PC-EYE BOT / TORO

Final Report

Michael Reiser

IMDL Fall 1999

December 8, 1999

Table of Contents

0PC-EYE BOT / TORO

Table of Contents
1
Abstract
2
Executive Summary
3
Introduction
4
Integrated System
5
Mobile Platform
7
Actuation
8
Sensors
10
Behaviors
17
Experimental Layout and Results
19
Conclusion
20
Documentation
22
Appendix A – ICC11 Code
23
Appendix B – Visual Basic Code
25

Abstract

The purpose of this project is to implement an autonomous platform with all of the advantages and the flexibility of a fully functional Intel-based PC. PC-EYE BOT is a robot that will exhibit vision, and use it to make real-time decisions based on the detection of colors. The robot’s basic control will be supplied by a 68HC11, and the image capabilities and higher functionalities will be provided by the on-board Laptop.

The robot is able to accomplish many advanced features without the costs traditionally associated with these abilities. The robot is equipped with five sensor systems, each driving its own behavior, and a real-time user interface program. This program controls all behavior arbitration and represents all underlying actions in graphical manner to the user. This robot is to serve as a research platform for complex behavior interactions that cannot be accomplished with lesser computational ability.

Executive Summary

PC-EYE BOT represents a significant effort to construct a fairly ambitious autonomous mobile platform. The robot has an extensive sensor suite, consisting of Infrared Emitter/Detector pairs, Bump Switches, a PC Serial Link, a Joystick, and a Color Camera. The main function of the robot is to use these sensors to navigate and exhibit intelligent behavior. The most notable of these sensors is the camera, since it is a high bandwidth device, and using its data in a real-time application is not a trivial issue. Therefore the robot has been designed as a color detector/follower. The implementation of this behavior is not nearly the most complex behavior possible with the platform, but serves as a realizable goal for a project of this type.

The robot is a two-tiered and two-wheeled rolling platform that houses two separate centers of computation. The lower level functions of sensor data collection and motor control are handled by a 68HC11 running a very short icc11- compiled program. The higher level functions of camera operation, joystick polling, decision making, and user interfacing are handled by a Pentium-based laptop. The Most significant accomplishment in this project is the simple interface between the two systems, and the clearly defined tasks required of each system.

This paper details the results of this project. It includes both the hardware and the software descriptions and implementation details, and offers an explanation of the many features of the robot.

Introduction

I wanted my robot to be able to implement vision. I was continuously discouraged from attempting to solve the problem of vision with too little computational horsepower. So reluctantly, I decided that to perform vision successfully, the obvious solution is to supply ample computation ability. As the name implies, the BOT implements both a PC (personal computer) and an EYE (a camera). The jump to a full-blown PC implementation has many beneficial side-effects. Basically anything that can be done with a PC (and done quite easily) can now be done on the robot. This makes expanding the robot nearly trivial, as demonstrated by the ease with which a camera can be added. Also, for control purposes, I added a Joystick interface at the last second. This addition was also very fast to implement. The camera on the robot is connected to the PC, and the PC is used to make decisions about the robot’s behavior, based on the captured images. In this instance of the project, the camera is sensitive to the color red and seeks it out. There is a less powerful microcontroller on the robot that controls the motion of the robot as well as the basic sensors.

Integrated System

The PC-EYE BOT contains several systems:

The 68HC11 microcontroller--this board provides the control logic for:

The Drive system – uses servos to direct the motion of the robot.

The Low-Level Sensors – uses IR sensors for collision avoidance – detecting the proximity to objets and changing direction. Bump sensors are also used to detect collisions if the IR sensors fail to initiate a change in direction. The vision information from the camera is also used to control collision avoidance.

The PC onboard the robot was initially intended to be a full computer, complete with motherboard and all of the possibilities of a PC’s peripheral components. This was to be run off of battery power. Unfortunately due to several compatibility issues, I borrowed a laptop computer and use this in the end result. In my design I use the PC to control:

The Vision System – I use a “web-cam” type camera (color QuickCam 2) and the computer’s parallel port interface. I wrote the software that runs on the PC and performs rudimentary image processing on the video data. Initially, I attempted to implement color-following. This behavior was successful, but I did not have time to implement more complex behaviors.

The Communications System – I intended to equip the PC with a wireless Ethernet system so that I can run a TCP/IP network and communicate with my robot. The big advantage of this is that I can remotely have access to nearly all of the PC’s capabilities. This goal was dropped in that the laptop provided its own interface, and the wireless Ethernet capability would have been unnecessary.

The most important feature of the communication system is that the PC maintains a constant bi-directional communication with the 68HC11 through a serial connection. The logical separation of functions is then simple. The PC uses the 68HC11’s actions and incoming sensor data as well as the data from its own set of sensors to generate decisions (e.g. go left, stop). These decisions are then sent to the 68HC11 via the serial port. Here is the block diagram for this interaction, showing the persistent control loop present on the robot:

[image: image1.jpg]
Mobile Platform

The platform has been kept very simple. The primary requirement is that there is enough room to hold all of the hardware and sensors as well as provide space for future expansion. The body of PC-EYE BOT is implemented as a tiered rolling platform, slightly elongated (oval–shaped). The size has been chosen as slightly larger than that of the PC motherboard. Although a motherboard was never used, this design was adequate to hold the laptop with only minor modifications. Initially three layers were to be used. The lower layer contains wheels, servos and batteries. Since the weight of the platform was an issue I over-designed and reinforced this portion of the robot. On the final form of the robot, the bottom layer contained “storage room” for: 68’11, communications board, IR emitters, battery pack, servos, wheels, and small bundles of the PC’s connection cables. Above this layer is the control layer – this layer contains the PC laptop, all of the sensors or connections to sensors, and all the cables and connections necessary to support all of the hardware. There was intended to be a layer above this to house the PC additional components – the batteries for the PC, the hard drive, and the camera. This was never needed with the laptop design.

