
EEL 5666

IMDL

Fall 1999

Final Report

"Sparky"
The Robotic Dog

By:
Mike Gerhard

Table of Contents

Page 2 Table of Contents
Page 3 Abstract
Page 4 Executive Summary
Page 5 Introduction, Integrated System
Page 7 Mobile Platform, Actuation
Page 9 Sensors

Page 10 Behaviors, Conclusion
Page 11 Future Work
Page 12 Appendix A: Program Code
Page 17 Appendix A: CAD Drawings

Abstract

Have you ever wanted a pet dog, but thought that they are too much trouble? If you
answered "yes" than Sparky is the perfect companion for you. Sparky is a four-legged
autonomous mobile agent. Sparky, however, is different from the typical quadruped.
Sparky was designed to be both simple (in design, construction and programming) and
cheap. At a cost of ~$100 Sparky is not only one of the cheapest robots in the lab, but
one of the most practical. The reason that you don't see robots everyday as either toys or
assistants isn't because we don't have the ability to make them. It is because we don't
have the ability to make the cost-effective. Sparky is the exception. Sparky was design
to be a toy (or experimenter platform). A necessity in designing a robot for this target
market is a low cost.

The design is elegant in its simplicity. The design has several pertinent consequences.
As a result of the simplistic design Sparky is both easy to program and able to turn on his
own axis. Sparky can walk forward, backward, turn left and turn right. This is
accomplished using only four 42oz/in servos, hacked to spin 360 degrees. He currently
has 6 total sensors: 4 IR emitter/detector pairs for leg synchronization and 2 IR LED and
hacked (analog) sharp cans.

Executive Summary

What is innovation? I like to say that it is doing a familiar task in a new way. This is

exactly what Sparky represents. Sparky is a four-legged autonomous mobile agent

designed by me (Mike Gerhard). What makes Sparky innovative is the way he walks.

Nearly all of the quadrupeds (four-legged walkers) that I have seen before Sparky have

either been extremely complicated devices that use 8 or more servos or they have been

very simplistic creatures with limited ability to move. Sparky can do almost everything

that his eight and twelve servo peers can do, with only four (low-torque) servos. This

makes him more efficient, cheaper and much easier to program than the competition.

Introduction

I have built a robotic dog. The purpose is to be a toy. What makes this project different

from previous attempts is the philosophy behind it. This project was born of a

philosophy of simplicity. This philosophy is driven by two reasons: 1)

simple=cheap=marketable 2) simple=cheap=good for experimenting. I have built my

robotic dog with only four servos (one for each leg). With this simplistic design I have

made a platform that is cheap enough for a wide range of experimenters (or possibly

customers) and has comparable abilities to its eight and twelve-servo brethren.

Integrated Systems

Sparky is a simple quadruped that performs obstacle avoidance and can be easily

programmed to execute any sequence of movements (e.g. walk forward then turn left

then back up). The key to this platform is the mechanics of the legs. My leg design has

overcome several major difficulties that plague quadrupeds (e.g. expensive servos,

complex movements). Most of the problems that I have seen associated with the majority

of quadruped designs currently under development can be summed up in one word

complexity. An excellent example is the "Bob" or "Thing" platform. I am told that this

was the most successful quadruped design in the MIL lab. This design has been used by

several successors and I have seen similar designs at other research institutions. The

problems associated with this type of design can be seen best in a flow chart:

Previous Approach to Quadrupeds:

It's obvious that this thought process will get ugly fast. My approach is quite different.

My Approach to Quadrupeds:

Problem:
Walk using four legs

Answer:
Need 3 DOF per leg
Therefore use three servos per leg

Consequence:
Need many batteries to drive servos

Consequence:
Need stronger servos to pull the
weight of the batteries

Consequence:
Need more batteries to
pull the stronger servos

Consequence:
Complicated control required

Complicated code More processor overhead

Problem:
Walk using four legs

Question:
What is the minimum
Number of servos?

