PieTin & Sea Cow
John Juilfs & Mark Schmidt
EML5666

Final Report
December 8, 1999

| ntroduction

Though the human race does not live on the ocean, we do spend a significant amount of time
there. From fishermen to romantic cruises to destroyers, the surface of the ocean has certainly
been used by people for thousands of years. However, the ocean offers some problems. Covering
two thirds of the Earth, the ocean is simply too large to be fully understood, at least with today’s
technology. In some places, pilots are still used to steer ships through a particular harbor because
the captain does not know where all the shallows are. Currents, eddies, hurricanes, and tides tend
to make the ocean a dynamic system, not static. Because of our lack of understanding and
exploration, ships still hit icebergs and people are lost at sea.

It was our goal to begin exploring the possibilities of nautical robots. We wanted to create
versatile boats that could potentially work together on the water. There are many possible
ultimate uses of this. They could perform a coordinated search for alife boat or arapid mapping
of a harbor bottom. Of course, the military could certainly find a use.

Platform

Sea Cow

The platforms chosen for each of the two boats were quite different. Sea Cow was based on a
catamaran. It has two identical hullsjoined by an arch. The hulls are fairly hydrodynamic, and
there isamotor in each hull. Each hull has three segments, the bow, midship, and stern. The bow
is covered with balsa wood. The arch covers the midship and the stern. Inside the arch are the
circuits controlling the robot. The part of the arch that is close to the water is solid, and
everything is attached to that. The top portion of the arch is removable to parts can be accessed
easily. With alittle effort in sealing joints, Sea Cow could likely be operated in the rain.

PieTin

Pie Tin isfar less hydrodynamic. On the top, it is an large octagon, and on the bottom it isa
smaller square. Thereis amotor on each side near the bottom. The circuit boards fit into the boat
on frames that are layered. On the bottom between the motors are the batteries. Above that are
the sonar boards and a motor driver board. On the top layer are a motor driver board, the TJPro
board, and the port expansion board. There were two reasons for this odd design. Thefirst is so
that the two could dock together possibly, and Pie Tin could fit under the arch of Sea Cow. With
the symmetrical design, Sea Cow could approach Pie Tin from any direction. The second reason
was simply for experimentation, to discover if, on such a small scale, the shape would make a
significant difference. In the end, the two robots move at about the same speed, though Pie Tinis
faster and has a much greater turning rate.

Design

From the initial design, the finished product was far away. Sea Cow was originally designed in
3-D on AutoCad, and then each segment was converted to 2-D. Pie Tin, because of it'ssimple
geometry, was never drawn in 3-D. From the AutoCad files, the parts were cut out on the T-tech.
The parts formed a wooden structure of each boat. The wooden structure of Sea Cow consisted
of the side panels and 3 supports for each hull. Pie Tin was only the walls because its shape was
strong enough. However, Pie Tin did have some awkward angles that caused a problem because
the wood had width. The solution was to sand the edges of the tabs at about 45 degrees. That
allowsfor atight fit. Each of us constructed our own wooden frames, but from there Mark took
over with the toxic chemicals. First the outside of the boats was sanded until smooth. Then a
layer of Bondo fiberglass was applied. Sea Cow was done first, and its first layer of fiberglass
was not done very well, so another coat was applied.

After the fiberglass, the nozzles were inserted. This involved drilling holes in the appropriate
places, filing them to fit the PV C pipe, and then attaching 1.5 - 2 inches of pipe to the hull. The
most difficult was the holesin Sea Cow’ s bows because of the awkward angle. The nozzles were
then sealed with Goop.

Sea Cow then received alayer of Bondo UV Activated Body Filler. This did not work very well,
either, but it did seal the cracks well enough. Pie Tin, however, was coated with Bondo red spot
putty. This worked much better. It dried an a suitable rate and was not difficult to work with.
Both of these surfaces were wet sanded, which was actually rather difficult, and then primed.
John then painted Pie Tin, and Mark painted Sea Cow. The parts that would contact water were
painted with spray enamel.

The motors were then fit into the boats. Flexible tube (5/8” OD, 1/2” ID) fit inside the PV C pipe
and then joined to the motor with a coupling. The coupling was held to the motor and the
flexible tube with JBQuick. The tube inside the PV C did not need a seal, and so the motors could
be removed. However, Pie Tin insisted on leaking, and the entire tube area was covered with hot
glue, so removing the motors there would be very difficult.

Sea Cow’ s hulls were then attached to the arch. The fit was not perfect because of assembly
stresses. However, the parts were close enough to allow glue to hold them in place.

The switches and computer ports were rather ssmple. The circuit boards were very easy to mount
in Sea Cow, as there was plenty of open space. Pie Tin posed difficult. However, by tweaking
the length of the braces, each layer could be put at the correct height.

Of the parts mentioned, they are all available in town. Lowes, Wamart, and automotive places
carry Bondo fiberglass. Automotive supply stores carry Bondo spot putty and body filler.
Walmart has the JBQuick and paint.

The propulsion for the robots is, at a glance, very simple. The motors are Graupner Bow
Thrusters, available from Hobby-L obby for $35. They are easily sealed, and much simpler than
propellers. Having them set up in their particular configuration, they steer similarly to atwo-
wheeled robot. Reversing one motor will turn the boat in the direction of that motor. However,
linear and rotational momentum make it very different from land robots, and are the real hidden
problems. Once a boat turns, it tends to keep turning, particularly Pie Tin. Sea Cow will attempt
to turn before hitting awall, but if at full speed, it has difficulty slowing down enough before
hitting the wall. These are problems that have been mostly fixed in software.

Sensors

Overview

The primary sensors for Pie Tin and Sea Cow are sonar. Each robot has a bank of three sonar,
one facing directly forward, and the other two at an angle to the left and right. The hope was that
the sonar configured this way would be able to spot most large obstacles (such as walls) and
avoid them. The sonar receiver used was the standard IMDL lab board printed out from the T-
Tech, while the sonar emitter was the amplifier from the Toshiba manual that uses asingle
inverter chip to drive the transducer. Each sonar emitter / receiver pair was multiplexed /
demultiplexed on a custom expansion board. This expansion board used port 0x6000 to select
which emitter / receiver pair was active, as well as to choose the direction for the motors (this
worked fine on Pie Tin, but proved difficult on Sea Cow: that is covered below).

The secondary sensor used was radio. Pie Tin emits radio (using Timer Output Compare 5 on
Port A bit 3) and Sea Cow receives (it keeps track of the pulses with the pul se accumulator, and
soistied to Port A bit 7). The receiver could have also been attached to input capture, but at the
time the software was written it was uncertain as to whether extraneous noise could filter in (not
really, asit turned out), and the presence or absence of alarge number of pulses could be more
easily verified than whether a particular edge was accurate or not.

