
IMDL Final Report

By

Tim McGraw

December 09, 1998

2

Table of Contents

Title Page 1

Table of Contents 2

Abstract 3

Executive Summary 3

Introduction 3

Integrated System 4

Mobile Platform 6

Actuation 7

Sensors 7

Behaviors 9

Experimental Methods & Results 11

Conclusion 14

Appendices 15

3

Abstract

 The robot, Heather, was designed to play a game of croquet. The design consisted of
several phases:

• Integrated System: the processor and supporting electronics capable of
running the game-playing algorithms and reading the necessary sensors.

• Mobile Platform: the mechanical platform capable of moving about the field
of play, and striking the ball.

• Sensors: information gathered from the environment needs to include ball
detection, wicket detection, and collision detection.

• Behaviors: the software written to command the platform based on internal
state and sensor readings.

Executive Summary

 Heather was designed to play croquet. Electronically, the system consists of a 68HC11
EVBU board with an ME11 expansion. The mechanical platform is a two-wheel drive
system with a servo actuator mounted underneath to strike the ball.

 Infrared was used for ball and wicket detection. An IR cannon is mounted on the
platform and the intensity of reflected IR is analyzed to detect the ball. The wicket has an
IR cannon mounted on top, and cross-view IR sensors on top of the platform are read to
determine which direction to shoot the ball. A wheel-encoder system was designed to
count rotations of the platform.

 The game-playing behavior was developed in four steps: find ball, approach ball, find
wicket, and strike ball. Additional processes run in the background to read the sensors
and provide motor control.

Introduction

 The goal of the robot is to play a game of croquet. The object of the game is to strike a
ball through a target (called the wicket) in as few strokes as possible. This involves
solving several problems:

• Possible long-range ball detection: What sensors to use? How should the data
be analyzed? How should the sensors be physically arranged?

• Long-range wicket detection: Same as above.

• Ball actuation: What mechanism should be used to strike the ball?

4

• General mobile platform concerns: How to avoid obstacles and detect
collisions?

 The design of the system will be presented in the following report in several sections,
each concentrating on one phase of the implementation: the electronic architecture of the
system, the physical platform, the actuators used, the sensors used, and the behaviors
programmed into the robot. The complete code will appear in the Appendix.

Integrated System

 A complete functional block diagram of Heather’s integrated system appears in Figure
1. The three main components are the 68HC11 EVBU board, the ME11 expansion
board, and a group of expanded input and output ports. Inputs to each subsystem are
shown on the left, and outputs on the right.

Figure1: Integrated System.

All but one of the connections to the 6811 are analog inputs. These consist of CdS cells
and analog IR sensors. The line following array came about as an attempt to match the
left and right motors. This feature never functioned as desired, and will not be further

5

discussed in the body of this report, except for the line-following and CdS cell self-
calibration code in the appendix. The lone output of the 6811 is used as the control signal
for the servo actuator.

 The 6811 is mated to the ME11 board. This board provides ample RAM, motor drivers,
40kHz modulated outputs, and additional address-select lines which greatly simplify
expanded memory-mapped I/O.

 The expanded inputs provide ports for a digital IR sensor, several bump switches. The
outputs drive a piezo buzzer, and the wheel encoder LED. Inputs and outputs are
required to do the raster scan of the keypad.

 This integrated system meets the locomotive, processing/memory, and I/O needs of the
robot with room for future expansion.

6

Mobile Platform

 The mobile platform design chosen for Heather is shown in Figure 2.

Figure 2: Heather Mobile Platform

 In Section A-A, the ball is shown in front of the platform to show the relation between
sensor placement and ball size. At the rear of the platform is an IR sensor at ball-level.
This detector will be used to located the ball as it is illuminated by the IR cannon. In this
position the detector is shielded from ambient light. Another IR detector, with a
matching emitter, is placed at the front of the platform. This detects when the platform
has reached the ball, and if the ball is escaping from the platform while the beacon is

TOP VIEW SECTION A-A

SIDE VIEWFRONT VIEW

BOTTOM VIEW

IR EMITTER

IR DETECTOR

CdS CELL

A

A

ACTUATOR

7

being searched for. When the ball breaks the beam, it is correctly placed for striking by
the actuator. The bumper is placed so that the ball will just barely pass underneath.