Answer:
One = walk FWD and BKWD
Four = walk FWD and BKWD
and turn LFT and RT

Consequence:
Simple control

Consequence:
Dynamic Stability

Simple
Code

Low
Processor
Overhead

Consequence:
Feedback necessary

Mobile Platform

The platform is a four-legged walker of my own design. I used one servo per leg. The

servos are standard 42oz/in servos by diamond. The motherboard is a TJpro board by

Mekatronix that features a 68HC11 with 32k SRAM. The frame and legs were carved

from 1/8" plywood using a T-tech milling machine (intended to cut and drill PCB's). The

plans were drawn in AutoCAD version 14. I had intended on using a voice recognition

module by VoiceDirect for communication between Sparky, and I, but the module was

damaged during testing and there wasn't time to get another. Currently, the only sensors

that he (Sparky) has are 4 opto-couplers and 2 IR LED and can pairs. The four opto-

couplers are used as feedback from the legs to synchronize them and the two IR LED and

can pairs are used for obstacle avoidance.

Actuation

The servos are standard 42oz/in servos by diamond hacked to spin 360 degrees. My

design is very different from the typical quadruped. Instead of assigning one servo per

DOF (Degree of Freedom) I used a cam and follower system to translate the circular

motion of the servo to the end of each leg. Here's how I did it:

With this simple leg design I am able to make Sparky walk forward and backward, turn

left and right. However, since I am not able to center his center-of-gravity over three legs

before I move the fourth, a method of dynamic stability is required. For this, I chose to

use a 1-2 Gait and balance Sparky on two legs for half of each step cycle.

The Gait:

The gait (method of walking) involves moving two pairs of legs as shown. To move

forward or backward all of the legs spin in the same direction. To turn each leg must spin

in the opposite direction of their partner.

Follower Groove

Follower Pin

Servo Horn Drive Pin

Sensors

I have used the typical IR sensors for basic obstacle avoidance. This consists of two

hacked sharp can receivers and two IR LED's. The "special sensor" for this project is my

unusual use of opto-couplers. I have four opto-couplers (usually used with shaft

encoders) mounted on the robot above each leg. Instead of using the typical shaft

encoders to interrupt the beam I am using thin pieces of black plastic attached to each leg.

The effect achieved by using the plastic pieces instead of a shaft encoder is twofold: 1)

the opto-couplers can be mounted further from the motor and a uniform spacing on all

sides of the motors is not required as would be inherent with the disk shape of an

encoder. 2) An interrupt only occurs once per cycle and therefor no counting is required;

an interrupt means that the leg is at the top of its cycle. There isn't much to say about the

experimental results. The sensors read ~.2V (10/256) when there is no interruption of the

beam. When there is an interruption in the beam the reading jumps to ~4.85V (255/256).

Sensor Construction and Wiring

The opto-coupler sensor is very simple to construct. The circuit is comprised of the opto-

coupler itself (Radio Shack #276-142) and two resistors (10k and 470). The circuit is

shown below with the Radio Shack part outlined in red.

Behaviors

Sparky has 2 modes. Each mode consists of four functions. Mode1 is the demonstration

mode. Mode2 is the obstacle avoidance mode. In each mode, Sparky is capable of his

four basic functions: 1) Walk Forward 2) Walk Backward 3) Turn Left 4) Turn Right. In

obstacle avoidance mode Sparky demonstrates two behaviors: 1)-avoiding obstacles 2)

scared. The obstacle avoidance behavior consists of 4 cases: 1) obstacle in front and to

the right so turn left 2) obstacle in front and to the left so turn right 3) obstacle directly

ahead so back up 4) no obstacles so go forward. The scared behavior is provoked by

using the "reprimand device" (i.e. a 40kHz IR generator). When the "reprimand device"

is activated Sparky moves away from it. This is linked to the obstacle behavior through

the obvious method.