Actuation

This robot autonomously interacts with its environment while continuously collecting video data and making decisions based on that data. But how does the robot get around?

The actuators used on the robot are fully-hacked high torque servos, Tower Hobby brand with a listed torque output of 128 ounce-inches at 6V. Since I am running the servos at a higher voltage (closer to 8 volts) I expect than an even greater maximum torque is generated. I also used two large wheels sold as model airplane wheels. These wheels gave me plenty of trouble. They were big (4.5” diameter) and so were an issue to mount to the servos. Eventually I screwed the servo horn into the wheel, covered the joint in epoxy, and then screwed through the joint to provide a connection mechanism. The screws for the servos were also very hard to find, but eventually I found the correct size screw (2mm) with a hex lock on it which made screwing the wheels in quite easy since I could used an Allen Wrench. I also had dual swivel casters in the rear for support.

Problems with this setup:

Very near to the demo day, when my robot was finally assembled it was obvious that the robot was having a hard time going straight. This had a lot to do with the power level on the batteries, but also with the big slick wheels slipping and the casters misaligning and forcing the platform to favor one side. The wheel slipping I was able to completely fix. I made ”treads” on the wheels with vertical stripes of hot glue, and then o top of this, glued a tacky rubber band around the perimeter of the wheel. I have never seen any robot with wheels that don’t slip at all, and mine did not. The weight being placed directly above the wheels may have had something to do with it as well. I also removed the second caster and centered the one I was using. These two fixes enabled my robot to maintain a “straight enough” path.

All motor control was done using the icc11 code for motor routines. I use a smoothing function to average desired and previous values of the motor speeds. The algorithm used

Is very simple:

· Essentially the 5 directions are interepreted as settin gup a desired spped for each wheel:
FORWARD: des_speedr = SPEEDR; des_speedl = SPEEDL;

RIGHT: des_speedr = -SPEEDR; des_speedl = SPEEDL;

LEFT: des_speedr = SPEEDR; des_speedl = -SPEEDL;

BACK: des_speedr = -SPEEDR; des_speedl = -SPEEDL;

STOP: des_speedr = 0; des_speedl = 0;

· The speed is then arrived at by:

cur_speedr = ((6*cur_speedr)+add_noise(des_speedr))/7;

cur_speedl = ((6*cur_speedl)+add_noise(des_speedl))/7;

As can be seen, random noise is added at this point. The noise is on the order of about 20% of the total motor speed value, and adds some needed robustness to the motor control. With the noise, even faulty sensor reading will not cause the robot to trap itself

The code for this is listed in Appendix A.

Sensors

PC-EYE BOT contains several types of sensors that allow the machine to intelligently interact with its environment. Since the purpose of the robot is to operate using the video data coming from the camera, there is no physical or tactile interaction with the environment. The most important low level sensors are necessary to provide for obstacle avoidance. The “high level” sensors needed are the robot’s “brain,” the PC, and the robot’s “eyes,” the camera.

The robot contains the following sensor types:

· IR transmitters/receivers

· Bump Switches

· PC system

· Camera connected to the PC

· Joystick for interacting with the PC

Following is an explanation of each system.

IR

PC-EYE BOT contains Three Forward-Facing and one Rear IR Emitter/Receiver pairs. Each emitter is an LED that sends out a modulated 40kHz IR signal which is then detected by the receivers. The receivers and emitters are positioned in such a way that there is no direct line of sight between the pair, so all detected IR must be bouncing off of an object. The IR Receivers used are hacked Sharp sensors. These have been hacked to return an analog voltage that is connected to the A/D port of the 68HC11. The analog values, when digitized return a value ranging from 88 to 128. A higher number indicates that more IR is being detected by the sensor, and proximity to an object is expected. Here is some sample data from the IR detectors when pointing straight at a wall:

[image: image4.wmf]IR Data from PC-EYE BOT

80

85

90

95

100

105

110

115

120

125

130

5

4.5

4

3.5

3

2.5

2

1.5

1

0.5

0

Distance from wall (feet)

Analog Reading

LEFT IR

RIGHT IR

CENTER IR

It can be seen that the distance vs. IR values is fairly linear over a range from about 4 feet to 0.5 feet away from the wall.

