
Pie Tin & Sea Cow

John Juilfs & Mark Schmidt

EML5666
Final Report

December 8, 1999

Introduction
Though the human race does not live on the ocean, we do spend a significant amount of time
there. From fishermen to romantic cruises to destroyers, the surface of the ocean has certainly
been used by people for thousands of years. However, the ocean offers some problems. Covering
two thirds of the Earth, the ocean is simply too large to be fully understood, at least with today’s
technology. In some places, pilots are still used to steer ships through a particular harbor because
the captain does not know where all the shallows are. Currents, eddies, hurricanes, and tides tend
to make the ocean a dynamic system, not static. Because of our lack of understanding and
exploration, ships still hit icebergs and people are lost at sea.

It was our goal to begin exploring the possibilities of nautical robots. We wanted to create
versatile boats that could potentially work together on the water. There are many possible
ultimate uses of this. They could perform a coordinated search for a life boat or a rapid mapping
of a harbor bottom. Of course, the military could certainly find a use.

Platform

Sea Cow

The platforms chosen for each of the two boats were quite different. Sea Cow was based on a
catamaran. It has two identical hulls joined by an arch. The hulls are fairly hydrodynamic, and
there is a motor in each hull. Each hull has three segments, the bow, midship, and stern. The bow
is covered with balsa wood. The arch covers the midship and the stern. Inside the arch are the
circuits controlling the robot. The part of the arch that is close to the water is solid, and
everything is attached to that. The top portion of the arch is removable to parts can be accessed
easily. With a little effort in sealing joints, Sea Cow could likely be operated in the rain.

Pie Tin

Pie Tin is far less hydrodynamic. On the top, it is an large octagon, and on the bottom it is a
smaller square. There is a motor on each side near the bottom. The circuit boards fit into the boat
on frames that are layered. On the bottom between the motors are the batteries. Above that are
the sonar boards and a motor driver board. On the top layer are a motor driver board, the TJPro
board, and the port expansion board. There were two reasons for this odd design. The first is so
that the two could dock together possibly, and Pie Tin could fit under the arch of Sea Cow. With
the symmetrical design, Sea Cow could approach Pie Tin from any direction. The second reason
was simply for experimentation, to discover if, on such a small scale, the shape would make a
significant difference. In the end, the two robots move at about the same speed, though Pie Tin is
faster and has a much greater turning rate.

Design

From the initial design, the finished product was far away. Sea Cow was originally designed in
3-D on AutoCad, and then each segment was converted to 2-D. Pie Tin, because of it’s simple
geometry, was never drawn in 3-D. From the AutoCad files, the parts were cut out on the T-tech.
The parts formed a wooden structure of each boat. The wooden structure of Sea Cow consisted
of the side panels and 3 supports for each hull. Pie Tin was only the walls because its shape was
strong enough. However, Pie Tin did have some awkward angles that caused a problem because
the wood had width. The solution was to sand the edges of the tabs at about 45 degrees. That
allows for a tight fit. Each of us constructed our own wooden frames, but from there Mark took
over with the toxic chemicals. First the outside of the boats was sanded until smooth. Then a
layer of Bondo fiberglass was applied. Sea Cow was done first, and its first layer of fiberglass
was not done very well, so another coat was applied.
After the fiberglass, the nozzles were inserted. This involved drilling holes in the appropriate
places, filing them to fit the PVC pipe, and then attaching 1.5 - 2 inches of pipe to the hull. The
most difficult was the holes in Sea Cow’s bows because of the awkward angle. The nozzles were
then sealed with Goop.

Sea Cow then received a layer of Bondo UV Activated Body Filler. This did not work very well,
either, but it did seal the cracks well enough. Pie Tin, however, was coated with Bondo red spot
putty. This worked much better. It dried an a suitable rate and was not difficult to work with.
Both of these surfaces were wet sanded, which was actually rather difficult, and then primed.
John then painted Pie Tin, and Mark painted Sea Cow. The parts that would contact water were
painted with spray enamel.

The motors were then fit into the boats. Flexible tube (5/8” OD, 1/2” ID) fit inside the PVC pipe
and then joined to the motor with a coupling. The coupling was held to the motor and the
flexible tube with JBQuick. The tube inside the PVC did not need a seal, and so the motors could
be removed. However, Pie Tin insisted on leaking, and the entire tube area was covered with hot
glue, so removing the motors there would be very difficult.
Sea Cow’s hulls were then attached to the arch. The fit was not perfect because of assembly
stresses. However, the parts were close enough to allow glue to hold them in place.

The switches and computer ports were rather simple. The circuit boards were very easy to mount
in Sea Cow, as there was plenty of open space. Pie Tin posed difficult. However, by tweaking
the length of the braces, each layer could be put at the correct height.

Of the parts mentioned, they are all available in town. Lowes, Walmart, and automotive places
carry Bondo fiberglass. Automotive supply stores carry Bondo spot putty and body filler.
Walmart has the JBQuick and paint.

The propulsion for the robots is, at a glance, very simple. The motors are Graupner Bow
Thrusters, available from Hobby-Lobby for $35. They are easily sealed, and much simpler than
propellers. Having them set up in their particular configuration, they steer similarly to a two-
wheeled robot. Reversing one motor will turn the boat in the direction of that motor. However,
linear and rotational momentum make it very different from land robots, and are the real hidden
problems. Once a boat turns, it tends to keep turning, particularly Pie Tin. Sea Cow will attempt
to turn before hitting a wall, but if at full speed, it has difficulty slowing down enough before
hitting the wall. These are problems that have been mostly fixed in software.