 A pair of detectors on top of the platform are arranged in cross-view fashion for
beacon detection. Not shown in the figure is the wheel encoder, which is located behind
the right-hand wheel.

 The material for the body of the platform is ¼” oak plywood, and is nearly too heavy for
the servos to support. This should be taken into account in any future work.

Actuation

 The only type of actuator used in the implementation of the robot are servo motors.
Two have been hacked to act as gearhead DC motors. The third is the actuator used to
strike the ball and is mounted beneath the platform. This is connected to full battery
voltage for power, and the 6811 output compare subsystem for control.

 The selected servos are Futaba S-148’s (38 in*oz at stall). This is adequate for
locomotion, but is not fast enough for ball actuation over carpet. A high-speed servo, or
some intermediate mechanism will be required in the future for longer range.

Sensors

 Only three types of sensors were required to achieve the goals of Heather. These are IR
detectors (analog and digital), CdS cells, and bump switches.

• The bump switches are used for collision detection, and don’t contribute to
game play.

• The IR detectors are used to detect IR emitted from the beacon, and reflected
from the ball.

• The CdS cells are used for line-following, and one is integrated into a wheel-
encoding device.

 Although the wheel encoder is not fundamental to my robot’s purpose, it can solve
several problems:

1. Detect motor stall. Small obstacles in the path of the robot can pass under the
bumper and jam the motors, resulting in high motor currents. This is
detrimental to the motor, and to battery life.

2. Allow motor commands to use “real-world” units. The rate of drive motor
rotation depends on battery voltage and the surface being driven on. Although
the wheel encoder cannot account for slippage, it can account for battery

8

voltage, and surface incline. This is more desirable than a time-based motor
command.

 I propose to solve these problems with a low cost, and easily mounted CdS cell system.

 The CdS cell is simply a variable resistor that is controlled by light. The greater the
intensity of incident light, the lower the resistance. The only circuitry required to use the
CdS cell is a voltage divider (between 5V and ground) and an A/D converter tapped to
the center of the divider.

Figure 3: The Voltage Divider Circuit

 One foreseeable problem associated with this application of the CdS cell is that the
cell’s voltage is not only a function of the intensity of light, but also of time. The
resistance across the leads of the device may not change as quickly as the light intensity.
This limits the number, and width of the stripes used to encode the wheel.
 The effect of ambient light level may limit the effectiveness of the cell. To minimize
this effect, the device was mounted in a block of plywood thick enough to partially shade
the cell as shown in Figure 4.

Figure 4: Mounted CdS Cell

+5V

GND

220 k

CdS Cell

To A/D

9

Behaviors

 The highest level behavior is, of course, game-playing. This is broken into four phases
as shown in Figure 5 below.

Figure 5: Game playing Behavior.

The ball finding algorithm (detailed below) and approach ball behaviors are
repeated until the BALL_FOUND flag is set. This flag is set in the approach ball behavior
when the ball detecting beam is broken. If no ball is found, this behavior times out after
3 seconds. The beacon finding (detailed below) and ball striking behaviors are executed
sequentially, then the ball finding phase is entered again.

 The ball finding behavior consists of several concurrent processes as shown below in
Figure 6. The primary behavior consists of two phases.

• Find the maximum reflected IR in one revolution of the platform. This
requires a concurrent process that reads the wheel encoder to determine when
one rotation has been achieved.

• Continue rotating until an IR reading close to the maximum has been found.
To ensure that this process eventually ends, that maximum is decremented

1

2

1

2

3

4

1. Find Ball

2. Approach Ball

3. Find Beacon

4. Strike Ball

10

after every revolution. To differentiate between the ball and the beacon, when
a maximum is found the platform stops and take another reading after 500 ms.

Figure 6: The Ball Finding Behavior

 The beacon finding algorithm is summarized in Figure 7. This behavior also involves
several concurrent processes.