Conclusion

I was able to accomplish all that I expected to with the robot. I set a list of goals for this

project:

Goals:
1. use four legs
2. walk forward and backward, turn right and left
3. use inexpensive low-torque servos
4. respond to voice commands

I completed three out of the four. I probably would have been able to do all four if it

weren't for an unfortunate accident involving my voice module late in the semester. I

would still consider this project to be a success because I listed the voice response as a

secondary concern in my proposal. Sparky is not without flaws, however, he is very slow

and takes very small steps. These are problems that I expected and they are inherent to

the design. The speed issue could be resolved by using fast gearhead motors instead of

servos. The size of the step could be increased through a few slight mechanical changes.

There are, however, difficulties involved in doing this. An increase in the step size would

require an increase in the torque of the servos/motors. Also, since the design is

dynamically stable and balances on two legs during half of the walking motion, there are

balance concerns (bigger step = more airtime).

Future Work

I don't plan on doing any further development with this platform, but I will list my

suggestions in case I change my mind or someone decides to follow in my footsteps. My

first suggestion is to clean-up the CAD design a bit. I would make the two top pieces

removable, like TJ. I would also add two supports across the middle, which would make

a compartment for the batteries, motherboard, etc. My next suggestion would be to

decrease the total size. I think that it can be built at half the current size (I scaled it up by

a factor of two several weeks into the course because of balance concerns). Next, I

would suggest removable legs. The design was intended for this as a "back-up" (in case

it didn't walk), but it would be nice to see it as a "feature". Finally, I would suggest an

array of cool sensors: camera, laser, etc.

Appendix A -- Program Code

/*************************** Includes ********************************/
#include <tjpbase.h>
#include <stdio.h>
#include <HC11.h>
/************************ End of Includes ****************************/

void mike_avoid(void);
void mike_sync(int rrm, int rfm, int lrm, int lfm);
void mike_dance(void);

/*************************** Constants ********************************/

#define AVOID_THRESHOLD 100
#define pwh 4000
#define pwl 2000

#define DANCE_ON *(unsigned char *)(0x7000) = 0x87
#define DANCE_OFF *(unsigned char *)(0x7000) = 0x07
#define LEFT_ON *(unsigned char *)(0x7000) = 0x17
#define RIGHT_ON *(unsigned char *)(0x7000) = 0x27
#define LEFT_OFF *(unsigned char *)(0x7000) = 0x07
#define RIGHT_OFF *(unsigned char *)(0x7000) = 0x07
#define BOTH_ON *(unsigned char *)(0x7000) = 0x37
#define BOTH_OFF *(unsigned char *)(0x7000) = 0x07

/************************ End of Constants ****************************/

/***************************** Main **********************************/
void main(void)
{
 unsigned int bl, cv, fb, rb, run_test;
 int rro,rfo,lro,lfo;

 init_analog();
 init_clocktjp();
 init_serial();
 init_motortjp();
 init_servotjp();

 IRE_ON; /* turn on IR emitters */

#define rro analog(4)
#define rfo analog(6)
#define lro analog(1)
#define lfo analog(5)

 START;
 wait (500);
 DANCE_ON; /* turn on dance indicator light*/

mike_dance();
 DANCE_OFF; /* turn off dance indicator light*/

mike_avoid();

}

void mike_avoid(void)

/**************************** mike_avoid **********************************
 * Description

*
 * This is my attempt to do obstacle avoidance *
 **/

{

int irdr,irdl,rrm,rfm,lrm,lfm;

 rrm = pwh; /*rrm = PA7;*/
rfm = pwh; /*rfm = PA3;*/
lrm = pwl; /*lrm = PA6;*/
lfm = pwl; /*lfm = PA4;*/