Sonar assembly and hardware:

Ten sonar boards were assembled: seven proved usable. The pre-designed sonar board is useful,
but difficult. The T-tech machine has problems. The mgjority of the board is conductive, and
only asmall bit of removed copper alows for anything resembling a circuit. The true villains are
“threads’. The threads are bits of copper that were not completely cut away by the T-tech and
cross over between traces and pads. These are best removed with arazor blade and a magnifying
glass. The places where one is most likely to see a thread have been marked with green in this
picture of a sonar board.

Fi
L

¥

!I

b
-

T g |
% '._. = {

J& W et
PR R T R RE TR L WL P

2

PR it =
et
i =

B O e e o e
|

f ;
oE R B B EE R RoE s R .
i R

Sonar testing and software:

Since the board was only driving one sonar (due to the expansion board), Input Capture 1 was
used to recelve data (Port A bit 2). The 40kHz signal at port 0x7000 was used to turn the
emitters on and off. Since the signal goes between a signal and high impedance, a pull down
resistor was necessary to ensure that the signal was transmitted to the emitter: at first, the on
board 330W resistor was used, but the current draw proved excessive for the board, and
whenever the sonar emitter was turned on, the value kept in the latch attached to port 0x6000 (on
the expansion board) would become corrupt, as the values of the data pins and Y 4 would
fluctuate at random. Thiswas solved by using a 10kW resistor instead of the 330Wone. This
solution did not function for Sea Cow, so instead all of the sonar emitters were tied to the same
enable pin, thus bypassing the necessity of using port 0x6000 to select the correct sonar emitter
(thus making Sea Cow ping in al directions at once and listen at one, as during the listening
stage the emitters were necessarily off, so the value at port 0x6000 was never corrupted).

The included sonar test assembler file “sonart.asm” will write port 0x7000 with all onesto turn
on the 40kHz sonar, then wait 1ms, then turn it off by writing all zeroes. It will then wait
another 1ms, then begin listening for sonar by polling TFLG1 bit 2. After this, it will either time
out or receiver asonar signal, and will print either the elapsed Eclocks or a message stating that
it has timed out.

Extensive data was gathered on the properties of the sonar. The general conclusion of this data
showed that the sonar had a hard time getting a receiving ping off of a surface with aface even
dightly less than normal to the emitter, while receiving pings off of a surface normal to the sonar
emitter but less than directly in front of it was not as difficult.

Radio assembly and hardware:

Since the radio used was the emitter and receiver pair by Linx Technologies (models RXM-315-
LC-R and TXM-315-LC), the only assembly was tying the appropriate pins to ground, power, or
data, as well as ensuring that the antenna had a good ground plane.

Radio testing and software:
The radio worked perfectly, not picking up any stray signals. The software involved was also

simple, either oscillating TOCS to indicate asignal or remaining quiet on the transmitter end, and
periodically checking on the pulse accumulator (once every TOI) on the receiving end.

1
Antenna input TINK & +oW
2 9
EF MODULE
NC — — N.C.
E3-315-LC-E 2
Ground Ground
4 7
M. N.C.
5
Data out — IMC
(PORET A& bit?)
Ground —— —8 Ground
5 LINX .
Data n — RF MODULE 5V
Port & b 30 3 TIM-315-LC 6
Ground —— —— Ground
4 5
43082 resistor — Antenna output

Fe)
Diatal
Diatal
Diatal
DiataZ
Diatad
Diatas
Diataf
Diata’f

Feciewvel
Feciewe]
Fecieve
Feciewe 3
Fecieved
HiC.
HiC.
HiC.

to ground.

(Abowe) Eadio Transmitter and Eeciever
(Below) Expansion board for sonar emitter / reciever pairs

—1n el
L 574 9
—1s 18
14 17
s 16
s 15
. 14
= 15
. [12
. 10
— |4 16
_ 15 251

— |z 11
—h 10
— |15 q
— |1

b 5
— |1z 6
s g

+5W 20
a0 |
| 32
32
HLC.
HLC. 100 to groand, 40kH=
Directionbit nght frorn peoat D000
Dizectiombit ki Groand
HLC. Groand
Groand
+5V La
jul}
a0 L2
2 L5
32 L4
HLC.
PortAbit 2(IC1) Groand

HiC.

Gromnd

—1 16
| 138 15
— s 14

15

12
s 11

10
—|s q
—lz 7

g
—h 2
_ 15 04 .
—s 6
— = g
—|u 10
b 12
= 14

+5W

D1

HiC.
HiC.
HiC.

Trasnut
Trasnmt 1
Trasnu 2
Trasna 3
Trasnu 4
WL

+5W

Code/ Behaviors

Overview

Both Pie Tin and Sea Cow are programmed in assembler, and run routines that are very similar
or identical. Since much of the hardware is the same (the motors and the sonar are handled very
similar on both), the routines that run these execute the same code on both machines, only doing
special cases where a difference is unavoidable. The original code was interrupt driven, but the
need for this was lessened when the number of timing specific actions was greatly reduced when
LED communications was no longer agoal. The only interrupts currently used are TOI and
TOCES.

The three main behaviors are common to both Pie Tin and Sea Cow, though the methods used to
achieve them are different in some cases..

Main loop

The core code does initializations, looks to seeif it can see other sonar (if it can it delays 150 ms
to hopefully be out of phase with its own sonar: sonar emitting takes around 60 ms per sonar,
and there is adelay of 300 ms during which the other boat has time to emit and receive sonar
without interference), then falls into aloop of sending and receiving pings, making obstacle
avoid decisions on those values, waiting so the other boat has time to ping sonar, and then
looping back.

Interrupts

The Timer Overflow Interrupt sets up the width of the pulses sent to the motors (turned on with
TOC1 and turned off with TOC2 and TOC3), and sets the direction pins (Pie Tin has the
direction pins accessible on port 0x6000 bits 6 and 5: Sea Cow uses port A bits4 and 3). It also
keeps track of time, incrementing a 16 bit counter every time: since this won’t wrap around until
long after the motor batteries are drained, thisis plenty of time (alittle over half an hour).
Additionally, Sea Cow looks at the pulse accumulator to seeif Pie Tin is sending a message.

The Timer Output Compare 5 interrupt mostly serves to set itself to occur again: Port A bit 3 on

Pie Tin serves as the radio output pin, and is either set to toggle or is simply left low to indicate
the absence of signal.