• Rotate the platform until a greater IR reading is found opposite the direction
of rotation. When this occurs, decrement and reverse the speed of rotation.

• Decrement the speed every 5 seconds, regardless of IR readings.

• If the ball detection beam is broken, scoot forward for 200 ms.

• Check exit condition (speed < 5.0).

READ IR
TURN CW,START

Max = m

IR < Max

STOP

Time >= 500 ms

DONE

READ IR

IR >= Max

IR >= Max

Time < 500 ms

1 2

3

1. Start, Max = 0
2. After one turn Max = m
3. IR ~ m

IR < Max

Max = Max - 1 after every revolution.
Concurrent Process

11

Figure 7: Ball Detection Behavior.

Experimental Methods and Results

 A number of experiments were required during the design of Heather’s wheel encoder.
Although the resolution that “real” wheel encoders are capable of was not required for
this application, I wanted to optimize the simple design discussed in the Sensors section
of this report.

 For the first experiment a short test program was written to turn on the motors at 50%
power and take 100 readings from the analog port. This program was run under normal
room lighting, and again in darkness. The results are shown in Figure 8.

TURN CW
@ SPEED S @ SPEED S

TURN CCW

S = S - 1

S = S - 1

DONE

S < 5

S < 5

S >= 5

S >= 5

IR[L] >> IR[R]

IR[R] >> IR[L]IR[L] <= IR[R]
IR[R] <= IR[L]

START
S = 40.0

1. Decrement S every 5 sec.
Concurrent Processes

2. Keep ball trapped.

12

Figure 8: Experiment 1 Results

 The result of experiment one show very poor response in low light conditions. The
design of the device was changed at this point. An LED was integrated into the package
to provide a constant source of light. This was driven by a digital output port. The test
program was run again under normal and low light levels. The results are shown in
Figure 9.

Figure 9: Experiment 2 Results

CdS Cell Response

0

50

100

150

200

250

300

1 11 21 31 41 51 61 71 81 91

Sample #

A
/D

 (
C

d
S

)
Low ambient light

Normal ambient light

Min: 228
Max: 241
Range: 13

Min: 48
Max: 92
Range: 44

CdS Cell Response

0

20

40

60

80

100

120

140

160

1 11 21 31 41 51 61 71 81 91

Sample #

A
/D

 (
C

d
S

)

Low ambient light

Normal ambient light

with LED

Min: 37
Max: 135
Range: 98

Min: 25
Max: 63
Range: 38

13

 This experiment showed better sensor response in darkness than in normal room
lighting. At worst, the device is capable of about a 5 bit range.

 The next experiment was designed to optimize the width and number of stripes used to
encode the wheel. The test program was run again with the three wheel configurations
shown in Figure 10. The narrow stripes are 1/8” wide, and the wide stripes are ¼” wide.

Figure 10: Stripe Configurations for Experiment 3

 The results of the three trials are shown below.

CdS Cell Response with 4 Wide Segments

0

10

20

30

40

50

60

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Time (ms)

A
/D

 (
C

d
S

)

min: 20
max 53
range: 33

14

Figures 11a, 11b, 11c: Experiment 3 Results

 The greatest range was achieved with four narrow stripes(6b), and this was the
configuration selected for the final design. Also, it was experimentally determined that
15 peaks correspond to one platform revolution.

Conclusion

 I consider the Heather project to be a success overall, but there are several
improvements to be implemented in future work.

• Ball detection is the least reliable of Heather’s behaviors. This is partially due
to the limitations of IR in general, but the range may be increased by using a
cross-view pair of IR cannons.

• The use of two different frequencies of IR for ball detection and wicket
detection would greatly simplify and speed up ball detection.

CdS Cell Response with 5 Narrow Segments

0

10

20

30

40

50

60

70

80

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Time (ms)

A
/D

 (
C

d
S

)

min: 36
max 76
range: 40

CdS Cell Response with 4 Narrow Segments

0
10
20
30
40
50
60
70
80
90

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Time (ms)

A
/D

 (
C

d
S

)

min: 36
max 84
range: 48

15

• The simple servo actuator has limited range, but this range corresponds well
to the sensor range. As sensor range improves a stronger actuator will be
feasible.