Obstacle avoidance using IR would then be accomplished by comparing values of IR and moving so as to counteract the highest values. I have found it helpful to set a threshold above which the IR values are “high,” in this case a value of 100 seems appropriate since it indicates a distance of between 2 and 3 feet from the obstacle. For example:

· If all three IR are above the threshold, then reverse direction
· If left or left/center are above the threshold, and left>right, then turn right
· If right or right/center are above the threshold, and right>left, then turn left
The code implementing this algorithm is in Appendix B.
[image: image5.wmf]IR Data for Obstacle Avoidance

70

80

90

100

110

120

130

1

3

5

7

9

11

13

15

17

19

21

23

Sample #

Analog Values

LEFT

RIGHT

CENTER

Here is a data set showing that the above behaviors will implement obstacle avoidance:

Here the first bump shows an obstacle on the left and the second shown an obstacle right.

Bump Sensors

In the event that the IR data should not be properly handled, or some conditions occur that render this data inaccurate (i.e. dark corners) a system is implemented to back-up the IR. Bump sensors are used to detect a direct collision with an object and to assist the robot in getting free of that object. The sensors are just switches that are connected via a resistor divider network to the A/D ports of the 68HC11. By properly selecting the values of the resistors the robot can determine the side at which the collision occurred, and move away from that side. The bump sensors are surrounded by a cantilevered wooden bump ring that has a small range of free movement. The bumpers work by pushing into the switch when contact is made and then using the switches springiness to bounce back. This bump system is one of the most successful features of the robot, and is more than capable of distributing the collision to one (or more) of the switches. There are six switches on the robot, three in the front and three in the back, spaced out so that a sensor is at each “corner” and at the direct front and direct rear of the platform. Here is an AutoCad sketch of the positioning of the sensors:

[image: image6.png]
In this image the squares represent the IR receivers and the rectangles are the sites for the bump switches.

Here is the data gathered for the values returned by the A/D unit for the bump switches. The font and rear network have been wired in the same way so the values are the same:

Switch(es) Pressed
Lowest A/D Value
Highest A/D Value

Left
41
44

Right
127
129

Center
76
79

Left, Center
100
102

Right, Center
149
153

Computer

The most complex “sensor” used on the robot is the PC. The PC used is not a 486 desktop system as initially planned--but rather a laptop. The specifications for the laptop:

CPU: Pentium 120 MHz

Memory: 24 MB RAM

Hard Drive capacity: ~800 MB

Operating System: Windows 98

In addition all necessary development tools (MS visual Studio and ICC11) have been loaded onto the laptop so that the development of the software can occur on the robot itself. The laptop is placed directly on top of the robot as seen below:

[image: image2.jpg]
The laptop is connected to the 68HC11 through a serial connection to the communication board that provides for translation from RS232 values to TTL levels.

The Camera

The camera used is a Parallel Port connected Web Camera capable of resolutions between 160(120 pixels to 640(480 pixels. The camera implements automatic gain control and is capable of 4 bit to 24 bit colors. The current camera performance is about 12fps, with poor detail in low light. The only solution to the lighting problem is to provide a light source on the robot. The camera driver uses the Video For Windows Standard and is thus programmable from within a windows environment. The camera setting used during the demo are: 160(120, with 256 colors and automatic lighting and hue settings. The camera data is used to perform image processing. A control called “ezVidCap.ocx” is used to handle the acquisition of the images.

The images are then reduced into a 40(30 image and pixel-by-pixel image processing is done on the smaller image. The processing I use to find red is a combination of thresholding filters. The filter used is: “If (bytRed > 125 And bytGreen < 100 And bytBlue < 125)” then this is very likely to be a red pixel, add to count of red pixels. It was also helpful to filter out dark colors since they were affecting the algorithm, this is done by “If bytRed + bytGreen + bytBlue < 150” then ignore this value since it is very dark. Then the count of red pixels in each of the 40 columns is totaled and flattened into 3 values. These values represent the amount of red in the Right, Center, and Left part of the robot’s filed of view. A threshold value of 6 pixels per screen third is used, after the threshold has been met, the desired direction is simply the screen portion with the most red pixels.

The Joystick

The joystick used is a Microsoft Sidewinder Pro. This joystick is capable of 3D control and has nearly a dozen buttons on it. I implemented the joystick as a 2D, 4 button joystick, and was able to receive x and y coordinates and button presses from the windows API. Since the range of values for each axis is large—it is a long value from 0 to ~64k—I only used the very extremes of the joystick’s position for a value.

Behaviors

As illustrated in the block diagram in the Integrated Systems section, the robot operates in a persistent control loop. The interface between the PC and the 68HC11 is as follows:

The PC requests from the 68HC11 its string of sensor values. The OC then uses this information and its own sensors to come up with a direction (do left, right, straight, back, etc…) to send the 68HC11. All of these communications are just ASCII values sent between the two. The directions sent to the 68HC11 are determined based on both IR data and picture data, and the bump sensor data. The PC is running a windows program to handle this operation.

The robot has 4 main sensor systems: camera, joystick, IR and bump sensors. Each system drives its own behavior. For each time period where all sensor data is collected, there is a function that interprets each sensor’s data and generates a direction decision for that sensor. Each sensor has a default direction of either Halt or Forward. There is then a direction arbitrator that generates an overall direction decision by maintaining a hierarchy:

Joystick

Camera

Bump

IR

This is not a strict hierarchy in that there are exceptions to this system. For example if Camera is seeing a lot of red and the bump sensor is pressed then the assumption is that the target has been hit and the robot stops. The default direction is used to see if the sensor requires attention. If the sensor is passing its default direction then it is ignored and the next relevant sensor in the hierarchy is used to determine the direction.