Obstacle Avoidance

Thefirst behavior, obstacle avoidance, just involves looking at the last set of pings and
requesting a set of motor values that corresponds to the desired direction. There are two separate

“Avoid” functions, one for each robot, each of which has different motor values. Since Pie Tin's
motors are rigged “backwards’ for symmetry about the y-axis (so they could fit), the values
requested are not symmetrical: this does not solve the problem, but lessensit. Sea Cow’s
motors could be fitted facing the same direction due to plentiful space, and so the values passed
to its motors are the same: however, there is amore detailed turning section, as Sea Cow has
much greater momentum than Pie Tin, and has more difficulty slowing down.

Sonar Noninterference

This behavior basically consists of along delay on boot up while looking through each emitter in
turn to seeif any sonar is present. If sonar is seen, the boat seeing sonar waits for 150 ms before
entering its main loop: if not, it Ssmply enters after it has decided that no sonar is available to
see. Since cycling through the sonars takes around 150 ms, and each robot waits 300 ms after
using al three emitter / receiver pairs, this delay should put the second robot’ s sonar scanning
squarely in the middle of the first robot’s down time, assuming it can see the other sonar at boot
up. Thisis poorly tested, as the odds of one robot’s sonar interfering negatively with the other is
very low, due to the fact that the sonar would have to perfectly bounce off of awall onto the
other robot’s sensor and trigger an incorrect turn: after all, if the sonar hits the other robot’s
receiver directly, al that will result is the second robot turning away from the first: effectively,
obstacle avoidance with a actively pinging obstacle.

Soin Time

A time after bootup, Pie Tin will signal that “it istime to spin” using the radio. This time could
have been determined quasi-randomly, but for testing purposes has been chosen at around 20
seconds. Upon signalling, it will assume that Sea Cow has received the message and begin
spinning to theright. A while later, it will spin in the opposite direction. After it completes
spinning, it will resume obstacle avoidance. Sea Cow will perform the same actions upon
receiving the signal. The point was to demonstrate that the signal has been received and acted
upon, as the act of spinning has no obvious practical value.

*Sonart .

bcount
*

first
t of
Msg

Ent er
Ti meMsG

Mai n

dl oop
inl

| daa
staa

| daa
nop
brn
deca
bne

$FFFE ;reset vector
Mai n ;point to main on reset
$102B ; BAUD rate control register to set the BAUD rate
$102C ; Serial Communication Control Register-1
$102D ; Serial Communication Control Register-2
$102E ; Serial Communication Status Register
$102F ; Serial Communication Data Register
$1000 ; PORT A REG STER
$100e ; Tiner count
$1025
$1023
$1010
$1021
$04 ; User-defined End O String (EOCS) character
$0D ; Carriage Return Character
$0A ; Line Feed Character
$1B ; Escape Charracter
$8000 ;start code at convienient place
1 ;the “big” counter: increnented
;if TCNT wraps while waiting
2
2
‘ Ready
ECS
CR, LF, ECS
“Time out
ECS
#$cf f f
#0
#0
#0
#20
TCTL2
I ni t SCl
#$0 *turn emtter off at first
$7000
#Msg *out put message
Qut Str
#250 *net total delay = 278250E = .14 seconds
#220 *[2]
*[2] [5]*220 = 1100
inl *[3]
inl *[3]
*[2]
dl oop *[3]
#SFF ;turn emitter on
$7000
#200 ;wait 1 ns
2]
nmsl a i [3]
02
nmsl a i [3]

| daa #3$00 ;turn emtter off
staa $7000

| daa #200 ;wait 1 ns
nmsl b nop [2]
brn nmsl b i [3]
deca [2]
bne nmsl b i [3]
| daa #$04
staa TFLGL ;clear any pending |ICs
| daa #$80
st aa TFL& ;clear tinmer overflow
| dd TCNT ;get current value of TCNT
std first
clra
st aa bcount ;start at O
inloop |daa TFL&2 ;count up, while waiting for
anda #$80 ; response
beq NoPr obl em
staa TFL&2 ;i f TFLG goes hi gh, acknow edge
| daa bcount
inca
st aa bcount
cnpa #2 ;if we have had to TO's, quit
beq br eakout
NoPr obl em
| daa TFLGL
anda #$4
beq i nl oop
br eakout
| dd TIC1
subd first
std t of
| daa bcount
cnpa #2
bne NoTO ;if 2, then tined out
| dx #Ti meMSG
jsr Qut Str
bra DonePri nt ;skip ahead to carriage return

NoTO

*You will notice an apparently arbitrary “addd #$20" below this. This is
*because sonmetines a ping will be seen right away, or very near that
*(immedi ate response). Usually this number is very |low, such as 0x56
*However, sonetines this number is very high (negative) due to inaccuracies

*readi ng TCNT. Because of this, | add a small, arbitrary constant to the
*tinme of flight so that all inmmedi ate responses | ook about the samne.
| dd t of ;print out tine of flight
addd #$20
jsr Hexph ;print out high 4 bits of a
jsr Hexpl ;print out low 4 bits of a
t ba
jsr Hexph ;print out high 4 bits of a
jsr Hexpl ;print out low 4 bits of a
DonePri nt
I dx #Ent er
jsr Qut Str

jmp Mai n

khkkhkkhkkhkhhhhkhhhhhhhhhhhhhhhhhhhhhhhhhhhkhhhhhkhhhkhkhkhkhkhkhkhkhhkhkhkkkkkkkkkkkkkk***x*%

* SUBROUTI NE - | nitSCl

* Description: This subroutine initializes the BAUD rate to 9600 and

* sets up the SCI port for 1 start bit, 8 data bits and

* 1 stop bit. It also enables the transnmitter and receiver.
* Effected registers are BAUD, SCCR1, and SCCR2.

* | nput : None.

* Qut put : Initializes SCl.

* Destroys : None.

* Calls : None.

khkkhkkhkkhkkhhkkhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhkhkhkhhkhhkhkhkhhhhkhhhkhkkkkkkkkkkkkk****x*%
*

InitSCl PSHA * Save contents of A register
| daa #$30 * Set BAUD rate to 9600
staa BAUD
| daa #$0 * Set SCI Mbde to 1 start bit,
staa SCCR1 * 8 data bits, and 1 stop bit.
| daa SCCR2 * Enable SCI Transmtter
ora #3$0c * and Recei ver
staa SCCR2
PULA * Restore A register
RTS * Return from subtoutine

khkkhkkhkkhkhhkhhhhhhhhhhhhhhhhhhhhhhhhhhhhhkhhhhkhkhkhkhhkhhkhhkhkhkkhhhkhkkkkkkkkkkkkk****x*%

* SUBROUTI NES - Hexph and Hexpl

* Description: Qutputs the hex digit in high or low a after

* checking if the Transnmitter Data Register is Enpty
* | nput : Data to be transmitted in register A

* Qut put : Transnmit the data.