 IRE_ON; /* turn on IR emitters */

 while(1)
 {

/*
 The following block will read the IR detectors, and decide whether TJ
 needs to turn to avoid any obstacles
*/
 irdr = RIGHT_IR;
 irdl = LEFT_IR;

 if (irdl > AVOID_THRESHOLD && irdr < AVOID_THRESHOLD){
 LEFT_ON; /*TURN ON INDICATOR LED*/

/*object to the left, so turn
right*/

rrm = pwl;
rfm = pwl;
lrm = pwl;
lfm = pwl;
mike_sync(pwl,pwl,pwl,pwl);

 LEFT_OFF; /*TURN OFF INDICATOR LED*/
}

 if (irdr > AVOID_THRESHOLD && irdl < AVOID_THRESHOLD){
 RIGHT_ON; /*TURN ON INDICATOR LED*/

/*object to the right, so
turn left*/

rrm = pwh;
rfm = pwh;
lrm = pwh;
lfm = pwh;
mike_sync(pwh,pwh,pwh,pwh);
RIGHT_OFF; /*TURN OFF INDICATOR LED*/
}

 if (irdr > AVOID_THRESHOLD && irdl > AVOID_THRESHOLD){
BOTH_ON; /*TURN ON INDICATOR

LED'S*/

/*object straight ahead, so
back up*/

rrm = pwl;
rfm = pwl;
lrm = pwh;
lfm = pwh;
mike_sync(pwl,pwl,pwh,pwh);
RIGHT_OFF; /*TURN ON INDICATOR LED*/
LEFT_OFF; /*TURN ON INDICATOR LED*/
}

else {
/*go straight forward*/

rrm = pwh;
rfm = pwh;
lrm = pwl;
lfm = pwl;
mike_sync(pwh,pwh,pwl,pwl);
BOTH_OFF; /*TURN OFF INDICATOR

LED'S*/
}

 wait(35);
 }

}

void mike_sync(int rrm, int rfm, int lrm, int lfm)

/**************************** mike_sync **********************************
 * Description

*
 * This is my attempt to synchronize the legs *
 * INPUTS: rrm,rfm,lrm,lfm

*
 * right_motor = PA3

*
 * servoz = PA4

*

 * servo1 = PA5
*

 * servo2 = PA6
*

 * left_motor = PA7
*

 * motorp(LEFT_MOTOR, rrm); *left_motor = PA7
*

 * servo(0,lfm); *SERVOZ, PA4
*

 * motorp(RIGHT_MOTOR, rfm); *right_motor = PA3
*

 * servo(2,lrm); *SERVO2, PA6
*

 **/
{

/*walk forward -- two legs at a time*/

/* spin first two */

servo(0,lfm); /*spin leg*/
motorp(LEFT_MOTOR, rrm); /*spin leg*/
wait (400);
while (rrm != 0 || lfm != 0)
{
if (rro > 20) /*at top*/

{
servo(0,0); /*stop it*/
rrm = 0;
}

if (lfo > 20) /*at top*/
{
motorp(LEFT_MOTOR, 0); /*stop it*/
lfm = 0;
}

}
servo(0,0); /*stop it*/
motorp(LEFT_MOTOR, 0); /*stop it*/

/* spin second two */

servo(2,lrm); /*spin leg*/
motorp(RIGHT_MOTOR, rfm); /*spin leg*/
wait (400);
while (lrm != 0 || rfm != 0)
{
if (lro > 20) /*at top*/

{
servo(2,0); /*stop it*/
lrm = 0;
}

if (rfo > 20) /*at top*/
{
motorp(RIGHT_MOTOR, 0); /*stop it*/
rfm = 0;

}
}
servo(2,0); /*stop it*/
motorp(RIGHT_MOTOR, 0); /*stop it*/

}

void mike_dance(void)
/* do alittle dance make alittle noise */
{
int i;
i = 1;

for (i = 1; i < 5; i++)
{
/*turn right*/
mike_sync(pwl,pwl,pwl,pwl);
/*turn left*/
mike_sync(pwh,pwh,pwh,pwh);
}

}

Appendix B -- CAD Drawings:

