“TRIP”

An Autonomous Bi-Ped Robot

University of Florida

EEL 5666

Intelligent Machine Design Lab

Student Name:

Tony Padgett

Date:

12/6/99

Instructor:

Dr. A. Arroyo

Abstract………………………………………3

Executive Summary………………………….4

Introduction…………………………………..5

Mobile Platform……………………………...6

Electronics……………………………………9

Dynamic Balance System……………………11

Conclusion…………………………………...14

Appendix…………………………………….15

Abstract

For this robotics project, I built a two-legged walking robot named Trip. Trip walks using a dynamic balance system, which I designed throughout the semester. The walking system used two MSCC11 single chip MC68HC11 microcontroller boards designed by Mekatronix utilizing the Motorola 68HC11 microprocessor. Parallel linkages ensure that Trip’s feet are always parallel to the ground and that the feet are always facing forward. Three servos control the walking routine while another is used to control the counter-balance. One controller is used to control the servos that actuate the walking motion. The other controls the servo used for the balance system. Communication is supported by the use of the serial ports of the microcontrollers.

Executive Summary

My IMDL Fall 1999 project was the design and construction of a two-legged walking robot. Two MEKATRONIX MSCC11 Single Chip MC68HC11 Microcontroller Boards control the robot, Trip. Communication through the serial ports allows the boards to time and control the walking movements with the balance system. Trip’s mobile platform is constructed from plywood and contains two legs, a body, a head, and a counter-balance control arm. Four high-torque servos are used to actuate motion in the robot. Three of these servos are used for walking. Two control the up and down motion of the feet while the third shifts the legs forward and back. By alternating which foot is up while stepping, a forward walking sequence is created. The fourth servo swings an inverted pendulum counter-balance weight. This shifts the center of gravity of the robot and also creates a moment that allows Trip to lift afoot without falling to its side.

Introduction

For my IMDL project I chose to design and build a two-legged walking robot. I wanted to design a platform different from all the rolling robots that are around today. In the interest of humor I named my robot Trip. Trip is capable of walking with the use of a balance system. Like humans, if the balance system is not functioning, when one leg lifts he will fall over. Therefore the majority of the project concentrated on designing a dynamic balance system.

Mobile Platform

[image: image1.bmp]
The platform I designed for Trip includes two legs, a pivoting hip, a head, and a counterbalance arm. All of Trip's components were designed on AutoCad R14 and cut using the IMDL T-tech machine. Each component is constructed using 1/8” (.125), 5-ply plywood. This combined a considerable amount of strength, with minimal weight and cost.

I wanted to emphasize the balance system; therefore the feet are rather narrow and are located on the outer most sides of the platform. The feet are connected via legs to a “thigh” from which the actuation occurs. The legs are parallel linkages that connect the feet to the thigh so that the feet are always parallel to the ground. This design allows for minimum actuation height to gain ground clearance. The feet are sufficiently long so that the robot will not fall forward while standing upright. A single servo in each thigh raises the foot a few fractions of an inch.

The hip of Trip is where the stepping motion is actuated. The two thighs are connected using four parallel supports. One of these supports crosses the center of the hip. A servo placed through the center allows the thighs to rotate about the center of the robot. The static center of gravity runs approximately through this center point. As the servo rotates back and forth, the legs take steps forward. The length of the stride is controlled by the amount of rotation this servo makes.

The head is the point where the balance servo is mounted. The servo has an eleven-inch I-beam arm connected to it. This arm is mounted vertically as not to interfere with the steps the robot is making. The battery for the servos is mounted to the end of the balance arm and rotates about the center of the servo. The motion of the arm creates a moment about a horizontal axis.

This is not the original design I came up with. It took a lot of trial and error to create a platform that worked well enough to walk. Originally the legs had a knee, but this added a degree of freedom that required actuation. I removed the knee for several reasons. The benefits were few yet it required significant resources. The power it consumed would greatly reduce run-time, the added weight would almost double the amount of counter-balance weight, extra lines of control code would be needed and the cost of two extra high-torque servos would be added to the overall cost. I also wanted to have a static balance system so that the robot could stand idle at any point throughout the walking motion. This is a problem I spent many weeks trying to accomplish before I realized it was not going to work how I had envisioned, and was not necessary to enable Trip to walk. The large amount of weight required for such a large counter-balance posed many problems. The largest problem was actuation. To balance on one leg, the counter-balance weight had to be enough to counter the moment created by the weight of all the electronics, three servos, and the materials in one leg, the hip, and the head. Not only did this have to be a significant weight, but it also had to be centered at a large distance from the center of gravity. This posed more problems. I soon realized that the counter-balance weight was actually going to be larger than the overall weight of the rest of the robot and caused a devastating moment about the vertical axis when actuated.

Electronics

The majority of my robotics project was designing a mechanical platform, but once the platform was created I still need to control the motion. The system I created incorporated two MSCC11 single chip microcontrollers, four high-torque servos and two power sources.

The MSCC11 single chip MC68HC11 microcontroller board was created by Mekatronix. This board has 2K bytes of built in EEPROM and 256 bytes of RAM. I chose this board because of its large number I/Os that can be used to control many servos. My original design called for more that for servos so this was an important feature. I can also program it with IC, which is a stripped down version of C.

The servos I chose to use are Tower Hobbies TS80 Giant Scale Servos. The servos are being run at a 7.2V minimum so they will produce @411oz-in of torque. The two in the legs are used to produce linear motion while the one in the hip and the counter-balance servos produce rotational motion.