* Destroys : None.

* Calls : None.

khkkhkkhkkhkkhkhkhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhkhhhkhkhkhkhkhkhkhkhkhkhkhhhkhkhkkkkkkkkkkkkkk***x*%
*

Hexph psha ;save a away

I sra

I sra

I sra

I sra

bra hexs ;after scaled, go to start
Hexpl psha
hexs anda #$0F

adda #48 ;scale to ASCII 0O

cnpa #58 ;if above or equal, need nore scaling

bl t hexl ;junmp over correction if OK

adda #7 ;now will print A-F properly
hexl jsr Qut Char ; print out character

pul a ;get a back

rts ; bye bye

khkkhkkhkkhhhkhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhkhkhhhhkhkhkhkhkhkhkhhkhkhkhkkkkkkkkkkkkkkk**x*%

* SUBROUTI NE - QutStr
* Description: Qutputs the string termnated by ECS. The starting |ocation
* of the string is pointed by X register. Calls the QutChar

I

*

subroutine to display a character on the screen and
exit once ECS has been reached.

I nput Starting location of the string to be transnmitted
. (passed in X register)

Qut put : Prints the string.

Destroys : contents of X register.

Calls : Cut Char.

khkkhkkhkkhkhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhkhhhkhhhkhkhhkhkhkhkkhkhhhkhkhkkkkkkkkkkkkk***x*%

*

Qut Str PSHA * Save contents of A register
Loop2 | daa 0, x * Get a character (put in A register)
cnpa #ECS * Check if it's ECS
beq Done * Branch to Done if it's ECS
JSR Qut Char * Print the character by calling CutChar
i nx * Point to next character
BRA Loop2 * Branch to Loop2 for the next char.
Done PULA * Restore A register
*

RTS Return from subtouti ne

khkkhkkhkkhkkhkhkkhkhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhkhhkhhkhkhhkhkhkhkhkhkhhkhkhkkkkkkkkkkkk*x**x*%

E

SUBROUTI NE - | nChar
Description: Receives the typed character into register A
I nput : None
Qut put : Register A = input from SCl
Destroys : Contents of Register A
Calls : None.

khkkhkkhkkhkkhkhhkhhhhhhhhhhhhhhhhhhhhhhhhhhkhhhhkhkhkhkhkkhkhhhkhkhkhkhkhkhkhhkhkkkkkkkkkkkkk****x*%

*

I nChar
pol I recv | daa SCSR ; Check status reg.
anda #$20 ; (load it into A reg)
cnpa #0 ; Check if receive buffer full
beq pol I recv ; WAit until data present
| daa SCDR ; SCI data ==> A register
RTS ; Return from subroutine

khkkhkkhkkhkhkkhkhkhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhkhhkhhkhkhkkhkhkhkhkkhkhkhhkhkkkkkkkkkkkkk***x*%

E N B T

*

SUBROUTI NE - Cut Char
Description: Qutputs the character in register Ato the screen after
checking if the Transnmitter Data Register is Enpty

I nput : Data to be transmitted in register A
Qut put : Transnmit the data.

Dest roys : None.

Calls : None.

khkkhkkhkkhkkhkkhkhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhkhkhhkhkhkhhkhhkhkhkhkhkhhhhkhkhkhkkkkkkkkkk****x*%

*

Qut Char PSHB * Save contents of B register

Loopl | dab SCSR * Check status reg (load it into B reg)
andb #$80 * Check if transmt buffer is enpty
BEQ Loopl * WAit until enpty
staa SCDR * Aregister ==> SCl data
PULB * Restore B register
RTS * Return from subtoutine

*This is the main program witten for Pie Tin: since all of the behaviors

*for both robots are here, it can be changed to Sea Cow s code by changi ng
*the robot byte fromO to 1 (it is FCBed as 0, and is a constant)

ORG $FFFE ;reset vector
FDB Mai n ;point to main on reset
ORG $FFDE ;timer overfl ow vector
FDB TO | SR
ORG $FFEO
FDB TOC51 SR ; point to TOC5
BAUD EQU $102B ; BAUD rate control register to set the BAUD rate
SCCR1 EQU $102C ; Serial Communication Control Register-1
SCCR2 EQU $102D ; Serial Communication Control Register-2
SCSR EQU $102E ; Serial Communication Status Register
SCDR EQU $102F ; Serial Communication Data Register
PORTA EQU $1000 ; PORT A REG STER
TCNT EQU $100e ; Ti mer count
TFL&R2 EQU $1025
TFLGL EQU $1023
TIC1 EQU $1010
TCTL1 EQU $1020
TCTL2 EQU $1021
TOCL EQU $1016
TOC2 EQU $1018
TOC3 EQU $101A
TOCA EQU $101C
TOC5 EQU $101E
TMSK1 EQU $1022
TMSK2 EQU $1024
OC1M EQU $100C
OC1D EQU $100D
PACTL EQU $1026
PACNT EQU $1027
ECS EQU $04 ; User-defined End O String (EOCS) character
CR EQU $0D ; Carriage Return Character
LF EQU $0A ; Line Feed Character
ESC EQU $1B ; Escape Charracter
SPC EQU $20 ; Space
ORG $8000 ;start code at convienient place
bcount RMB 1 ;the “big” counter: increnented
* ;if TCONT wraps while waiting
first RVB 10
t of RVB 10
TO FLG RMB 1
ncount RMB 2
m want RMB 1
nrwant RMVB 1
m curr RMB 1
nrcurr RMB 1
paval RVB 1
p6val RVB 1
cursonar RMVB 1
click RVB 1
trans RVB 1
spin RVB 1
r obot FCB 0
Msg
FCC ‘ Ready *
FCB ECS