Sensors

Overview

The primary sensors for Pie Tin and Sea Cow are sonar. Each robot has a bank of three sonar,
one facing directly forward, and the other two at an angle to the left and right. The hope was that
the sonar configured this way would be able to spot most large obstacles (such as walls) and
avoid them. The sonar receiver used was the standard IMDL lab board printed out from the T-
Tech, while the sonar emitter was the amplifier from the Toshiba manual that uses a single
inverter chip to drive the transducer. Each sonar emitter / receiver pair was multiplexed /
demultiplexed on a custom expansion board. This expansion board used port 0x6000 to select
which emitter / receiver pair was active, as well as to choose the direction for the motors (this
worked fine on Pie Tin, but proved difficult on Sea Cow: that is covered below).

The secondary sensor used was radio. Pie Tin emits radio (using Timer Output Compare 5 on
Port A bit 3) and Sea Cow receives (it keeps track of the pulses with the pulse accumulator, and
so is tied to Port A bit 7). The receiver could have also been attached to input capture, but at the
time the software was written it was uncertain as to whether extraneous noise could filter in (not
really, as it turned out), and the presence or absence of a large number of pulses could be more
easily verified than whether a particular edge was accurate or not.

Sonar assembly and hardware:

Ten sonar boards were assembled: seven proved usable. The pre-designed sonar board is useful,
but difficult. The T-tech machine has problems. The majority of the board is conductive, and
only a small bit of removed copper allows for anything resembling a circuit. The true villains are
“threads”. The threads are bits of copper that were not completely cut away by the T-tech and
cross over between traces and pads. These are best removed with a razor blade and a magnifying
glass. The places where one is most likely to see a thread have been marked with green in this
picture of a sonar board.

Sonar testing and software:

Since the board was only driving one sonar (due to the expansion board), Input Capture 1 was
used to receive data (Port A bit 2). The 40kHz signal at port 0x7000 was used to turn the
emitters on and off. Since the signal goes between a signal and high impedance, a pull down
resistor was necessary to ensure that the signal was transmitted to the emitter: at first, the on
board 330Ω resistor was used, but the current draw proved excessive for the board, and
whenever the sonar emitter was turned on, the value kept in the latch attached to port 0x6000 (on
the expansion board) would become corrupt, as the values of the data pins and Y4 would
fluctuate at random. This was solved by using a 10kΩ resistor instead of the 330Ω one. This
solution did not function for Sea Cow, so instead all of the sonar emitters were tied to the same
enable pin, thus bypassing the necessity of using port 0x6000 to select the correct sonar emitter
(thus making Sea Cow ping in all directions at once and listen at one, as during the listening
stage the emitters were necessarily off, so the value at port 0x6000 was never corrupted).

The included sonar test assembler file “sonart.asm” will write port 0x7000 with all ones to turn
on the 40kHz sonar, then wait 1ms, then turn it off by writing all zeroes. It will then wait
another 1ms, then begin listening for sonar by polling TFLG1 bit 2. After this, it will either time
out or receiver a sonar signal, and will print either the elapsed Eclocks or a message stating that
it has timed out.

Extensive data was gathered on the properties of the sonar. The general conclusion of this data
showed that the sonar had a hard time getting a receiving ping off of a surface with a face even
slightly less than normal to the emitter, while receiving pings off of a surface normal to the sonar
emitter but less than directly in front of it was not as difficult.

Radio assembly and hardware:

Since the radio used was the emitter and receiver pair by Linx Technologies (models RXM-315-
LC-R and TXM-315-LC), the only assembly was tying the appropriate pins to ground, power, or
data, as well as ensuring that the antenna had a good ground plane.

Radio testing and software:

The radio worked perfectly, not picking up any stray signals. The software involved was also
simple, either oscillating TOC5 to indicate a signal or remaining quiet on the transmitter end, and
periodically checking on the pulse accumulator (once every TOI) on the receiving end.

Code / Behaviors

Overview

Both Pie Tin and Sea Cow are programmed in assembler, and run routines that are very similar
or identical. Since much of the hardware is the same (the motors and the sonar are handled very
similar on both), the routines that run these execute the same code on both machines, only doing
special cases where a difference is unavoidable. The original code was interrupt driven, but the
need for this was lessened when the number of timing specific actions was greatly reduced when
LED communications was no longer a goal. The only interrupts currently used are TOI and
TOC5.

The three main behaviors are common to both Pie Tin and Sea Cow, though the methods used to
achieve them are different in some cases..

Main loop

The core code does initializations, looks to see if it can see other sonar (if it can it delays 150 ms
to hopefully be out of phase with its own sonar: sonar emitting takes around 60 ms per sonar,
and there is a delay of 300 ms during which the other boat has time to emit and receive sonar
without interference), then falls into a loop of sending and receiving pings, making obstacle
avoid decisions on those values, waiting so the other boat has time to ping sonar, and then
looping back.

Interrupts

The Timer Overflow Interrupt sets up the width of the pulses sent to the motors (turned on with
TOC1 and turned off with TOC2 and TOC3), and sets the direction pins (Pie Tin has the
direction pins accessible on port 0x6000 bits 6 and 5: Sea Cow uses port A bits 4 and 3). It also
keeps track of time, incrementing a 16 bit counter every time: since this won’t wrap around until
long after the motor batteries are drained, this is plenty of time (a little over half an hour).
Additionally, Sea Cow looks at the pulse accumulator to see if Pie Tin is sending a message.

The Timer Output Compare 5 interrupt mostly serves to set itself to occur again: Port A bit 3 on
Pie Tin serves as the radio output pin, and is either set to toggle or is simply left low to indicate
the absence of signal.

Obstacle Avoidance

The first behavior, obstacle avoidance, just involves looking at the last set of pings and
requesting a set of motor values that corresponds to the desired direction. There are two separate

“Avoid” functions, one for each robot, each of which has different motor values. Since Pie Tin’s
motors are rigged “backwards” for symmetry about the y-axis (so they could fit), the values
requested are not symmetrical: this does not solve the problem, but lessens it. Sea Cow’s
motors could be fitted facing the same direction due to plentiful space, and so the values passed
to its motors are the same: however, there is a more detailed turning section, as Sea Cow has
much greater momentum than Pie Tin, and has more difficulty slowing down.