Since this behavior architecture is used it makes it very simple to disable a sensor, in which case it is ignored. Each sensor can be disabled from the main program or via the joystick. Unplugging the joystick will disable it as a sensor. The API provides for detecting that the joystick is unplugged and the program uses this to ignore the joystick. The simplest method of seeing each behavior is disabling the other sensors. For example: to demo the robot, I disabled all sensors but the camera. The robot then remains idle until the camera sensor calls for attention, when it has found red, at which point the sensor’s behavior assumes control of the overall system behavior. Because of this enabling and disabling of behaviors, there are actually 4! behaviors.

Experimental Layout and Results

All of the meaningful experimentation was carried out with the computer program application running. Here is a screen shot of the program:

[image: image3.jpg]
As can be seen this program shows everything that is occurring with all of the sensors so it is very easy to see what is happening and correct it in real-time. The only necessary tests that were conducted were for performance. The overall performance of this application in controlling and & communicating with the robot is found by running the control loop 50 times and timing its duration.

The results:

In Demo Mode: 50 times in 32 seconds – 1.56 Hz

In standard Mode: 50 times in 15 seconds – 3.33 Hz

Conclusion

I think that with the implementation of TORO, I accomplished many things. I was able to perform near real-time image processing for navigation purposes with an unusual set of tools: a $40 camera, a crumbling laptop, and a Visual Basic control program. The biggest limitation of the robot is the performance of the control program. There are many other avenues that can be explored for tightening the code and the overall performance while still keeping the framework currently used. I believe that with no great adjustments the 3.33 Hz rate could be improved to about 5 Hz. By using other methods of image processing I believe this rate could nearly be doubled. Is this important? It is so that true real-time navigation decisions can be made, and the robot’s movements would be very smooth. As the robot is currently implemented, he may have a red object in his field of view off to the right, he turns right, and by the time he takes the next snap shot he has passed the red object. Compensating for this effect greatly complicates the program. The other limitation is the narrow field of view of the camera. This also leads to the same pattern of behavior described above.

Perhaps the biggest disappointment I had was not enough time to implement intelligent behaviors. One thing I learned from programming behaviors is that the jump from 1 to 2 sensors does not result in a doubling of code, but actually a quadrupling of code since the interactions between the data must be accounted for. For this reason it is very difficult to have consistent intelligent behavior from so many sensor systems without programming for very complex interactions. Because of this I feel my platform is seriously under-utilized and could be used for much more interesting work.

The changes I made to my wheels and caster right before the demo were very significant in the success of the robot. I was able to implement a virtually slip-free platform. Although it is just a nice thing to have on my robot, it would be wonderful for someone implementing navigation or anything else where a shaft encoder is used.

If I were to redo my project, I would:

· Build a much sturdier platform, and have it shaped to nicely accommodate the hardware I was using

· Keep the platform very modular. I would like to implement a small cube with the processor, batteries, etc. inside and have a common connector on the outside of the cube. This little module could then be easily taken in and out of the robot.

· Do more research first—always look for code someone else ha written before writing my own. It would have saved me considerable time.

· Focus more time on intelligent behavior. I would have been able to do this if I had not encountered so many technical difficulties with my PC platform earlier in the semester.

Documentation

Robotics Reference Books:

Fred Martin, The 6.270 Robot Builder’s Guide, MIT Media Lab, Cambridge, MA, 1992

Joseph Jones & Anita Flynn, Mobile Robots: Inspiration to Implementation, A.K. Peters

Publishers, Wellesley, MA, 1993

Visual Basic Books:

Mark Pruett, The Black Art of Visual Basic Game Programming, The Waite Group, 1993

Steven Holzner, Visual Basic 6 Black Book, The Coriolis Group, 1998

Video For Windows Programming:

http://ej.bantz.com, http://www.microsoft.com, http://i.am/shrinkwrapvb
Joystick Prgramming:

http://www.microsoft.com
IMDL references:

AutoCAD Tutorial, ICC11 Reference, Programming Behaviors, etc.

Appendix A – ICC11 Code

#include <tjpbase.h>

#include <stdio.h>

/************************ End of Includes ****************************/

/*global variables*/

 int direction;

 int cur_speedr,cur_speedl,des_speedr,des_speedl;

/* Constants: */

#define RBUMPER
 analog(7)

#define FBUMPER analog(5)

#define MID_IR
 analog(6)

#define SPEEDR 50

#define SPEEDL 60

#define FORWARD 0x38

#define RIGHT 0x36

#define LEFT 0x34

#define BACK 0x32

#define STOP 0x35

#define SYNCH 0xFF

void motor_arb(void);

void send_serial(void);

int add_noise(int);

/*global variables*/

 int direction;

 int cur_speedr,cur_speedl,des_speedr,des_speedl;

/***************************** Main **********************************/

void main(void)

{

int command;

 init_analog();

 init_clocktjp();

 init_serial();

 init_motortjp();

*(unsigned char *)(0x7000) = 0xFF;

/* Instead of IRE_ON; turn on IR emitters */

cur_speedr = 0;

cur_speedl = 0;

while(1)

 {

 command = getchar();

 if (command == SYNCH) send_serial();

 else

{

direction = command;

motor_arb();

}

wait(2);

 }/*end while(1)*/

}

void send_serial(void)

{

printf("L:%d",LEFT_IR);

 printf(",R:%d",RIGHT_IR);

 printf(",C:%d",MID_IR);

 printf(",F:%d",FBUMPER);

 printf(",B:%d,\n",RBUMPER);

}

void motor_arb(void)

{

 switch (direction)/*Set up desired speeds */

 {

case FORWARD: des_speedr = SPEEDR; des_speedl = SPEEDL; break;

case RIGHT: des_speedr = -SPEEDR; des_speedl = SPEEDL; break;

case LEFT: des_speedr = SPEEDR; des_speedl = -SPEEDL; break;

case BACK: des_speedr = -SPEEDR; des_speedl = -SPEEDL; break;

case STOP: des_speedr = 0; des_speedl = 0; break;

 }

cur_speedr = ((6*cur_speedr)+add_noise(des_speedr))/7;

cur_speedl = ((6*cur_speedl)+add_noise(des_speedl))/7;

if (direction == STOP) {

motorp(RIGHT_MOTOR, 0);

motorp(LEFT_MOTOR, 0);

 }

 else {

motorp(RIGHT_MOTOR, cur_speedr);

 motorp(LEFT_MOTOR, cur_speedl);

 }

}

int add_noise(int num)

{

 int i;

 unsigned rand;

 rand = TCNT;

 i=(rand % 12);

 if (rand & 0x0001)

 { return num + i; }

 else

 { return num - i; }

}

Appendix B – Visual Basic Code

Form 1 Code

Option Explicit

Dim retVal As Variant

Public lcv As Integer

'Public ReceivedData As Boolean

Const JoyXLeft = 10000

Const JoyXRight = 50000

Const JoyYForward = 10000

Const JoyYBack = 50000

Private Sub Right_Click()

'To go right send a 6

MSComm1.Output = Chr(54)

End Sub

Private Sub Back_Click()

' To go back send a 2

MSComm1.Output = Chr(50)

End Sub

Private Sub Forward_Click()

' To go forward send an 8

MSComm1.Output = Chr(56)

End Sub

Private Sub Left_Click()

' To go left send a 4

MSComm1.Output = Chr(52)

End Sub

Private Sub Stop_Click()

' To stop send a 5

MSComm1.Output = Chr(53)

End Sub

Private Sub Form_Load()

 ' Get capabilities of joystick1

 'rc = joyGetDevCaps(JOYSTICKID1, caps, Len(caps))

 'Set xaxis = axis(0)

 'Set yaxis = axis(1)

 ' Start the timer

End Sub

Private Sub Form_Unload(Cancel As Integer)

retVal = PlaySound("c:\VBCODE\files\goodbye.wav", 0&, &H20000)

End Sub

Private Sub mnuExit_Click()

Unload Me

End Sub

Private Sub mnuFormat_Click()

VidWin.ShowDlgVideoFormat

End Sub

Private Sub mnuSource_Click()

VidWin.ShowDlgVideoSource

End Sub

Private Sub MSComm1_OnComm()

 Dim dir As Integer

 Select Case MSComm1.CommEvent

 Case comEvReceive

 SensorText(0).Text = MSComm1.Input

 GetLastIRValues

 GetJSVals

 dir = DIRInterp(IRInterp, BumpFInterp, BumpRInterp, CamInterp, JoyInterp)

 If (MSComm1.PortOpen = True) And (ShowVid.Value = 0) Then

 MSComm1.Output = Chr(dir)

 End If

 StartNext

 lcv = lcv + 1

 If lcv = 50 Then Beep

 End Select

End Sub

Private Sub sensors_Click(Index As Integer)

If sensors(Index).Value = 1 Then

Select Case Index

 Case 0:

 retVal = PlaySound("c:\VBCODE\files\iron.wav", 0&, &H20000)

 Case 1:

 retVal = PlaySound("c:\VBCODE\files\bumpon.wav", 0&, &H20000)

 Case 2:

 retVal = PlaySound("c:\VBCODE\files\camon.wav", 0&, &H20000)

End Select

Else

Select Case Index

 Case 0:

 retVal = PlaySound("c:\VBCODE\files\iroff.wav", 0&, &H20000)

 Case 1:

 retVal = PlaySound("c:\VBCODE\files\bumpoff.wav", 0&, &H20000)

 Case 2:

 retVal = PlaySound("c:\VBCODE\files\camoff.wav", 0&, &H20000)

End Select

End If

End Sub

Private Sub ShowVid_Click()

lcv = 0

If (ShowVid.Value = 0) Then

 Picture2.Visible = False

Else

 Picture2.Visible = True

 MSComm1.Output = Chr(53)

End If

End Sub

Public Sub Start_Command_Click()

If MSComm1.PortOpen Then

 MSComm1.Output = Chr(53)

 MSComm1.PortOpen = False

 retVal = PlaySound("c:\VBCODE\files\DEACTIVE.wav", 0&, &H20000)

 Start_Command.Caption = "&Start"

 Start_Command.BackColor = RGB(0, 255, 0)

Else

 MSComm1.InBufferCount = 0

 lcv = 0

 retVal = PlaySound("c:\VBCODE\files\R2.wav", 0&, &H20000)

 ' Turn on the port

 MSComm1.PortOpen = True

 MSComm1.Output = Chr(255)

 Start_Command.Caption = "S&top"

 Start_Command.BackColor = RGB(255, 0, 0)

End If

End Sub

Module Code – JoyStick.bas

Option Explicit

Public Const MAXPNAMELEN = 32

' The JOYINFOEX user-defined type contains extended information about the joystick position,

' point-of-view position, and button state.