Ent er FCB CR, LF, ECS

got abl er
FDB
FDB

$0100, $1000, $2000, $3000, $4000, $5000, $6000, $7000
$8000, $9000, $A000, $B000, $C000, $D000, $EO000, $F800

$0100, $1000, $2000, $3000, $4000, $5000, $6000, $7000
$8000, $9000, $A000, $B000, $C000, $D000, $EO000, $F800

kkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkhkkhkkkhkkkkk*k*%

*kkkkkkk*k |\/Eln kkkkkkkkkhkkkk*k

kkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkhkkhkkkhkkkkk*k*%

Mai n I ds
| dd
I dx
I dy

clrb
clra
staa
staa
std

std

staa
staa
staa
staa
staa
staa
staa
staa

| daa
staa

| daa
staa

| daa
staa

| dd
std
inch
std
std

clra
staa
| daa
staa

| daa
staa
staa
| daa
staa
staa

jsr
clra
clrb
std
staa

#$cf f f
#0
#0
#0

spin

goi ngS

Start STi ne

Ti meSoFar

click

trans

PORTA

pava

$7000 *sonar starts of f
$6000 *point to sonar O to start
p6va

cur sonar *start at sonar O

#$48 *PORTA bit 3 needed as output for Sea Cow
PACTL *And PortA bit 7 is input (0)

#$20 *capture sonar on falling edges
TCTL2

#$A0 *on TOC2 or TOC3, zero respective pin
TCTL1

#0
TOC1

TOC2
TOC3

OC1D
#$60
OC1iM

#3$10
mcurr
nrcurr
#3$10
m want
nT want

I nitSCl
*zero tinmer

ncount *cl ear master count
PORTA *start out at zero

staa pava

| daa #$80
staa TMBK2
cli *start interrupts
jsr Ri nit
| daa #$0 ;turn emitter off at first
staa $7000
jsr I sPi ng
M oop
I dx #Msg
jsr Qut Str
jsr Bdel ay
jsr Pi ng
jsr Spi nMbnSpi n *See if we will be spinning
| daa spin
bne M oop
jsr Avoi d
* jsr Test Act
bra M oop

kkhkkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkhkkkkkkkkk*k*%
*kkkkkk*k Bdel ay *kkkkkkkkkkk*
kkhkkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkhkkkkkkkkk*k*%

*Sonar pings take around 150ns for all 3 to fire off.

*So we will delay for 300 ms each time so that if |IsPing sees a
*sonar ping and delays for 150 nms, it will hopefully be inside this
*area and interfere |ess

*Net delay is 601680E = 300ns
Bdel ay | daa #240

dl oop | dab #250 *[2]
inl decb *[2] [10]
brn inl *[3]
nop *[2]
bne inl *[3]
deca *[2]
bne dl oop *[3]
rts

kkhkkkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkhkkkhkkkkkk*k*%

*******Spl nlvbnSpI n*********
kkhkkhkkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkkkkkkkk**%

Spi nMbnSpi n
| daa r obot *Sea Cow is told when to spin
bne NoDeci si on
| dd ncount
cpd #800
bl t NoDeci si on
cpd #900
bgt NoDeci si on
*Now we are Pie Tin, and want to signal a spin cycle..
| daa #1
staa spin

| daa TCTL1 *Pul se on TOC5: Port A bit 3 is transmt
oraa #$1 *for Pie Tin, notor R direction for SeaCow
st aa TCTL1

NoDeci si on
| daa spin
beq DoneSpi n

*At this point, spinis set.
| daa goi ngS

bne Al readyS
inca
staa goi ngS
| dd ncount
std Start STi me
Al readyS
| dd ncount
subd Start STi me
std Ti neSoFar *See where we are in the spin
*First thing we'll do is spinto the right for 10 seconds
cpd #305
bgt nosR
| daa #$1F
st aa m want *full forward
| daa #$00
st aa nT want *full reverse
bra DoneSpi n
nosR
*After that, we'll spin to the left for 10 seconds
cpd #610
bgt nosL
| daa #$00
st aa m want *full reverse
| daa #$1F
st aa nT want *full forward
| daa TCTL1 *Don't pulse on TOC5 anynore: stop signalling
anda #$f c *for spin.
staa TCTL1
bra DoneSpi n
nosL
clra
staa spin
DoneSpi n
rts
goi ngS RVB 1

StartSTine RMB 2
Ti mreSoFar RVMB 2

kkkkkkhkkhkkhkkhkkhkkhkkhkkhkkkhkkkkhkkkkkkkk*k*

*kkkkkk*k Tmsl SR *kkkkkkkkkk*k

kkhkkkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkkhkkhkkkkkk*k*

TOC51 SR
| daa TFLGL
anda #3$08
beq DoneT5
st aa TFLGL

| dd TOC5

addd #$1000

std TOC5
DoneT5 rti

kkkkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkkkkkkkk*x*%

*kkkkkk*k TeStACt *kkkkkkkkkk*k

kkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkhkkkhkkkkkk*x*%

Test Act
I dd
cpd
bgt
| daa
staa
staa
bra
nostrai ght
cpd
bgt
| daa
staa
| daa
staa
bra
noturn
I dd
std
donet est
rts

ncount
#400
nostrai ght
#$19

m want

nT want
donet est

#500

not urn
#$14

m want
#3$0B

nT want
donet est

#0
ncount

kkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkhkkhkkkhkkkkk*k*%

*kkkkk*k AVOId kkkkkkkkkhkkkk*k

kkhkkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkhkkkkkkkk*k*%

Avoid |dx

*Thi s next section marks al

#t of

*(zero), and al so marks al
*math can be used as conpari sions

| dd
cpd
bl o
| dd
nocl ear 0
addd
std

| dd
cpd
bl o
| dd
nocl ear1
addd
std

| dd
cpd
bl o
| dd
nocl ear 2
addd
std

| daa
beq
jsr
bra
DoPTAvoi d
jsr
DACode rts

0, X
#3$4400
nocl ear 0
#0

#$FFFF
0, X

2, X
#3$4400
nocl ear 1
#0

#$FFFF
2, X

4, X
#3$4400
nocl ear 2
#0

#$FFFF
4, X

r obot
DoPTAvoi d
Avoi dSC
DACode

Avoi dPT

khkkhkkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkkkkkkkk*k*%

val ues past a certain point as infinite
the zeroes as FFFF (naxint) so that unsigned

*subtract one to make 0->FFFF (unsigned nax)

*subtract one to make 0->FFFF (unsigned nax)

*subtract one to make 0->FFFF (unsigned nax)

*kkkkk*k AVOIdPT *kkkkkkkkkk*k
kkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkhkkkhkkkkkkkk*k*%

Avoi dPT
*As input, X points to tof here

*first see if they are all zero

| dd 0, X

cpd #$FFFF

bne noal | zer oPT
| dd 2, X

cpd #$FFFF

bne noal | zer oPT
| dd 4, X

cpd #$FFFF

bne noal | zer oPT

*We want to request all ahead
*First zero nonent, then accelerate

| daa m curr
cnpa nrcurr
bl t | agLPT *if left<right, increase left
bgt | agRPT *if right<left, increase right
*Ok, nmoment is zero, so accelerate
| daa #$1D *request all ahead
st aa m want
| daa #$1F
staa nT want
jmp DAPT *now quit
| agLPT | daa nrcurr *right is bigger, hold it steady.
st aa m want
staa nT want *while we bring left up to speed
jmp DAPT
| agRPT | daa m curr *left is bigger, so hold it steady..
st aa m want
staa nT want *while we bring right up to speed
jmp DAPT

noal | zer oPT

| dd 2, X *get left notor val ue
cpd 4, X *conpare to right notor val ue
bl o gori ght PT

*if here, left is >=right, so turn

left

| daa #$17 *+7 on |left notor
staa m want
| daa #$19 *+9 on right notor
staa nT want
i np DAPT

gori ght PT
| daa #$1A *+10 on left notor
staa m want
| daa #$16 *+6 on right notor
staa nT want
i np DAPT

DAPT rts

kkhkkkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkhkkkkkkkk*k*%
*kkkkk*k AVOI dSC *kkkkkkkkkk*k
kkhkkkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkhkkkhkkkkkk*x*%

Avoi dSC

*As input, X points to tof here

*first see if they are all zero

| dd 0, X

cpd #$FFFF

bne noal | zer oSC
| dd 2, X

cpd #$FFFF

bne noal | zer oSC
| dd 4, X

cpd #$FFFF

bne noal | zer oSC

*We want to request all ahead
*First zero nonent, then accelerate

| agLSC

| agRSC

| daa m curr

cnpa nrcurr

bl t | agLSC *if left<right, increase left

bgt | agRSC *if right<left, increase right
*Ok, nmoment is zero, so accelerate

| daa #$1F *request all ahead

st aa m want

staa nT want

jmp DASC *now quit

| daa nrcurr *right is bigger, hold it steady.

st aa m want

staa nT want *while we bring left up to speed

jmp DASC

| daa m curr *left is bigger, so hold it steady..

st aa m want

staa nT want *while we bring right up to speed

jmp DASC

noal | zer oSC

| dd 0, X

cpd #$3000

bhi Rel axSC

| dd 2, X *get left notor val ue

cpd 4, X *conpare to right notor val ue
bl o gori ght SC

*if here, left is >=right, so turn left

| daa #$00 *-15 on left notor
staa m want
| daa #$08 *-7 on right notor
staa nT want
i np DASC

gori ght SC
| daa #$08 *-7 on left notor
staa m want
| daa #$00 *-15 on right notor
staa nT want
i np DASC

Rel axSC

*This code runs when the value in front is far away, so the turn
*is not backwards

| dd 2, X *get left notor val ue
cpd 4, X *conpare to right notor val ue
bl o RLri ght SC

*if here, left is >=right, so turn left

| daa #$1A *10 on left notor
staa m want
| daa #$1F *15 on right notor
staa nT want
i np DASC

RLri ght SC
| daa #$1F *15 on |l eft notor
staa m want
| daa #$1A *10 on right notor
staa nT want
i np DASC

DASC rts

kkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkhkkkhkkkkkkkk*k*%
* Kk kkk ISP' ng kkkkkkkkhkkhkkkkk*
kkhkkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkhkkkhkkhkkkkkkk*%

IsPing |daa #0

staa sva
Sear ch
| daa cur sonar ;get current sonar
inca
cnpa #$3 ;3 sonar only
bne nozcs2
clra
nozcs2 staa cursonar
| dab p6val ;get current p6
andb #3$f 8 ;kill 3LSBs
aba ;a+b->a
staa p6va
staa $6000 ;record new sonar device
| daa #3$04
staa TFLGL ;clear any pending |ICs
*Now | ook for sonar
jsr Wi t 10ms
| daa TFLGL
anda #$4
beq not hi ng
jmp foundfriend
not hi ng
| daa sval
inca
staa sva
cnpa #200
bne Sear ch
jmp Donewai t
foundfriend
jsr Wi t 150ns
Donewai t
rts

sval RVB 1

kkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkkkkkkkk*k*
*kkkkk*k PI ng kkkkkkkkhkkkkkk*
kkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkkkkkkkk*k*%

Pi ng
*This area is involved in incrementing the sonar 0-1-2-0..
| daa cur sonar ;get current sonar
inca
cnpa #$3 ;3 sonar only
bne nozcs
clra
nozcs staa cur sonar

*This area is responsible for requesting the correct sonar be witten.

| dab p6val ;get current p6
andb #$f 8 ;kill 3LSBs

aba ; atb->a

staa p6va

*Sea Cow does not request a sonar to ping, nerely turning all of themon
*at once and then listening on a specific reciever

| dab r obot ;if Sea Cow, set sonar select to zero

beq nosel of f

anda #$f 8 ;we nust always wite a zero here..
nosel of f

staa $6000 ;record new sonar device

*Turn on either selected emtter or emtters in general

| daa #$81 ;turn emitter on

st aa $7000

jsr Wi t 1

| daa #$00 ;turn emitter off

st aa $7000

jsr Wi t 1

| daa p6val ;re-record value in case |ost

staa $6000

| daa #3$04
staa TFLGL ;clear any pending |ICs
| daa #$00
staa TO FLG ;clear tiner overflow
I dx #first
| dab cur sonar cwite to first+2*cursonar
Islb
abx
| dd TCNT
std 0, X
clra
staa bcount ;start at 0O
inloop |daa TA FLG ;count up, while waiting for
anda #$1 ; response
beq NoPr obl em
clra

st aa TO FLG

| daa bcount
inca

staa bcount
cnpa #2

beq br eakout

NoPr obl em

| daa TFLGL

anda #$4
beq i nl oop
br eakout
| daa bcount
cnpa #$2
bne got pi ng
| dx #t of
| dab cur sonar
I'slb
abx
| dd #0
std 0, X ;wite tof as zero
bra checknext
got pi ng
I dx #first
| dab cur sonar ;wite to first+2*cursonar
I'slb
abx
| dd TIC1
subd 0, X ;wite to first array
cpd #$100 ;if less than #$100, don’t change (1 mmRes)
bl o del ayl oop
std 10, X ;wite to tof array
del ayl oop
*Now we recieved the ping, wait the rest of the time for timng
| daa TA FLG ;count up, while waiting for
anda #$1 ; response
beq del ayl oop
clra