Sonar Noninterference

This behavior basically consists of a long delay on boot up while looking through each emitter in
turn to see if any sonar is present. If sonar is seen, the boat seeing sonar waits for 150 ms before
entering its main loop: if not, it simply enters after it has decided that no sonar is available to
see. Since cycling through the sonars takes around 150 ms, and each robot waits 300 ms after
using all three emitter / receiver pairs, this delay should put the second robot’s sonar scanning
squarely in the middle of the first robot’s down time, assuming it can see the other sonar at boot
up. This is poorly tested, as the odds of one robot’s sonar interfering negatively with the other is
very low, due to the fact that the sonar would have to perfectly bounce off of a wall onto the
other robot’s sensor and trigger an incorrect turn: after all, if the sonar hits the other robot’s
receiver directly, all that will result is the second robot turning away from the first: effectively,
obstacle avoidance with a actively pinging obstacle.

Spin Time

A time after bootup, Pie Tin will signal that “it is time to spin” using the radio. This time could
have been determined quasi-randomly, but for testing purposes has been chosen at around 20
seconds. Upon signalling, it will assume that Sea Cow has received the message and begin
spinning to the right. A while later, it will spin in the opposite direction. After it completes
spinning, it will resume obstacle avoidance. Sea Cow will perform the same actions upon
receiving the signal. The point was to demonstrate that the signal has been received and acted
upon, as the act of spinning has no obvious practical value.

*Sonart.asm
 ORG $FFFE ;reset vector
 FDB Main ;point to main on reset

BAUD EQU $102B ; BAUD rate control register to set the BAUD rate
SCCR1 EQU $102C ; Serial Communication Control Register-1
SCCR2 EQU $102D ; Serial Communication Control Register-2
SCSR EQU $102E ; Serial Communication Status Register
SCDR EQU $102F ; Serial Communication Data Register

PORTA EQU $1000 ;PORT A REGISTER
TCNT EQU $100e ;Timer count
TFLG2 EQU $1025
TFLG1 EQU $1023
TIC1 EQU $1010
TCTL2 EQU $1021

EOS EQU $04 ; User-defined End Of String (EOS) character
CR EQU $0D ; Carriage Return Character
LF EQU $0A ; Line Feed Character
ESC EQU $1B ; Escape Charracter

 ORG $8000 ;start code at convienient place

bcount RMB 1 ;the “big” counter: incremented
* ;if TCNT wraps while waiting
first RMB 2
tof RMB 2
Msg FCC ‘Ready ‘
 FCB EOS
Enter FCB CR,LF,EOS
TimeMSG FCC ‘Time out’
 FCB EOS

Main lds #$cfff
 ldd #0
 ldx #0
 ldy #0

 ldaa #20
 staa TCTL2

 jsr InitSCI

 ldaa #$0 *turn emitter off at first
 staa $7000
 ldx #Msg *output message
 jsr OutStr
 ldaa #250 *net total delay = 278250E = .14 seconds
dloop ldab #220 *[2]
inl decb *[2] [5]*220 = 1100
 bne inl *[3]
 brn inl *[3]
 deca *[2]
 bne dloop *[3]

 ldaa #$FF ;turn emitter on
 staa $7000

 ldaa #200 ;wait 1 ms
msla nop ;[2]
 brn msla ;[3]
 deca ;[2]
 bne msla ;[3]

 ldaa #$00 ;turn emitter off
 staa $7000

 ldaa #200 ;wait 1 ms
mslb nop ;[2]
 brn mslb ;[3]
 deca ;[2]
 bne mslb ;[3]

 ldaa #$04
 staa TFLG1 ;clear any pending ICs
 ldaa #$80
 staa TFLG2 ;clear timer overflow
 ldd TCNT ;get current value of TCNT
 std first
 clra
 staa bcount ;start at 0

inloop ldaa TFLG2 ;count up, while waiting for
 anda #$80 ;response.
 beq NoProblem

 staa TFLG2 ;if TFLG goes high, acknowledge
 ldaa bcount
 inca
 staa bcount
 cmpa #2 ;if we have had to TOIs, quit.
 beq breakout

NoProblem

 ldaa TFLG1
 anda #$4
 beq inloop
breakout
 ldd TIC1
 subd first
 std tof

 ldaa bcount
 cmpa #2
 bne NoTO ;if 2, then timed out.
 ldx #TimeMSG
 jsr OutStr
 bra DonePrint ;skip ahead to carriage return
NoTO

*You will notice an apparently arbitrary “addd #$20” below this. This is
*because sometimes a ping will be seen right away, or very near that
*(immediate response). Usually this number is very low, such as 0x56.
*However, sometimes this number is very high (negative) due to inaccuracies
*reading TCNT. Because of this, I add a small, arbitrary constant to the
*time of flight so that all immediate responses look about the same.

 ldd tof ;print out time of flight
 addd #$20
 jsr Hexph ;print out high 4 bits of a
 jsr Hexpl ;print out low 4 bits of a
 tba
 jsr Hexph ;print out high 4 bits of a
 jsr Hexpl ;print out low 4 bits of a