Type JOYINFOEX

 dwSize As Long ' size of structure

 dwFlags As Long ' flags to indicate what to return

 dwXpos As Long ' x position

 dwYpos As Long ' y position

 dwZpos As Long ' z position

 dwRpos As Long ' rudder/4th axis position

 dwUpos As Long ' 5th axis position

 dwVpos As Long ' 6th axis position

 dwButtons As Long ' button states

 dwButtonNumber As Long ' current button number pressed

 dwPOV As Long ' point of view state

 dwReserved1 As Long ' reserved for communication between winmm driver

 dwReserved2 As Long ' reserved for future expansion

End Type

' The JOYCAPS user-defined type contains information about the joystick capabilities

Type JOYCAPS

 wMid As Integer ' Manufacturer identifier of the device driver for the MIDI output device

 ' For a list of identifiers, see the Manufacturer Indentifier topic in the

 ' Multimedia Reference of the Platform SDK.

 wPid As Integer ' Product Identifier Product of the MIDI output device. For a list of

 ' product identifiers, see the Product Identifiers topic in the Multimedia

 ' Reference of the Platform SDK.

 szPname As String * MAXPNAMELEN ' Null-terminated string containing the joystick product name

 wXmin As Long ' Minimum X-coordinate.

 wXmax As Long ' Maximum X-coordinate.

 wYmin As Long ' Minimum Y-coordinate

 wYmax As Long ' Maximum Y-coordinate

 wZmin As Long ' Minimum Z-coordinate

 wZmax As Long ' Maximum Z-coordinate

 wNumButtons As Long ' Number of joystick buttons

 wPeriodMin As Long ' Smallest polling frequency supported when captured by the joySetCapture function.

 wPeriodMax As Long ' Largest polling frequency supported when captured by the joySetCapture function.

 wRmin As Long ' Minimum rudder value. The rudder is a fourth axis of movement.

 wRmax As Long ' Maximum rudder value. The rudder is a fourth axis of movement.

 wUmin As Long ' Minimum u-coordinate (fifth axis) values.

 wUmax As Long ' Maximum u-coordinate (fifth axis) values.

 wVmin As Long ' Minimum v-coordinate (sixth axis) values.

 wVmax As Long ' Maximum v-coordinate (sixth axis) values.

 wCaps As Long ' Joystick capabilities as defined by the following flags

 ' JOYCAPS_HASZ- Joystick has z-coordinate information.

 ' JOYCAPS_HASR- Joystick has rudder (fourth axis) information.

 ' JOYCAPS_HASU- Joystick has u-coordinate (fifth axis) information.

 ' JOYCAPS_HASV- Joystick has v-coordinate (sixth axis) information.

 ' JOYCAPS_HASPOV- Joystick has point-of-view information.

 ' JOYCAPS_POV4DIR- Joystick point-of-view supports discrete values (centered, forward, backward, left, and right).

 ' JOYCAPS_POVCTS Joystick point-of-view supports continuous degree bearings.

 wMaxAxes As Long ' Maximum number of axes supported by the joystick.

 wNumAxes As Long ' Number of axes currently in use by the joystick.

 wMaxButtons As Long ' Maximum number of buttons supported by the joystick.

 szRegKey As String * MAXPNAMELEN ' String containing the registry key for the joystick.

End Type

Declare Function joyGetPosEx Lib "winmm.dll" (ByVal uJoyID As Long, pji As JOYINFOEX) As Long

' This function queries a joystick for its position and button status. The function

' requires the following parameters;

' uJoyID- integer identifying the joystick to be queried. Use the constants

' JOYSTICKID1 or JOYSTICKID2 for this value.

' pji- user-defined type variable that stores extended position information

' and button status of the joystick. The information returned from

' this function depends on the flags you specify in dwFlags member of

' the user-defined type variable.

'

' The function returns the constant JOYERR_NOERROR if successful or one of the

' following error values:

' MMSYSERR_NODRIVER- The joystick driver is not present.

' MMSYSERR_INVALPARAM- An invalid parameter was passed.

' MMSYSERR_BADDEVICEID- The specified joystick identifier is invalid.

' JOYERR_UNPLUGGED- The specified joystick is not connected to the system.

Declare Function joyGetDevCaps Lib "winmm.dll" Alias "joyGetDevCapsA" (ByVal id As Long, lpCaps As JOYCAPS, ByVal uSize As Long) As Long

' This function queries a joystick to determine its capabilities. The function requires

' the following parameters:

' uJoyID- integer identifying the joystick to be queried. Use the contstants

' JOYSTICKID1 or JOYSTICKID2 for this value.

' pjc- user-defined type variable that stores the capabilities of the joystick.

' cbjc- Size, in bytes, of the pjc variable. Use the Len function for this value.