st aa TO FLG

| daa bcount

inca

staa bcount

cnpa #2

bne del ayl oop
checknext

| daa cur sonar

beq Printl oop

jp Ping
Printl oop

I dx #t of

| dab cur sonar

I'slb

abx

| dd 0, X

bne okpri nt

I dx #Ti meout

jsr Qut Str

bra past print
okpri nt

addd #$20

jsr Hexph

jsr Hexp

tba

jsr Hexph

pastprin
pclick
nclick

jsr

t

| daa
jsr
jsr

| daa
inca
staa
cnpa
bne
clra
staa

| daa
jsr
jsr
jsr
| daa
jsr
jsr
| daa
jsr
| daa
jsr
jsr

| daa
jsr
jsr
| daa
jsr
jsr
| daa
jsr
| daa
jsr
jsr

| daa
jsr

| daa
jsr
jsr

| daa
jsr
jsr

| daa
beq
I dx
jsr
dec
| daa
bne

I dx
jsr
rts

Hexp

#%$20
Qut Char
Qut Char

cur sonar

cur sonar
#$3

;1 oad space

Printl oop

cur sonar

#%$20
Qut Char
Qut Char
Qut Char
m want
Hexph
Hexp
#$2F
Qut Char
mcurr
Hexph
Hexp

#$20
Qut Char
Qut Char
nT want
Hexph
Hexp
#$2F
Qut Char
nrcurr
Hexph
Hexp

#%$20
Qut Char

PACNT
Hexph
Hexp

#%$20
Qut Char
Qut Char

click
nclick
#C i ck
Qut Str
click
click
pclick

#Ent er
Qut Str

;1 oad space

;1 oad space

kkhkkkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkhkkkkkkkk*k*%

*******\Mithrrs************

kkhkkkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkhkkkkkkkk*k*%

Wai t 10ns

jsr

Wi t 1ns

jsr Wi t 1

jsr Wi t 1
jsr Wi t 1
jsr Wi t 1
jsr Wi t 1
jsr Wi t 1
jsr Wi t 1
jsr Wi t 1
jsr Wi t 1
rts

kkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkhkkhkkkkkkk**%

*******\MitlSOrrs***********
kkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkhkkhkkkkkkk**%

Wai t 150ns

jsr Wi t 108
jsr Wi t 108
jsr Wi t 108
jsr Wi t 108
jsr Wi t 108
jsr Wi t 108
jsr Wi t 108
jsr Wi t 108
jsr Wi t 108
jsr Wi t 10ms
jsr Wi t 108
jsr Wi t 10ms
jsr Wi t 108
jsr Wi t 108
jsr Wi t 108
rts

kkhkkkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkkhkkhkkkkkk*x*%
*******\Mitlrrs*************

kkkkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkkkkkkkk*k*%

Waitins | dd TCNT
addd #2000
std TOCA
| daa #$10 ;clear current flag (so we wait)
staa TFLGL
nsla | daa TFLGL
anda #$10
beq nmsla
rts

khkkhkkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkkkkkkkk*k*%
*******Radi O***************

kkhkkhkkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkkkkkkkk*k*%

Radi o
| daa r obot
beq radi oD *Pie Tin has nothing for this
| dd ncount *Only check every 4th TO
andb #$3
bne radi oD

*Use this to determ ne the pulse density to determ ne behavoir nopd
| daa PACNT

cnpa #10

bl t nobehave

| daa #1

staa spin
nobehave

clra

st aa PACNT

radioD rts

kkhkkkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkhkkkhkkkkkk*k*
*******Ri nl t***************
kkhkkkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkhkkkkkkkk*x*

Ri ni t
| daa r obot
bne SCr ecv

| daa PACTL
oraa #$8 *Set Port A bit 3 to output for emtter
staa PACTL

| dd #$2000
std TOC5

| daa TMBK1 *Use TOCS5
oraa #$8
st aa TMSK1

| daa OC1M
oraa #3$80
st aa OC1iM

bra DRi ni t

SCrecv | daa PACTL *increment PACNT on falling edge
anda #$cf
staa PACTL

clra
staa PACNT *wite a zero to Pul se accunul at or

DRinit rts

kkhkkhkkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkhkkhkkkkkkk*k*%
*********TO ISR***********
kkhkkhkkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkhkkhkkkkkkk*k*%

TO ISR | daa TFLG2

anda #$80

bne nol eave

jnp TO DONE
nol eave

st aa TFL&

I dd ncount

addd #$1

std ncount

| daa TO FLG

oraa #$1

st aa TO FLG

jsr Radi o
*only update once every two cycles

I dd ncount

andb #$1

bne out

| daa mcurr

cnpa m want

beq done

bl t goi ngdown

deca

bra done

goi ngdown

inca
donel staa mcurr

out | | daa mcurr

*first wite direction

| dab direction

anda #$10 *get MSB to determine notor direction

st aa direction

cba *see if we just switched notor direction
beq nocl i ck

inc click

nocl i ckl
*done recordi ng whether a click occured or not

*a now contains direction in bit 4..
| dab r obot

bne Left SC *seperate code for Sea Cow...
*Do Pie tin left notor code..
Isla
Isla
staa I t enp0
eora #$bf
staa I tenpl
| daa p6val
oraa I t enp0
anda I tenpl
staa p6va
staa $6000
bra DoneDL
Left SC
*Now wi || nodify port A bit 4
staa I t enp0
eora #eef
staa I tenpl
| daa paval
oraa I t enp0
anda I tenpl
staa pava

st aa PORTA

*Now done setting left direction pin

DoneDL
| daa mcurr
| dab direction
bne noflipl *flip if direction bit not set
nega
adda #$15
noflipl anda #$0F
staa magni t ude
cnpa #0
bne nozero
| daa #$40
st aa TFLGL
| daa OC1D
anda #$bf
st aa OC1D
bra dori ght
*not zero, set it up to be ok..
nozerol |daa #$40
st aa TFLGL
| daa OC1D

oraa #3$40
st aa OC1D
| dab magni t ude

I'slb

I dx #got abl el
abx

| dd TCNT
addd 0, X

std TOC2

*now do the right notor

dori ght
*only update once every four cycles
I dd ncount
andb #$3
bne outr
| daa nrcurr
cnpa nT want
beq doner
bl t goi ngdownr
deca
bra doner
goi ngdownr
inca
doner staa nrcurr
outr | daa nrcurr

*first wite direction

| dab directionr

anda #$10 *get MSB to determine notor direction

st aa directionr

cbha *see if we just switched notor direction
beq nocl i ckr

inc click

nocl i ckr

*a now contains direction in bit 4..

| dab robot

bne Ri ght SC *seperate code for Sea Cow. ..
*Do Pie tin right motor code..