DonePrint
 ldx #Enter
 jsr OutStr

 jmp Main

**
* SUBROUTINE - InitSCI
* Description: This subroutine initializes the BAUD rate to 9600 and
* sets up the SCI port for 1 start bit, 8 data bits and
* 1 stop bit. It also enables the transmitter and receiver.
* Effected registers are BAUD, SCCR1, and SCCR2.
* Input : None.
* Output : Initializes SCI.
* Destroys : None.
* Calls : None.
**
*
InitSCI PSHA * Save contents of A register

 ldaa #$30 * Set BAUD rate to 9600
 staa BAUD
 ldaa #$0 * Set SCI Mode to 1 start bit,
 staa SCCR1 * 8 data bits, and 1 stop bit.
 ldaa SCCR2 * Enable SCI Transmitter
 ora #$0c * and Receiver
 staa SCCR2

 PULA * Restore A register
 RTS * Return from subtoutine

**
* SUBROUTINES - Hexph and Hexpl
* Description: Outputs the hex digit in high or low a after
* checking if the Transmitter Data Register is Empty
* Input : Data to be transmitted in register A.
* Output : Transmit the data.
* Destroys : None.
* Calls : None.
**
*
Hexph psha ;save a away
 lsra
 lsra
 lsra
 lsra
 bra hexs ;after scaled, go to start
Hexpl psha
hexs anda #$0F
 adda #48 ;scale to ASCII 0
 cmpa #58 ;if above or equal, need more scaling
 blt hexl ;jump over correction if OK
 adda #7 ;now will print A-F properly
hexl jsr OutChar ;print out character
 pula ;get a back
 rts ;bye bye

**
* SUBROUTINE - OutStr
* Description: Outputs the string terminated by EOS. The starting location
* of the string is pointed by X register. Calls the OutChar

* subroutine to display a character on the screen and
* exit once EOS has been reached.
* Input : Starting location of the string to be transmitted
* : (passed in X register)
* Output : Prints the string.
* Destroys : contents of X register.
* Calls : OutChar.
**
*
OutStr PSHA * Save contents of A register
Loop2 ldaa 0,x * Get a character (put in A register)
 cmpa #EOS * Check if it’s EOS
 beq Done * Branch to Done if it’s EOS

 JSR OutChar * Print the character by calling OutChar
 inx * Point to next character
 BRA Loop2 * Branch to Loop2 for the next char.
Done PULA * Restore A register
 RTS * Return from subtoutine

**
* SUBROUTINE - InChar
* Description: Receives the typed character into register A.
* Input : None
* Output : Register A = input from SCI
* Destroys : Contents of Register A
* Calls : None.
**
*
InChar

pollrecv ldaa SCSR ; Check status reg.
 anda #$20 ; (load it into A reg)

 cmpa #0 ; Check if receive buffer full
 beq pollrecv ; Wait until data present

 ldaa SCDR ; SCI data ==> A register
 RTS ; Return from subroutine

**
* SUBROUTINE - OutChar
* Description: Outputs the character in register A to the screen after
* checking if the Transmitter Data Register is Empty
* Input : Data to be transmitted in register A.
* Output : Transmit the data.
* Destroys : None.
* Calls : None.
**
*
OutChar PSHB * Save contents of B register
Loop1 ldab SCSR * Check status reg (load it into B reg)
 andb #$80 * Check if transmit buffer is empty
 BEQ Loop1 * Wait until empty
 staa SCDR * A register ==> SCI data
 PULB * Restore B register
 RTS * Return from subtoutine

*This is the main program, written for Pie Tin: since all of the behaviors

*for both robots are here, it can be changed to Sea Cow’s code by changing
*the robot byte from 0 to 1 (it is FCBed as 0, and is a constant)

 ORG $FFFE ;reset vector
 FDB Main ;point to main on reset
 ORG $FFDE ;timer overflow vector
 FDB TOIISR
 ORG $FFE0
 FDB TOC5ISR ;point to TOC5

BAUD EQU $102B ; BAUD rate control register to set the BAUD rate
SCCR1 EQU $102C ; Serial Communication Control Register-1
SCCR2 EQU $102D ; Serial Communication Control Register-2
SCSR EQU $102E ; Serial Communication Status Register
SCDR EQU $102F ; Serial Communication Data Register

PORTA EQU $1000 ;PORT A REGISTER
TCNT EQU $100e ;Timer count
TFLG2 EQU $1025
TFLG1 EQU $1023
TIC1 EQU $1010
TCTL1 EQU $1020
TCTL2 EQU $1021
TOC1 EQU $1016
TOC2 EQU $1018
TOC3 EQU $101A
TOC4 EQU $101C
TOC5 EQU $101E
TMSK1 EQU $1022
TMSK2 EQU $1024
OC1M EQU $100C
OC1D EQU $100D
PACTL EQU $1026
PACNT EQU $1027

EOS EQU $04 ; User-defined End Of String (EOS) character
CR EQU $0D ; Carriage Return Character
LF EQU $0A ; Line Feed Character
ESC EQU $1B ; Escape Charracter
SPC EQU $20 ; Space

 ORG $8000 ;start code at convienient place

bcount RMB 1 ;the “big” counter: incremented
* ;if TCNT wraps while waiting
first RMB 10
tof RMB 10

TOIFLG RMB 1
mcount RMB 2

mlwant RMB 1
mrwant RMB 1
mlcurr RMB 1
mrcurr RMB 1
paval RMB 1
p6val RMB 1
cursonar RMB 1
click RMB 1
trans RMB 1
spin RMB 1
robot FCB 0

Msg
 FCC ‘Ready ‘
 FCB EOS
Enter FCB CR,LF,EOS

Timeout
 FCC ‘*TO*’
 FCB EOS
Click FCC ‘ CL ‘
 FCB EOS

gotablel
 FDB $0100,$1000,$2000,$3000,$4000,$5000,$6000,$7000,
 FDB $8000,$9000,$A000,$B000,$C000,$D000,$E000,$F800

gotabler
 FDB $0100,$1000,$2000,$3000,$4000,$5000,$6000,$7000,
 FDB $8000,$9000,$A000,$B000,$C000,$D000,$E000,$F800