' The function returns the constant JOYERR_NOERROR if a joystick is present or one of

' the following error values:

' MMSYSERR_NODRIVER- The joystick driver is not present.

' MMSYSERR_INVALPARAM- An invalid parameter was passed.

Public Const JOYSTICKID1 = 0

Public Const JOYSTICKID2 = 1

Public Const JOY_RETURNBUTTONS = &H80&

Public Const JOY_RETURNCENTERED = &H400&

Public Const JOY_RETURNPOV = &H40&

Public Const JOY_RETURNR = &H8&

Public Const JOY_RETURNU = &H10

Public Const JOY_RETURNV = &H20

Public Const JOY_RETURNX = &H1&

Public Const JOY_RETURNY = &H2&

Public Const JOY_RETURNZ = &H4&

Public Const JOY_RETURNALL = (JOY_RETURNX Or JOY_RETURNY Or JOY_RETURNZ Or JOY_RETURNR Or JOY_RETURNU Or JOY_RETURNV Or JOY_RETURNPOV Or JOY_RETURNBUTTONS)

Public Const JOYCAPS_HASZ = &H1&

Public Const JOYCAPS_HASR = &H2&

Public Const JOYCAPS_HASU = &H4&

Public Const JOYCAPS_HASV = &H8&

Public Const JOYCAPS_HASPOV = &H10&

Public Const JOYCAPS_POV4DIR = &H20&

Public Const JOYCAPS_POVCTS = &H40&

Public Const JOYERR_BASE = 160

Public Const JOYERR_UNPLUGGED = (JOYERR_BASE + 7)

Module Code – PCEYEHelp.bas

Public SensorValues(4) As Integer

Public R, L, C As Integer

Public CurX, CurY As Long

Const AVOID_THRESHOLD = 100

Const CAM_THRESHOLD = 6

Const LBVal = 43

Const RBVal = 128

Const CBVal = 78

Const LCBVal = 101

Const RCBVal = 150

Const Forward = 56

Const Right = 54

Const Left = 52

Const Back = 50

Const HALT = 53

Const intUpperBoundX = 40

Const intUpperBoundY = 30

'for joystick

Dim ji As JOYINFOEX ' joystick state buffer

Dim caps As JOYCAPS ' joystick capabilities

Dim rc As Long ' return code

Dim i As Long ' index

Dim mask As Long ' bitmask

Dim xaxis As Label ' x-axis control

Dim yaxis As Label ' y-axis control

Const JoyXLeft = 10000

Const JoyXRight = 50000

Const JoyYForward = 10000

Const JoyYBack = 50000

Declare Function PlaySound Lib "winmm.dll" Alias "PlaySoundA" (ByVal lpszName As String, ByVal hModule As Long, ByVal dwFlags As Long) As Long

Function DIRInterp(IRval As Integer, FBVal As Integer, RBVal As Integer, CAMval As Integer, JSVal As Integer) As Integer

 Form1.CAMDIR.BackColor = &HFFFFFF

 Form1.FBUMPDIR.BackColor = &HFFFFFF

 Form1.RBUMPDIR.BackColor = &HFFFFFF

 Form1.IROBS.BackColor = &HFFFFFF

 Form1.JOYDIR.BackColor = &HFFFFFF

If (JSVal <> 56) Then

 DIRInterp = JSVal

 Form1.JOYDIR.BackColor = &H80FF&

ElseIf ((Form1.sensors(2).Value = 1) And (CAMval <> 53) And (L + R + C > 40) And (FBVal < 56)) Then

 DIRInterp = HALT

 retVal = PlaySound("c:\VBCODE\files\beef.wav", 0&, &H20000)

ElseIf (Form1.sensors(2).Value = 1) And (CAMval <> 53) Then

 If (Form1.MSComm1.PortOpen = True) And (Form1.ShowVid.Value = 0) Then

 Form1.MSComm1.Output = Chr(CAMval)

 End If

 WaitTime (20000)

 DIRInterp = Forward

 Form1.CAMDIR.BackColor = &H80FF&

ElseIf ((Form1.sensors(1).Value = 1) And (FBVal < 56)) Then

 If (Form1.MSComm1.PortOpen = True) And (Form1.ShowVid.Value = 0) Then

 Form1.MSComm1.Output = Chr(FBVal)

 End If

 WaitTime (50000)

 DIRInterp = FBVal

 Form1.FBUMPDIR.BackColor = &H80FF&

ElseIf ((Form1.sensors(1).Value = 1) And (RBVal = 56)) Then

 DIRInterp = RBVal

 Form1.RBUMPDIR.BackColor = &H80FF&

ElseIf (Form1.sensors(0).Value = 1) Then

 DIRInterp = IRval

 Form1.IROBS.BackColor = &H80FF&

Else: DIRInterp = HALT

End If

Form1.Forward_B.BackColor = &H8000000F

Form1.Right_B.BackColor = &H8000000F

Form1.Left_B.BackColor = &H8000000F

Form1.Back_B.BackColor = &H8000000F

Form1.Stop_B.BackColor = &H8000000F

Select Case DIRInterp

 Case 56:

 Form1.Forward_B.BackColor = RGB(255, 0, 0)

 Form1.Direction.Text = "FORWARD"

 Case 54:

 Form1.Right_B.BackColor = RGB(255, 0, 0)