Two separate power sources are utilized. The servos are driven from 7.2V Tower Hobbies 1500mAh racing battery pack. The electronics are powered from a 6-pack of rechargeable 600 mAh Ni-Cad AA batteries.

The two boards communicate via the serial ports on the boards. Two simple characters are used to determine which end of travel the counter-balance it at. Board 1 controls the movement of the counter-balance and also outputs the specific location character. Board 2 receives the character and then controls the three walking servos.

Control Diagram

Dynamic Balance System

The integration of the electronics and the mobile platform is used to create a dynamic balance system for Trip. The moment created by rotating the counter-balance allows the robot to lift a foot, step forward, and place it back down without falling. The moment created is about a horizontal axis that is aligned with the direction of Trip’s motion. The moment is changing throughout the walking routine and is actually a combination of three moments all about the same axis. The first is the moment created by the weight being centered at a distance from the center of rotation. This creates a static torque used by Trip. The force used to rotate this weight also creates a second moment. The most significant moment created though, is when the weight is changing direction of motion. This occurs at the limits of travel controlled by the servo code.

The use of the moment created allows Trip to lift a leg without falling to its side. The coordination of the movements is controlled separately by the two microcontrollers. One board controls the motion of the arm. A timing sequence utilizing incremental servo commands slows the motion enough so that the walking sequence can take place. This incremental movement swings the weight back and forth to a designated location then outputs a signal to the other board. This allows the walking to be choreographed so that each component of the step happens at the appropriate time. The second board is used to control the walking movements. A specific set of instructions moves each servo then waits long enough for the movement to occur before sending the next servo command. Each step sequence is started by a signal from the first board signaling that the max. moment has been reached and to start a step. The code would read something like this:

· Swing balance arm to the right

· When full travel has been reached, serial out a specific signal

· Wait for signal

· When signal is received, interpret

· Lift opposite foot, wait

· Step forward, wait

· Put foot down, wait

· When next signal is received, lift other foot

And so on…

This could all be done with one board, but for the sake of easier coding, I chose to use two.

Like the mechanical design, this is not the first way I attempted this. I tried many different methods of control. The one I never implemented but thought to be the best was an active control loop utilizing force sensors. I placed two force sensors on each foot to provide analog values indicating the difference in weight on each foot and also on each side of the foot when standing on only one. This information would be critical to having the system respond varying conditions and states of the robot.

Another great sensor that never became useful was an analog tap onto the potentiometer in the servo. This tap gives a reading that corresponds directly with the servos actual position. I tried to use this value to choreograph the steps based on servo position rather than wait routines. The system would have been much better and able to react better if this had worked. This proved too difficult a project for me to accomplish in the last remaining days. I did receive the signal as expected, but there was terrible noise in the system when the servo moves at high rates. The unexpected random spikes caused Trip to skip certain control loops, and to self-destruct the walking routine. I tried basic hardware and software fixes, but both failed.

Conclusion

Trip failed to accomplish all the goals that I had originally set out to do, but by walking on two legs while using a real balance system, it did accomplish my main objective. The walking was limited to forward walk only, but with only a little more time, I feel that it could have been expanded to a variety of movements. From the experience, I gained a great deal of knowledge of the dynamics of walking. I would like to attempt another two-legged robot with some changes in the platform and electronics. The legs need to have more degrees of freedom and be capable of independent movement. The walking movement was very limited with the single hip servo I used. I would also like to integrate the force sensors on the feet and the servo position hack. I feel this information is key to having a good balance system that can respond to changes in the environment. I think that the battery pack for balance worked, but is not the correct path to follow. Simple arms might be a good natural choice for a counter-balance. They are on the outside of the body and can reach out to create a moment. Designing a robot to walk on two legs was not an easy project, but it was very interesting. This form of movement will play a large role in robotics in the future.

Appendix

Counter-Balance Control Code

#define SI 1

#include <hc11.h>

void main()

{

 int a,flag;

 //init_analog();

 init_serial();

 init_clocktj();

 init_servos();

 flag=1;

 a = 3200;

 servo(0,3200);

while(1){

// start pendulum motion

 while (a >2200){

servo(0,a);

a = a - SI;

if(flag)

wait(1);

flag=!flag;

//write_int(a);

//write("loop1\n");

 }

// output character

 while ((SCSR & 0x80) ==0);

 SCDR=10;

// change pendulum direction

 while (a<4000){

servo(0,a);

a = a + SI;

if(flag)

wait(1);

flag=!flag;

//write_int(a);

 //write("loop3\n");

 }

// output character

 while ((SCSR & 0x80) ==0);

 SCDR=5;

}

 }

Walking Code

#include <hc11.h>

void main ()

{

int a;

init_serial();

init_servos();

init_clocktj();

servo(1,3000);

servo(2,1900);

servo(3,4700);

while(1){

while((SCSR & 0x20) ==0);

a= SCDR;

if (a==10){

servo(2,3200);

wait(150);

servo(1,2600);

wait(100);

servo(2,1900);

}

if (a==5){

servo(3,3300);

wait(150);

servo(1,3300);

wait(100);

servo(3,4700);

}

}

}

FIGURE A

FIGURE B

Board 1

Controls the arm movement and outputs position characters

Walking Servos

Board 2

Receives position character and controls walking servos

Counter-Balance Servo

1
15