******** Main *************

Main lds #$cfff
 ldd #0
 ldx #0
 ldy #0

 clrb
 clra
 staa spin
 staa goingS
 std StartSTime
 std TimeSoFar
 staa click
 staa trans
 staa PORTA
 staa paval
 staa $7000 *sonar starts off
 staa $6000 *point to sonar 0 to start
 staa p6val
 staa cursonar *start at sonar 0

 ldaa #$48 *PORTA bit 3 needed as output for Sea Cow
 staa PACTL *And PortA bit 7 is input (0).

 ldaa #$20 *capture sonar on falling edges
 staa TCTL2

 ldaa #$A0 *on TOC2 or TOC3, zero respective pin
 staa TCTL1

 ldd #0
 std TOC1
 incb
 std TOC2
 std TOC3

 clra
 staa OC1D
 ldaa #$60
 staa OC1M

 ldaa #$10
 staa mlcurr
 staa mrcurr
 ldaa #$10
 staa mlwant
 staa mrwant

 jsr InitSCI
 clra *zero timer
 clrb
 std mcount *clear master count
 staa PORTA *start out at zero

 staa paval

 ldaa #$80
 staa TMSK2
 cli *start interrupts

 jsr Rinit

 ldaa #$0 ;turn emitter off at first
 staa $7000
 jsr IsPing
Mloop

 ldx #Msg
 jsr OutStr

 jsr Bdelay
 jsr Ping
 jsr SpinMonSpin *See if we will be spinning.

 ldaa spin
 bne Mloop
 jsr Avoid

* jsr TestAct
 bra Mloop

******* Bdelay ************

*Sonar pings take around 150ms for all 3 to fire off.
*So we will delay for 300 ms each time so that if IsPing sees a
*sonar ping and delays for 150 ms, it will hopefully be inside this
*area and interfere less.

*Net delay is 601680E = 300ms
Bdelay ldaa #240
dloop ldab #250 *[2]
inl decb *[2] [10]
 brn inl *[3]
 nop *[2]
 bne inl *[3]
 deca *[2]
 bne dloop *[3]
 rts

*******SpinMonSpin*********

SpinMonSpin
 ldaa robot *Sea Cow is told when to spin
 bne NoDecision

 ldd mcount
 cpd #800
 blt NoDecision
 cpd #900
 bgt NoDecision
*Now we are Pie Tin, and want to signal a spin cycle...

 ldaa #1
 staa spin

 ldaa TCTL1 *Pulse on TOC5: Port A bit 3 is transmit
 oraa #$1 *for Pie Tin, motor R direction for SeaCow
 staa TCTL1

NoDecision
 ldaa spin
 beq DoneSpin
*At this point, spin is set.
 ldaa goingS
 bne AlreadyS
 inca
 staa goingS
 ldd mcount
 std StartSTime
AlreadyS
 ldd mcount
 subd StartSTime
 std TimeSoFar *See where we are in the spin

*First thing we’ll do is spin to the right for 10 seconds
 cpd #305
 bgt nosR
 ldaa #$1F
 staa mlwant *full forward
 ldaa #$00
 staa mrwant *full reverse
 bra DoneSpin
nosR

*After that, we’ll spin to the left for 10 seconds
 cpd #610
 bgt nosL
 ldaa #$00
 staa mlwant *full reverse
 ldaa #$1F
 staa mrwant *full forward

 ldaa TCTL1 *Don’t pulse on TOC5 anymore: stop signalling
 anda #$fc *for spin.
 staa TCTL1
 bra DoneSpin
nosL
 clra
 staa spin
DoneSpin
 rts
goingS RMB 1
StartSTime RMB 2
TimeSoFar RMB 2

******* TOC5ISR ***********

TOC5ISR
 ldaa TFLG1
 anda #$08
 beq DoneT5
 staa TFLG1

 ldd TOC5
 addd #$1000
 std TOC5

DoneT5 rti

******* TestAct ***********

TestAct
 ldd mcount
 cpd #400
 bgt nostraight
 ldaa #$19
 staa mlwant
 staa mrwant
 bra donetest
nostraight
 cpd #500
 bgt noturn
 ldaa #$14
 staa mlwant
 ldaa #$0B
 staa mrwant
 bra donetest
noturn
 ldd #0
 std mcount
donetest
 rts

******* Avoid *************

Avoid ldx #tof

*This next section marks all values past a certain point as infinite
*(zero), and also marks all the zeroes as FFFF (maxint) so that unsigned
*math can be used as comparisions.

 ldd 0,X
 cpd #$4400
 blo noclear0
 ldd #0
noclear0
 addd #$FFFF *subtract one to make 0->FFFF (unsigned max)
 std 0,X

 ldd 2,X
 cpd #$4400
 blo noclear1
 ldd #0
noclear1
 addd #$FFFF *subtract one to make 0->FFFF (unsigned max)
 std 2,X

 ldd 4,X
 cpd #$4400
 blo noclear2
 ldd #0
noclear2
 addd #$FFFF *subtract one to make 0->FFFF (unsigned max)
 std 4,X

 ldaa robot
 beq DoPTAvoid
 jsr AvoidSC
 bra DACode
DoPTAvoid
 jsr AvoidPT
DACode rts

******* AvoidPT ***********

AvoidPT
*As input, X points to tof here.

