-k)^(n+1.0));
 new_speed=x * old;
 n++;
 if (new_speed < 1.0)
 new_speed=0.0;
 old_speed=new_speed;
 return new_speed;
}

18

void go_back(float final_speed, int delay_time){
 if (old_speed == 0.0){
 old_speed = 1.0;
 }

 if (old_speed < 0.0){
 old_speed= -old_speed;
 }

 if (final_speed < 0.0){
 final_speed= -final_speed;
 }

 speed=incr_speed(old_speed);
 motor(r_motor,-speed);
 motor(l_motor,-speed);

 while(speed < final_speed){
 speed=incr_speed(old_speed);

 if (speed > final_speed){
 speed=final_speed;
 }

 motor(r_motor,-speed);
 motor(l_motor,-speed);
 }
 n=0.0;
 wait(delay_time);
}

void wait (int milli_seconds)
{
 long timer_a;

 timer_a = mseconds() + (long) milli_seconds;
 while (timer_a > mseconds()) {
 defer();
 }
}

19

void read_sensors()
{
 right=analog(0);
 center=analog(1);
 left=analog(2);
 bump=analog(3);
}

void turn_right(float final_speed, int delay_time)
{
 speed=incr_speed(old_speed);
 motor(r_motor,-speed);
 motor(l_motor,speed);

 while(speed < final_speed){
 speed=incr_speed(old_speed);

 if (speed > final_speed){
 speed=final_speed;
 }

 motor(r_motor,-speed);
 motor(l_motor,speed);
 }
 old_speed=speed;
 new_speed=speed;
 n=0.0;
 wait(delay_time);
}

20

void turn_left(float speed, int delay_time)
{
 speed=incr_speed(old_speed);
 motor(r_motor,speed);
 motor(l_motor,-speed);

 while(speed < final_speed){
 speed=incr_speed(old_speed);

 if (speed > final_speed){
 speed=final_speed;
 }

 motor(r_motor,speed);
 motor(l_motor,-speed);
 }
 old_speed=speed;
 new_speed=speed;
 n=0.0;
 wait(delay_time);
}

void halt (int delay_time)
{
 if (old_speed < 0.0){
 old_speed= -old_speed;
 speed=decr_speed(old_speed);
 motor(r_motor,-speed);
 motor(l_motor,-speed);

 while(speed != 0.0){

 speed=decr_speed(old_speed);
 motor(r_motor,-speed);
 motor(l_motor,-speed);
 }
 }/*end if speed < 0.0*/

 if (old_speed > 0.0){
 speed=decr_speed(old_speed);
 motor(r_motor,speed);
 motor(l_motor,speed);

21

 while(speed != 0.0){

 speed=decr_speed(old_speed);
 motor(r_motor,speed);
 motor(l_motor,speed);
 }/*end while*/
 }/*end if speed > 0.0*/

n=0.0;
wait(delay_time);
}

void avoid()
{
 while(1){
 poke(0x7000,0xff);
 wait(1);
 read_sensors();

 if (bump!=0){
/* if ((bump==7) || (bump==8) || (bump==1) || (bump==2)){
 halt(1);
 go_fwd(old_speed,100.0);
 }*/

 if (bump>=15){
 halt(1);
 go_back(-25.0,500);
 halt(1);
 turn_right(25.0,1000);
 go_fwd(old_speed,50.0);
 }
 }/*end if bump!=0*/

 if (bump==0){
 if (center < twelve_inches){

 if ((left > irmin) && (left > right+diff)){
 turn_right(100.0,0);
 go_fwd(old_speed, 50.0);
 }
 else

22

 if ((right > irmin) && (right > left+diff)){
 turn_left(100.0,0);
 go_fwd(old_speed, 50.0);
 }
 else

 if ((left < right+diff) && (left > right) && (right < left+diff) &&
 (right > left)) {
 go_fwd(old_speed, 100.0);
 }
 } /* end if center greater than 12in */

 if ((center >= twelve_inches) && (center < six_inches)){

 if ((left > irmin) && (left > right+diff)){
 turn_right(50.0,0);
 go_fwd(old_speed,25.0);
 }
 else

 if ((right > irmin) && (right > left+diff)){
 turn_left(50.0,0);
 go_fwd(old_speed,25.0);
 }
 else

 if ((left < right+diff) && (left > right) && (right < left+diff) &&
 (right > left)) {
 go_fwd(old_speed,50.0);
 }
 } /* end if center btwn 6in and 12in */

 if (center >= six_inches && center < too_close){

 if ((left > irmin) && (left > right+diff)){
 turn_right(25.0,0);
 go_fwd(old_speed,15.0);
 }
 else

 if ((right > irmin) && (right > left+diff)){
 turn_left(25.0,0);
 go_fwd(old_speed,15.0);
 }