Isla
staa I t enp0
eora #$df
staa I tenpl
| daa p6val
oraa I t enp0
anda I tenpl
staa p6va
staa $6000
bra DoneDR
Ri ght SC
Isra *Scale to portA bit 3
staa I t enp0 *save as 08 or 00
eora #$f 7 *save as ff or 7
staa I tenpl
| daa paval
oraa I t enp0
anda I tenpl
staa pava
staa PORTA
DoneDR
| daa nrcurr
| dab directionr

bne noflipr *flip if direction bit not set

nega

adda #$15
nof | i pr anda #$0F

staa magni t ude

cnpa #0

bne nozer or

| daa #%$20

st aa TFLGL

| daa OC1D

anda #$df

st aa OC1D

bra TO DONE
*not zero, set it up to be ok..
nozeror | daa #%$20

st aa TFLGL

| daa OC1D

oraa #%$20
st aa OC1D

| dab magni t ude

I'slb

I dx #got abl er

abx

| dd TCNT

addd 0, X

std TOC3
TO DONE rti
magni t ude RVB 1
directionl RVB 1
directionr RVB 1
It enp0 RVB 1
I tenpl RVB 1

kkkkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkkkkkkkk*k*%

khkkhkkhkkhkkhhkkhhhhhhhhhhhhhhhhhhhhhhhhhhhhkhkhhhhkhkhhkhhkhkhhkhhkkhkhkkhkhkkhkhkkhkkkkkkkkkkk***x*%

* SUBROUTI NE - | nitSCl

* Description: This subroutine initializes the BAUD rate to 9600 and

* sets up the SCI port for 1 start bit, 8 data bits and

* 1 stop bit. It also enables the transmitter and receiver
* Effected registers are BAUD, SCCR1l, and SCCR2

* | nput : None

* Qut put : Initializes SCl

* Destroys : None

* Calls : None

khkkhkkhkkhkkhhhkhhhhhhhhhhhhhhhhhhhhhhhhhhhhkhhhkhkhkhkhhkkhkhhkhkhhkhkhhkkhkhkhkkkkkkkkkkkkk***x*%
*

InitSCl PSHA * Save contents of A register
| daa #$30 * Set BAUD rate to 9600
st aa BAUD
| daa #$0 * Set SCI Mbde to 1 start bit,
staa SCCR1 * 8 data bits, and 1 stop bit
| daa SCCR2 * Enable SCI Transmtter
ora #3$0c * and Recei ver
staa SCCR2
PULA * Restore A register

RTS * Return from subtoutine

khkkhkkhkkhkhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhkhhhhkhkhhhkhkhhkkhkhkkhkhhkhkhkhkkkkkkkkkkkkkk*k**x*

* SUBROUTI NES - Hexph and Hexpl

* Description: Qutputs the hex digit in high or low a after

* checking if the Transnmitter Data Register is Enpty
* | nput : Data to be transmitted in register A

* Qut put : Transnmit the data.

* Destroys : None.

* Calls : None.

khkkhkkhkkhkkhhkkhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhkhkhkhhkhhkhkhkhhhhkhhhkhkkkkkkkkkkkkk****x*%
*

Hexph psha ;save a away

I sra

I sra

I sra

I sra

bra hexs ;after scaled, go to start
Hexpl psha
hexs anda #$0F

adda #48 ;scale to ASCII 0O

cnpa #58 ;if above or equal, need nore scaling

bl t hexl ;junmp over correction if OK

adda #7 ;now will print A-F properly
hexl jsr Qut Char ; print out character

pul a ;get a back

rts ; bye bye

khkkhkkhkkhkkhhhkhhhhhhhhhhhhhhhhhhhhhhhhhhhkhhhhhkhkhhkhhhhkkhkhhkhkhkhkkhkhkhkkkkkkkkkkkkk***x*%

* SUBROUTI NE - QutStr

* Description: Qutputs the string termnated by ECS. The starting |ocation
* of the string is pointed by X register. Calls the QutChar

* subroutine to display a character on the screen and

* exit once ECS has been reached.

* | nput : Starting location of the string to be transmitted

* (passed in X register)

* Qut put : Prints the string.

* Destroys : contents of X register.

* Calls : Cut Char.

khkkhkkhkkhkhhhhhhhhhhhhhhhhhhhhhhhhhhkhhhhhkhkhhhkhkhhhhhhkhkhkhkhkhhhkhkkkkkkkkkkkkkk***x*%
*

Qut Str PSHA * Save contents of A register
Loop2 | daa 0, x * Get a character (put in A register)
cnpa #ECS * Check if it's ECS
beq Done * Branch to Done if it's ECS
JSR Qut Char * Print the character by calling CutChar
i nx * Point to next character
BRA Loop2 * Branch to Loop2 for the next char.
Done PULA * Restore A register
RTS * Return from subtoutine

khkkhkkhkkhkkhkhhkhhhhhhhhhhhhhhhhhhhhhhhhhhhhhkhhhkhkhkhkhhkhkhkhkhkhkhkhkhhkhkhkkkkkkkkkkkkk***x*%

* SUBROUTI NE - | nChar

* Description: Receives the typed character into register A
* | nput : None

* Qut put : Register A = input from SCl

* Destroys : Contents of Register A

* Calls : None.

khkkhkkhkkhkkhkhkhkhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhkhhhhhhkhkhkhkhkhhkhhkhkkkkkkkkkkkkk***k*x*%
*

I nChar

pol I recv | daa SCSR ; Check status reg.

anda #$20 ; (load it into A reg)

cnpa #0 ; Check if receive buffer full
beq pol |l recv ; WAit until data present

| daa SCDR ; SCI data ==> A register
RTS ; Return from subroutine

khkkhkkhkkhkhhkhkhhhhhhhhhhhhhhhhhhhhhhhhhhhhkhkhhhkhkhhhhkhhkhkhhkhhhkhkhkkkkkkkkkkkkkk***x*%

* SUBROUTI NE - CQut Char

* Description: Qutputs the character in register Ato the screen after
* checking if the Transnmitter Data Register is Enpty

* | nput : Data to be transmitted in register A

* Qut put : Transnmit the data.

* Destroys : None.

* Calls : None.

khkkhkkhkkhkhhkhhhhhhhhhhhhhhhhhhhhhhhhhhhhhkhhhhkhkhhkhhhkhkhkhkhhkhhhkhkkkkkkkkkkkkkk***x*%

*

Qut Char PSHB * Save contents of B register
Loopl | dab SCSR * Check status reg (load it into B reg)
andb #$80 * Check if transmt buffer is enpty
BEQ Loopl * WAit until enpty
staa SCDR * Aregister ==> SCl data
PULB * Restore B register
*

RTS Return from subtoutine