*first see if they are all zero
 ldd 0,X
 cpd #$FFFF
 bne noallzeroPT
 ldd 2,X
 cpd #$FFFF
 bne noallzeroPT
 ldd 4,X
 cpd #$FFFF
 bne noallzeroPT

*We want to request all ahead.
*First zero moment, then accelerate

 ldaa mlcurr
 cmpa mrcurr
 blt lagLPT *if left<right, increase left
 bgt lagRPT *if right<left, increase right
*Ok, moment is zero, so accelerate
 ldaa #$1D *request all ahead
 staa mlwant
 ldaa #$1F
 staa mrwant
 jmp DAPT *now quit

lagLPT ldaa mrcurr *right is bigger, hold it steady..
 staa mlwant
 staa mrwant *while we bring left up to speed.
 jmp DAPT

lagRPT ldaa mlcurr *left is bigger, so hold it steady...
 staa mlwant
 staa mrwant *while we bring right up to speed.
 jmp DAPT

noallzeroPT

 ldd 2,X *get left motor value
 cpd 4,X *compare to right motor value
 blo gorightPT

*if here, left is >= right, so turn left

 ldaa #$17 *+7 on left motor
 staa mlwant
 ldaa #$19 *+9 on right motor
 staa mrwant
 jmp DAPT

gorightPT
 ldaa #$1A *+10 on left motor
 staa mlwant
 ldaa #$16 *+6 on right motor
 staa mrwant
 jmp DAPT

DAPT rts

******* AvoidSC ***********

AvoidSC
*As input, X points to tof here.

*first see if they are all zero
 ldd 0,X
 cpd #$FFFF
 bne noallzeroSC
 ldd 2,X
 cpd #$FFFF
 bne noallzeroSC
 ldd 4,X
 cpd #$FFFF
 bne noallzeroSC

*We want to request all ahead.
*First zero moment, then accelerate

 ldaa mlcurr
 cmpa mrcurr
 blt lagLSC *if left<right, increase left
 bgt lagRSC *if right<left, increase right
*Ok, moment is zero, so accelerate
 ldaa #$1F *request all ahead
 staa mlwant
 staa mrwant
 jmp DASC *now quit

lagLSC ldaa mrcurr *right is bigger, hold it steady..
 staa mlwant
 staa mrwant *while we bring left up to speed.
 jmp DASC

lagRSC ldaa mlcurr *left is bigger, so hold it steady...
 staa mlwant
 staa mrwant *while we bring right up to speed.
 jmp DASC

noallzeroSC

 ldd 0,X
 cpd #$3000
 bhi RelaxSC

 ldd 2,X *get left motor value
 cpd 4,X *compare to right motor value
 blo gorightSC

*if here, left is >= right, so turn left

 ldaa #$00 *-15 on left motor
 staa mlwant
 ldaa #$08 *-7 on right motor
 staa mrwant
 jmp DASC

gorightSC
 ldaa #$08 *-7 on left motor
 staa mlwant
 ldaa #$00 *-15 on right motor
 staa mrwant
 jmp DASC

RelaxSC
*This code runs when the value in front is far away, so the turn
*is not backwards

 ldd 2,X *get left motor value
 cpd 4,X *compare to right motor value
 blo RLrightSC

*if here, left is >= right, so turn left

 ldaa #$1A *10 on left motor
 staa mlwant
 ldaa #$1F *15 on right motor
 staa mrwant
 jmp DASC

RLrightSC
 ldaa #$1F *15 on left motor
 staa mlwant
 ldaa #$1A *10 on right motor
 staa mrwant
 jmp DASC

DASC rts

***** IsPing **************

IsPing ldaa #0
 staa sval

Search
 ldaa cursonar ;get current sonar
 inca
 cmpa #$3 ;3 sonar only
 bne nozcs2
 clra
nozcs2 staa cursonar
 ldab p6val ;get current p6
 andb #$f8 ;kill 3LSBs
 aba ;a+b->a
 staa p6val
 staa $6000 ;record new sonar device

 ldaa #$04
 staa TFLG1 ;clear any pending ICs

*Now look for sonar
 jsr Wait10ms
 ldaa TFLG1
 anda #$4
 beq nothing
 jmp foundfriend

nothing

 ldaa sval
 inca
 staa sval
 cmpa #200
 bne Search
 jmp Donewait

foundfriend
 jsr Wait150ms

Donewait
 rts
sval RMB 1

******* Ping **************

Ping

*This area is involved in incrementing the sonar 0-1-2-0...
 ldaa cursonar ;get current sonar
 inca
 cmpa #$3 ;3 sonar only
 bne nozcs
 clra
nozcs staa cursonar

*This area is responsible for requesting the correct sonar be written.
 ldab p6val ;get current p6
 andb #$f8 ;kill 3LSBs
 aba ;a+b->a
 staa p6val

*Sea Cow does not request a sonar to ping, merely turning all of them on
*at once and then listening on a specific reciever.
 ldab robot ;if Sea Cow, set sonar select to zero
 beq noseloff
 anda #$f8 ;we must always write a zero here...
noseloff
 staa $6000 ;record new sonar device

*Turn on either selected emitter or emitters in general.
 ldaa #$81 ;turn emitter on
 staa $7000
 jsr Wait1ms
 ldaa #$00 ;turn emitter off
 staa $7000
 jsr Wait1ms

 ldaa p6val ;re-record value in case lost
 staa $6000

 ldaa #$04
 staa TFLG1 ;clear any pending ICs
 ldaa #$00
 staa TOIFLG ;clear timer overflow

 ldx #first
 ldab cursonar ;write to first+2*cursonar
 lslb
 abx
 ldd TCNT
 std 0,X

 clra
 staa bcount ;start at 0

inloop ldaa TOIFLG ;count up, while waiting for
 anda #$1 ;response.
 beq NoProblem

 clra
 staa TOIFLG

 ldaa bcount
 inca
 staa bcount
 cmpa #2
 beq breakout

NoProblem

 ldaa TFLG1
 anda #$4
 beq inloop

breakout

 ldaa bcount
 cmpa #$2
 bne gotping
 ldx #tof
 ldab cursonar
 lslb
 abx
 ldd #0
 std 0,X ;write tof as zero
 bra checknext