• The weight of the platform is near the limit that can be supported by cheap,
bearingless servos.

Appendices

 Use the following code under IC with lib_rw11.c.

demo.lis:

servo.icb
servo.c
cdtest2.c
keypad.c
wheel.c

cdtest2.c: line-following array calibration and line-following routine

int cdb1, cdb2, cdb3;
int cdw1, cdw2, cdw3;
int m1,m2,m3;

float fabs(float n)
{
 if(n>0.0) return n;
 else return -1.0*n;

}

void cd(int light)
{
int cd1,cd2,cd3;
int n=1;
cd1=analog(4);
cd2=analog(5);
cd3=analog(6);
while(n<50)

{
cd1=cd1*n+analog(4);
cd2=cd2*n+analog(5);
cd3=cd3*n+analog(6);

n++;

cd1 /= n;

16

cd2 /= n;
cd3 /= n;
}

if(light){ cdw1=cd1; cdw2=cd2;cdw3=cd3;}
else {cdb1=cd1; cdb2=cd2; cdb3=cd3;}
start_process(buzz(50));

}

void slopes()
{
m1=10*(cdb1-cdw1);
m2=10*(cdb2-cdw2);
m3=10*(cdb3-cdw3);
}

int ncd(int i){
int temp;
if(i==1) {

temp=A4;
return (((temp-cdb1)*m2)/m1 + cdb2);

}

if(i==3) {
temp=A6;
return (((temp-cdb3)*m2)/m3 + cdb2);

}
else return 0;

}

void line_follow(){
int a,b,c;
float s;
int t=1;
s=-20.0;
slopes();

while(1)
{

a = ncd(1);
b = A5;
c = ncd(3);

if((a >= (b+t)) && (a >= (c+t)))
{
MOTOR1=0.0; MOTOR0=s;
defer();
}

else if((c >= (b+t)) && (c >= (a+t)))
{
MOTOR1=s; MOTOR0=0.0;

17

defer();
}

else {MOTOR0=s; MOTOR1=s; defer();}

}
}

keypad.c: keypad scanning routine

int keypad(void)
{

int inval=0;
/* scan col 1 */

poke(0x4000,1);
if((inval=(peek(0x5000) & 0b00001111))!= 0)

{
 if(inval==1) return 3;
 if(inval==2) return 6;
 if(inval==4) return 9;
 if(inval==8) return 12;
}

poke(0x4000,2);
if((inval= (peek(0x5000) & 0b00001111)) != 0)

{
 if(inval==1) return 2;
 if(inval==2) return 5;
 if(inval==4) return 8;
 if(inval==8) return 11;
}

poke(0x4000,4);
if((inval= (peek(0x5000) & 0b00001111)) != 0)

{
 if(inval==1) return 1;
 if(inval==2) return 4;
 if(inval==4) return 7;
 if(inval==8) return 10;
}

return 0;

}

void beeper()
{
 poke(0x5000,128);
 poke(0x5000,0);

18

}

wheel.c : all other behavior routines.

int CLICKS;
int BUMPED;
int TRAPPED;
int BALL_FOUND;
float MOTOR0, MOTOR1;
int IN_PORT_4000, IN_PORT_5000;
int OUT_PORT_4000, OUT_PORT_5000, OUT_PORT_7000;
int KEY;
int BEAM;
int A1, A2, A3, A4, A5, A6, A7;
float T1, T2;

int IR_CANNON=1;
int LEFT_IR = 32;
int RIGHT_IR = 128;
int L_AND_R_IR = 160;
int BEAM_IR = 8;
int SMOOTH=0;

int RS_PID, ARB_PID, WE_PID, CB_PID;
int RK_PID, BEACON_PID, BALL_PID, STRIKE_PID;
int APPROACH_PID, TRAP_PID, PLAY_PID, LINE_PID;
int OBS_PID;

int abs(int n)
{
 if (n>=0) return n;
 else return -n;

}

int approx_eq(int a, int b, int tol)

{
 if(abs(a-b) <= tol) return 1;
 else return 0;

}

void one_turn(float speed)
{
CLICKS=0;
MOTOR0=speed; MOTOR1=-speed;

19

while(CLICKS<20) defer();
MOTOR0=0.0; MOTOR1=0.0;
CLICKS=0;

}

void play()
{

 while(1)
{
BALL_FOUND=0;
TRAPPED=1;

while(BALL_FOUND==0)
{
find_ball();
approach_ball();
}

find_beacon2();
strike_ball();
}

 }

void start()
{

 MOTOR0=0.0; MOTOR1=0.0;
 OUT_PORT_4000=0; OUT_PORT_5000=0; OUT_PORT_7000 = BEAM_IR;
 BUMPED=0; TRAPPED=1; BALL_FOUND=0;
 BEACON_PID=0;
 BALL_PID=0;
 STRIKE_PID=0;
 APPROACH_PID=0;
 TRAP_PID=0;
 LINE_PID=0;
 OBS_PID=0;
 RS_PID = start_process(read_state());
 ARB_PID = start_process(arbitrate());
 WE_PID = start_process(wheel_encode());
 CB_PID = start_process(check_bumper());
 RK_PID = start_process(read_keypad());

}

void read_keypad()
{

while(1)
{
KEY=keypad();

20

if(KEY==1)
{if (BALL_PID==0)

BALL_PID=start_process(find_ball());
}

if(KEY==2)
{if (APPROACH_PID==0)

APPROACH_PID=start_process(approach_ball());
}

if(KEY==3)
{if (BEACON_PID==0)

{
BEACON_PID=start_process(find_beacon2());
}

}

if(KEY==4)
{if (STRIKE_PID==0)

{

STRIKE_PID=start_process(strike_ball());
}

}

if(KEY==5)
{if (PLAY_PID==0)

PLAY_PID=start_process(play());
}

if(KEY==6)
{if (OBS_PID==0)

OBS_PID=start_process(obs_avoid());
}

if(KEY==7)
{
cd(0);
}

if(KEY==8)
{
cd(1) ;
}

if(KEY==9)
{if (LINE_PID==0)

LINE_PID=start_process(line_follow());
}

if(KEY==10)
{
if(SMOOTH) SMOOTH=0;
else SMOOTH=1;

buzz(100);

}
if(KEY==11)

{if(BALL_PID)
 {kill_process(BALL_PID); BALL_PID=0;}

21

 if (APPROACH_PID)
 {kill_process(APPROACH_PID); APPROACH_PID=0; }
 if(BEACON_PID)
 {kill_process(BEACON_PID); BEACON_PID=0; }
 if(STRIKE_PID)
 {kill_process(STRIKE_PID); STRIKE_PID=0;}
 if(TRAP_PID)
 {kill_process(TRAP_PID); TRAP_PID=0;}
 if(PLAY_PID)
 {kill_process(PLAY_PID); PLAY_PID=0;}
 if(LINE_PID)
 {kill_process(LINE_PID); LINE_PID=0;}
if(OBS_PID)
 {kill_process(OBS_PID); OBS_PID=0;}
 MOTOR0=0.0; MOTOR1=0.0;
 TRAPPED=1;
}

wait(500);
}

}
void read_state()
{
 while(1)

{
A1=analog(1);
A2=analog(2);
A3=analog(3);
A4=analog(4);
A5=analog(5);
A6=analog(6);
A7=analog(7);
IN_PORT_4000 = peek(0x4000);
IN_PORT_5000 = peek(0x5000);
BEAM= !(IN_PORT_5000 & 0b10000000);
defer();
 }

}

void arbitrate()
{

 int lastm0, lastm1;
 float sm0, sm1;
 int f, f1;
 f=88;

 f1=100-f;
 lastm0=0; lastm1=0;
 while(1)
 {
 poke(0x4000,OUT_PORT_4000);
 poke(0x5000,OUT_PORT_5000);
 poke(0x7000,OUT_PORT_7000);

22

if(BUMPED)
{motor(0,-100.0); motor(1,-25.0);}

else if(SMOOTH)
{
 sm0=(float)((f*lastm0+f1*(int)MOTOR0)/100);
 sm1=(float)((f*lastm1+f1*(int)MOTOR1)/100);
 motor(0,sm0); motor(1,sm1);
}

else if (!TRAPPED)
{motor(0,20.0); motor(1,20.0);}

else
{motor(0,MOTOR0); motor(1,MOTOR1);}

 lastm0=(int)sm0; lastm1=(int)sm1;
 defer();
 }

}

void wait(int ms)
{
 long time;
 time=mseconds() + (long)ms;
 while(time > mseconds()) defer();

}

void wheel_encode()
{
 int lastcd, thiscd, dcd, lastdcd;
 CLICKS=0;
 OUT_PORT_5000 = OUT_PORT_5000 | 1;
 lastcd=A7;
 defer();
 thiscd=A7;
 dcd=thiscd-lastcd;
 while(1)
 {
 lastdcd=dcd;
 lastcd=thiscd;
 thiscd=A7;
 dcd=thiscd-lastcd;

 if((lastdcd<=0) && (dcd>=0) && (MOTOR0 > 0.0))

 CLICKS=CLICKS+1;

 wait(40);
 }
}

void check_bumper()

23

{
BUMPED=0;
while(1)

{
if (IN_PORT_4000 != 0)

{BUMPED = 1;
wait(2000);
BUMPED=0;
}

defer();
}

}

void trap()
{
TRAPPED=1;
while(1)

{if(!BEAM)
{TRAPPED=0;
wait(200);
TRAPPED=1;}

defer();
}

}

void buzz(int dur)
{

OUT_PORT_5000 |= 0b10000000;
wait(dur);
OUT_PORT_5000 &= 0b01111111;

}

void find_beacon2()
{

int avg;
int min;
int mean;
int range;
int max;
int done;
int best;
float mot;
float time;
float timeout;
time = seconds() + 30.0;
timeout=seconds()+5.0;
mot=40.0;
done=0;
max=0;
min=255;
best=0;

24

TRAP_PID= start_process(trap());

MOTOR0=mot; MOTOR1=-mot;
OUT_PORT_7000 = BEAM_IR;
defer();

while(!done)
{
if(A1>max) max=A1;
if(A1<min) min=A1;

if(A2>max) max=A2;
if(A2<min) min=A2;

avg=(A1+A2)/2;
range=max-min;
mean=(min+max)/2;

if(mot < 10.0) done=1;
if(KEY==11) done=1;
if(seconds() >= time) best=1;
if(seconds() >= (time+20.0)) done=1;
if(seconds() >= timeout)

{
 mot-=2.0;
 timeout=seconds()+5.0;
}

if(approx_eq(avg,max,5) && (best==1))
done=1;

if(A2 >= (A1+2))
{if(MOTOR0>0.0) mot=mot-2.5;
MOTOR0=-mot; MOTOR1=mot;
}

else if((A2 > A1) && (A1 > mean))
{if(MOTOR0>0.0) mot=mot-.5;
MOTOR0=-mot; MOTOR1=mot;
}

if(A1 >= (A2+2))
{if(MOTOR0<0.0) mot=mot-2.5;
MOTOR0=mot; MOTOR1=-mot;
}

else if((A1 > A2) && (A2 > mean))
{if(MOTOR0<0.0) mot=mot-.5;
MOTOR0=mot; MOTOR1=-mot;
}

}

MOTOR0 = 0.0; MOTOR1 = 0.0;
kill_process(TRAP_PID);
TRAPPED=1;

25

TRAP_PID=0;
start_process(buzz(50));
BEACON_PID=0;

}

int pulse()
{
int reflect;
/*hog_processor();*/
poke(0x7000,161);
sleep(.03);
A1=analog(1);
A2=analog(2);
A3=analog(3);
poke(0x7000,OUT_PORT_7000);
reflect=A3;
return reflect;
}

void obs_avoid()
{
 OUT_PORT_7000 = L_AND_R_IR;
 MOTOR0=100.0; MOTOR1=100.0;
 defer();
 while(1)

{

 if(A1>(A2+1) && A2>88)
{
MOTOR1=-100.0; MOTOR0=100.0; defer();
}

 else if(A2>(A1+1) && A2>88)
{
MOTOR1=100.0; MOTOR0=-100.0; defer();
}

 else if(A2<90 && A1<90)
{
MOTOR0=100.0; MOTOR1=100.0;defer();
}

 else if(A2>105 && A1>105)
{
MOTOR0=-50.0; MOTOR1=-50.0; defer();
}

 else
{
MOTOR0=50.0; MOTOR1=50.0; defer();
}

}

26

}

void find_ball()
{
 int thisir, maxir;
 int lastdcd;
 int newmax;
 int done;
 int minir;
 int medianir;
 int r_top_ir, l_top_ir;
 float time;

 done=0;
 newmax=0;
 maxir=0;
 minir=255;

 MOTOR0=30.0; MOTOR1=-30.0;
 defer();
 CLICKS=0;

 while(CLICKS<17)
{
thisir=pulse();
wait(10);
if (thisir>maxir) maxir=thisir;
if (thisir<minir) minir=thisir;
}

 start_process(buzz(200));

 medianir=(maxir+minir)/2;
 MOTOR0=25.0; MOTOR1=-25.0;
 CLICKS=0;
 OUT_PORT_7000 |= L_AND_R_IR;
 defer();

 if(approx_eq(medianir, maxir, 1)) done = 1;
 if(approx_eq(medianir, minir, 1)) done = 1;

 while(!done)
{
MOTOR0=20.0; MOTOR1=-20.0;
if(KEY==12) done=1;
if((CLICKS/15) >= 1)

{
maxir -= 1;
CLICKS=0;
}

thisir = pulse();
defer();

r_top_ir=A2; l_top_ir=A1;

if (thisir >= (maxir-2))
{

27

MOTOR0=-12.0; MOTOR1=12.0;
wait(500);

start_process(buzz(50));

newmax=pulse();
defer();

if(A2 < r_top_ir) r_top_ir = A2;
if(A1 < l_top_ir) l_top_ir = A1;

if((newmax >= (thisir - 8))) done=1;
if((newmax >= (maxir - 8))) done=1;
if((newmax >= (medianir-2))) done=1;

if((r_top_ir > 100) && (l_top_ir > 100))
done = 0;

if(!done)
{
MOTOR0=25.0; MOTOR1=-25.0;
wait(80);
}

}
 }
 start_process(buzz(50));
 MOTOR0 = 0.0; MOTOR1 = 0.0;
 BALL_PID = 0;

}

void strike_ball()
{
 float time;

 time=seconds()+3.0;
 OUT_PORT_7000 |= BEAM_IR;
 MOTOR0=-25.0; MOTOR1=-25.0;
 defer();
 while(BEAM && (seconds() <= time)) {}

if(BEAM) {MOTOR0=0.0; MOTOR1=0.0;}
else
{
servo_deg(80.0);
MOTOR0=100.0; MOTOR1=100.0;
servo_on();
wait(1500);
servo_deg(25.0);
MOTOR0=0.0; MOTOR1=0.0;
wait(1500);
servo_off();
poke(0x1016,255);
poke(0x1017,255);
}
start_process(buzz(50));
STRIKE_PID=0;

28

}

void approach_ball()
{

float time ;
time = seconds()+5.0;
BALL_FOUND=0;
OUT_PORT_7000 |= BEAM_IR;
wait(100);
MOTOR0=50.0;
MOTOR1=50.0;

while((!BALL_FOUND) && (seconds() <= time))
{
BALL_FOUND=peek(0x5000)&&128 ;
}

OUT_PORT_7000 &= 0b11110111;
wait(150);
MOTOR0=0.0;
MOTOR1=0.0;

start_process(buzz(50));
APPROACH_PID=0;
}

 int flash(int which)
 {
 int max;
 int a;
 float time;

 max=0;
 time=seconds();
 while(seconds() <= (time+2.0))

{
a=analog(which);
if(a>max) max=a;

}

 return max;
 }