23

 else

 if ((left < right+diff) && (left > right) && (right < left+diff) &&
 (right > left)) {
 go_fwd(old_speed,25.0);
 }
 } /* end if center between too_close and 6in */

 if (center >= too_close){
 halt(50);
 go_back(-25.0,500);
 halt(50);
 turn_right(15.0,1000);
 go_fwd(old_speed,50.0);
 }/* end if center is too_close */

 }/*end if bump==0*/

 }/*end while(1)*/

}/*end avoid()*/

void main()
{
 go_fwd(stopped,100.0);
 wait(250);
 start_process(avoid());
}

24

Appendix 2: Program Code for Beacons
(uses slightly altered TJ code)

#include <hc11.h>
#include <mil.h>
#include <analog.h>
#include <irtj.h>
#include <int32.h>
#include <vectors.h>

#define PERIOD 40000 /*Period = 20ms*/

#pragma interrupt_handler irread2;
void irread2();

int beacon_num=3; /*BEACON NUMBER*/
int counter=0;
int pulse_count=-1;
int analog_value2[8];
int i;
long t;
int BIT2=0x04;

extern INT32 time2;

void
msleep(t) /*Created 7/21/94 Chuck McManis */
int t; /* number of milleseconds to sleep */
{

unsigned int i;

asm(" sei");
 i = LO_WORD(time2) + t;

asm(" cli");
 while (i > LO_WORD(time2)) ;

return;
}

25

/* void init_ir2()
 Will initialize the interrupt-driven ir readings for TJ. OC3 will be used
 for timing control

*/

void init_ir2()
{

int i;

INTR_OFF();

for (i = 0; i < 9; i++)
 analog_value2[i] = 0;

TOC3 = 10000;
CLEAR_BIT(TCTL1, 0x30); /* Interrupt will not affect OC3 pin */
SET_BIT(TMSK1, 0x20); /* Turn on OC3 interrupt */
INTR_ON();

}

/* sonar_pulse() modulates PORTB, bit 0 sonar transducer at 40kHz */
void sonar_pulse()
{

asm("ldaa #1\n"
"ldy #255\n" /* 2*(# of IR pulses) */
"staa 4100\n"); /* 4100 = Port B */

asm("loop2 : ldaa 4100\n" /* 4 cycles - necessary */
"eora #1\n" /* 2 cycles - necessary */
"staa 4100\n" /* 4 cycles - necessary */
"nop\n"
"nop\n"
"nop\n" /* 8 cycles */
"next2 : nop");

asm("dey\n" /* 4 cycles - necessary */
"bne loop2"); /* 3 cycles - necessary */

/* total = 25 cycles = 40 kHz*/
asm("ldaa 4100"); /* Clear Port B - Turn LEDs off */
asm("anda #254");
asm("staa 4100");

}

/*Calls the modulator and then reads the analog ports */
/* Care should be taken since it also kills interrupts
 for that period of time2*/

26

/* irread2() is the interrupt handler */

void irread2()
{ pulse_count=-1;

TCTL2=0x10; /*Set IC1 to capture rising edges only*/
 if (TFLG1 & BIT2){

 t=TIC1;
 CLEAR_FLAG(TFLG1, 0x40); /*Clears IC1 flag*/
 pulse_count++;
}/*end if*/

while (TCNT < t+0x5DC0){ /*Look for pulses for 24000 cycles(12ms)*/
 if (TFLG1 & BIT2){
 CLEAR_FLAG(TFLG1, 0x40); /*Clears IC1 flag*/
 pulse_count++;
 }/*end if*/
 }/*end while
}/*end if*/

}
void main()
{
 irread2();
 if (pulse_count==beacon_num)

 sonar_pulse();
}