gotping

 ldx #first
 ldab cursonar ;write to first+2*cursonar
 lslb
 abx
 ldd TIC1
 subd 0,X ;write to first array
 cpd #$100 ;if less than #$100, don’t change (ImmRes)
 blo delayloop
 std 10,X ;write to tof array

delayloop
*Now we recieved the ping, wait the rest of the time for timing
 ldaa TOIFLG ;count up, while waiting for
 anda #$1 ;response.
 beq delayloop

 clra
 staa TOIFLG

 ldaa bcount
 inca
 staa bcount
 cmpa #2
 bne delayloop

checknext
 ldaa cursonar
 beq Printloop
 jmp Ping

Printloop

 ldx #tof
 ldab cursonar
 lslb
 abx
 ldd 0,X
 bne okprint
 ldx #Timeout
 jsr OutStr
 bra pastprint

okprint
 addd #$20
 jsr Hexph
 jsr Hexpl
 tba
 jsr Hexph

 jsr Hexpl

pastprint
 ldaa #$20 ;load space
 jsr OutChar
 jsr OutChar

 ldaa cursonar
 inca
 staa cursonar
 cmpa #$3
 bne Printloop
 clra
 staa cursonar

 ldaa #$20 ;load space
 jsr OutChar
 jsr OutChar
 jsr OutChar
 ldaa mlwant
 jsr Hexph
 jsr Hexpl
 ldaa #$2F
 jsr OutChar
 ldaa mlcurr
 jsr Hexph
 jsr Hexpl

 ldaa #$20 ;load space
 jsr OutChar
 jsr OutChar
 ldaa mrwant
 jsr Hexph
 jsr Hexpl
 ldaa #$2F
 jsr OutChar
 ldaa mrcurr
 jsr Hexph
 jsr Hexpl

 ldaa #$20
 jsr OutChar

 ldaa PACNT
 jsr Hexph
 jsr Hexpl

 ldaa #$20
 jsr OutChar
 jsr OutChar

 ldaa click
 beq nclick
pclick ldx #Click
 jsr OutStr
 dec click
 ldaa click
 bne pclick

nclick
 ldx #Enter
 jsr OutStr
 rts

*******Wait10ms************

Wait10ms
 jsr Wait1ms

 jsr Wait1ms
 jsr Wait1ms
 jsr Wait1ms
 jsr Wait1ms
 jsr Wait1ms
 jsr Wait1ms
 jsr Wait1ms
 jsr Wait1ms
 jsr Wait1ms
 rts

*******Wait150ms***********

Wait150ms
 jsr Wait10ms
 jsr Wait10ms
 jsr Wait10ms
 jsr Wait10ms
 jsr Wait10ms
 jsr Wait10ms
 jsr Wait10ms
 jsr Wait10ms
 jsr Wait10ms
 jsr Wait10ms
 jsr Wait10ms
 jsr Wait10ms
 jsr Wait10ms
 jsr Wait10ms
 jsr Wait10ms
 rts

*******Wait1ms*************

Wait1ms ldd TCNT
 addd #2000
 std TOC4
 ldaa #$10 ;clear current flag (so we wait)
 staa TFLG1
ms1a ldaa TFLG1
 anda #$10
 beq ms1a
 rts

*******Radio***************

Radio
 ldaa robot
 beq radioD *Pie Tin has nothing for this

 ldd mcount *Only check every 4th TOI
 andb #$3
 bne radioD
*Use this to determine the pulse density to determine behavoir mod
 ldaa PACNT
 cmpa #10
 blt nobehave
 ldaa #1
 staa spin
nobehave
 clra
 staa PACNT

radioD rts

*******Rinit***************

Rinit
 ldaa robot
 bne SCrecv

 ldaa PACTL
 oraa #$8 *Set Port A bit 3 to output for emitter
 staa PACTL

 ldd #$2000
 std TOC5

 ldaa TMSK1 *Use TOC5
 oraa #$8
 staa TMSK1

 ldaa OC1M
 oraa #$80
 staa OC1M

 bra DRinit

SCrecv ldaa PACTL *increment PACNT on falling edge
 anda #$cf
 staa PACTL

 clra
 staa PACNT *write a zero to Pulse accumulator

DRinit rts

*********TOI ISR***********

TOIISR ldaa TFLG2
 anda #$80
 bne noleave
 jmp TOIDONE
noleave
 staa TFLG2
 ldd mcount
 addd #$1
 std mcount
 ldaa TOIFLG
 oraa #$1
 staa TOIFLG

 jsr Radio

*only update once every two cycles
 ldd mcount
 andb #$1
 bne outl

 ldaa mlcurr
 cmpa mlwant
 beq donel
 blt goingdownl
 deca
 bra donel
goingdownl

 inca
donel staa mlcurr

outl ldaa mlcurr

*first write direction
 ldab directionl
 anda #$10 *get MSB to determine motor direction
 staa directionl
 cba *see if we just switched motor direction
 beq noclickl
 inc click
noclickl
*done recording whether a click occured or not

*a now contains direction in bit 4...
 ldab robot
 bne LeftSC *seperate code for Sea Cow...
*Do Pie tin left motor code...
 lsla
 lsla
 staa ltemp0
 eora #$bf
 staa ltemp1
 ldaa p6val
 oraa ltemp0
 anda ltemp1
 staa p6val
 staa $6000
 bra DoneDL

LeftSC
*Now will modify port A bit 4
 staa ltemp0
 eora #$ef
 staa ltemp1
 ldaa paval
 oraa ltemp0
 anda ltemp1
 staa paval
 staa PORTA

*Now done setting left direction pin
DoneDL
 ldaa mlcurr
 ldab directionl
 bne noflipl *flip if direction bit not set
 nega
 adda #$15
noflipl anda #$0F
 staa magnitude
 cmpa #0
 bne nozerol

 ldaa #$40
 staa TFLG1
 ldaa OC1D
 anda #$bf
 staa OC1D
 bra doright

*not zero, set it up to be ok...
nozerol ldaa #$40
 staa TFLG1
 ldaa OC1D
 oraa #$40
 staa OC1D
 ldab magnitude

 lslb
 ldx #gotablel
 abx
 ldd TCNT
 addd 0,X
 std TOC2

*now do the right motor

doright

*only update once every four cycles
 ldd mcount
 andb #$3
 bne outr

 ldaa mrcurr
 cmpa mrwant
 beq doner
 blt goingdownr
 deca
 bra doner
goingdownr
 inca
doner staa mrcurr

outr ldaa mrcurr

*first write direction
 ldab directionr
 anda #$10 *get MSB to determine motor direction
 staa directionr
 cba *see if we just switched motor direction
 beq noclickr
 inc click
noclickr

*a now contains direction in bit 4...
 ldab robot
 bne RightSC *seperate code for Sea Cow...
*Do Pie tin right motor code...

 lsla
 staa ltemp0
 eora #$df
 staa ltemp1
 ldaa p6val
 oraa ltemp0
 anda ltemp1
 staa p6val
 staa $6000
 bra DoneDR

RightSC
 lsra *Scale to portA bit 3
 staa ltemp0 *save as 08 or 00
 eora #$f7 *save as ff or f7
 staa ltemp1
 ldaa paval
 oraa ltemp0
 anda ltemp1
 staa paval
 staa PORTA
DoneDR

 ldaa mrcurr
 ldab directionr
 bne noflipr *flip if direction bit not set

 nega
 adda #$15
noflipr anda #$0F
 staa magnitude
 cmpa #0
 bne nozeror

 ldaa #$20
 staa TFLG1
 ldaa OC1D
 anda #$df
 staa OC1D
 bra TOIDONE

*not zero, set it up to be ok...
nozeror ldaa #$20
 staa TFLG1
 ldaa OC1D
 oraa #$20
 staa OC1D
 ldab magnitude
 lslb
 ldx #gotabler
 abx
 ldd TCNT
 addd 0,X
 std TOC3

TOIDONE rti
magnitude RMB 1
directionl RMB 1
directionr RMB 1
ltemp0 RMB 1
ltemp1 RMB 1

**
* SUBROUTINE - InitSCI
* Description: This subroutine initializes the BAUD rate to 9600 and
* sets up the SCI port for 1 start bit, 8 data bits and
* 1 stop bit. It also enables the transmitter and receiver.
* Effected registers are BAUD, SCCR1, and SCCR2.
* Input : None.
* Output : Initializes SCI.
* Destroys : None.
* Calls : None.
**
*
InitSCI PSHA * Save contents of A register

 ldaa #$30 * Set BAUD rate to 9600
 staa BAUD
 ldaa #$0 * Set SCI Mode to 1 start bit,
 staa SCCR1 * 8 data bits, and 1 stop bit.
 ldaa SCCR2 * Enable SCI Transmitter
 ora #$0c * and Receiver
 staa SCCR2

 PULA * Restore A register
 RTS * Return from subtoutine

**
* SUBROUTINES - Hexph and Hexpl
* Description: Outputs the hex digit in high or low a after
* checking if the Transmitter Data Register is Empty
* Input : Data to be transmitted in register A.
* Output : Transmit the data.
* Destroys : None.
* Calls : None.
**
*
Hexph psha ;save a away
 lsra
 lsra
 lsra
 lsra
 bra hexs ;after scaled, go to start
Hexpl psha
hexs anda #$0F
 adda #48 ;scale to ASCII 0
 cmpa #58 ;if above or equal, need more scaling
 blt hexl ;jump over correction if OK
 adda #7 ;now will print A-F properly
hexl jsr OutChar ;print out character
 pula ;get a back
 rts ;bye bye

**
* SUBROUTINE - OutStr
* Description: Outputs the string terminated by EOS. The starting location
* of the string is pointed by X register. Calls the OutChar
* subroutine to display a character on the screen and
* exit once EOS has been reached.
* Input : Starting location of the string to be transmitted
* : (passed in X register)
* Output : Prints the string.
* Destroys : contents of X register.
* Calls : OutChar.
**
*
OutStr PSHA * Save contents of A register
Loop2 ldaa 0,x * Get a character (put in A register)
 cmpa #EOS * Check if it’s EOS
 beq Done * Branch to Done if it’s EOS

 JSR OutChar * Print the character by calling OutChar
 inx * Point to next character
 BRA Loop2 * Branch to Loop2 for the next char.
Done PULA * Restore A register
 RTS * Return from subtoutine

**
* SUBROUTINE - InChar
* Description: Receives the typed character into register A.
* Input : None
* Output : Register A = input from SCI
* Destroys : Contents of Register A
* Calls : None.
**
*
InChar

pollrecv ldaa SCSR ; Check status reg.

 anda #$20 ; (load it into A reg)
 cmpa #0 ; Check if receive buffer full
 beq pollrecv ; Wait until data present

 ldaa SCDR ; SCI data ==> A register
 RTS ; Return from subroutine

**
* SUBROUTINE - OutChar
* Description: Outputs the character in register A to the screen after
* checking if the Transmitter Data Register is Empty
* Input : Data to be transmitted in register A.
* Output : Transmit the data.
* Destroys : None.
* Calls : None.
**
*
OutChar PSHB * Save contents of B register
Loop1 ldab SCSR * Check status reg (load it into B reg)
 andb #$80 * Check if transmit buffer is empty
 BEQ Loop1 * Wait until empty
 staa SCDR * A register ==> SCI data
 PULB * Restore B register
 RTS * Return from subtoutine