 Form1.Direction.Text = "RIGHT"

 Case 52:

 Form1.Left_B.BackColor = RGB(255, 0, 0)

 Form1.Direction.Text = "LEFT"

 Case 50:

 Form1.Back_B.BackColor = RGB(255, 0, 0)

 Form1.Direction.Text = "BACK"

 Case 53:

 Form1.Stop_B.BackColor = RGB(255, 0, 0)

 Form1.Direction.Text = "STOP"

 End Select

End Function

Function JoyInterp() As Integer

If (CurY = 0) And (CurX = 0) Then

 Form1.JOYDIR.Text = "NONE"

 JoyInterp = Forward

ElseIf (CurY < JoyYForward) Then

 Form1.JOYDIR.Text = "STOP"

 JoyInterp = HALT

ElseIf (CurY > JoyYBack) Then

 Form1.JOYDIR.Text = "BACK"

 JoyInterp = Back

ElseIf (CurX < JoyXLeft) Then

 Form1.JOYDIR.Text = "LEFT"

 JoyInterp = Left

ElseIf (CurX > JoyXRight) Then

 Form1.JOYDIR.Text = "RIGHT"

 JoyInterp = Right

Else: Form1.JOYDIR.Text = "NONE"

 JoyInterp = Forward

End If

End Function

Function CamInterp() As Integer

 If ((C > CAM_THRESHOLD) And (C >= R) And (C >= L)) Then

 Form1.CAMDIR.Text = "CENTER"

 CamInterp = Forward

 ElseIf ((R > CAM_THRESHOLD) And (R >= C) And (R >= L)) Then

 Form1.CAMDIR.Text = "RIGHT"

 CamInterp = Right

 ElseIf ((L > CAM_THRESHOLD) And (L >= R) And (L >= C)) Then

 Form1.CAMDIR.Text = "LEFT"

 CamInterp = Left

 Else

 Form1.CAMDIR.Text = "NONE"

 CamInterp = HALT

 End If

End Function

Function IRInterp() As Integer

 If ((SensorValues(1) > AVOID_THRESHOLD) And (SensorValues(0) > AVOID_THRESHOLD) And Abs(SensorValues(1) - SensorValues(0) < 10)) Then

 Form1.IROBS.Text = "FRONT"

 IRInterp = Back

 ElseIf ((SensorValues(0) > AVOID_THRESHOLD) And (SensorValues(0) > SensorValues(1))) Then

 Form1.IROBS.Text = "RIGHT"

 IRInterp = Right

 ElseIf ((SensorValues(1) > AVOID_THRESHOLD) And (SensorValues(1) > SensorValues(0))) Then

 Form1.IROBS.Text = "RIGHT"

 IRInterp = Left

 Else

 Form1.IROBS.Text = "NONE"

 IRInterp = Forward

 End If

End Function

Function BumpFInterp() As Integer

 If (SensorValues(3) > LBVal - 5) And (SensorValues(3) < LBVal + 5) Then

 Form1.FBUMPDIR.Text = "LEFT"

 BumpFInterp = Right

 ElseIf (SensorValues(3) > RBVal - 5) And (SensorValues(3) < RBVal + 5) Then

 Form1.FBUMPDIR.Text = "RIGHT"

 BumpFInterp = Left

 ElseIf (SensorValues(3) > CBVal - 5) And (SensorValues(3) < CBVal + 5) Then

 Form1.FBUMPDIR.Text = "CENTER"

 BumpFInterp = Back

 ElseIf (SensorValues(3) > LCBVal - 5) And (SensorValues(3) < LCBVal + 5) Then

 Form1.FBUMPDIR.Text = "LEFT, CEN"

 BumpFInterp = Right

 ElseIf (SensorValues(3) > RCBVal - 5) And (SensorValues(3) < RCBVal + 5) Then

 Form1.FBUMPDIR.Text = "RIGHT, CEN"

 BumpFInterp = Left

 ElseIf (SensorValues(3) > 5) Then

 Form1.FBUMPDIR.Text = "FRONT"

 BumpFInterp = Back

 Else: Form1.FBUMPDIR.Text = "NONE"

 BumpFInterp = Forward

 End If

End Function

Function BumpRInterp() As Integer

 If SensorValues(4) > 5 Then

 Form1.RBUMPDIR.Text = "REAR"

 BumpRInterp = Forward

 Else

 Form1.RBUMPDIR.Text = "NONE"

 BumpRInterp = HALT

 End If

End Function

Sub GetLastIRValues()

 Dim TempVal As String

 SensorValues(0) = FindNum(Form1.SensorText(0).Text, "L:", ",")

 SensorValues(1) = FindNum(Form1.SensorText(0).Text, "R:", ",")

 SensorValues(2) = FindNum(Form1.SensorText(0).Text, "C:", ",")

 SensorValues(3) = FindNum(Form1.SensorText(0).Text, "F:", ",")

 SensorValues(4) = FindNum(Form1.SensorText(0).Text, "B:", ",")

 Form1.IR_L.Caption = SensorValues(0)

 Form1.IR_R.Caption = SensorValues(1)

 Form1.IR_C.Caption = SensorValues(2)

 Form1.BUMP_F.Caption = SensorValues(3)

 Form1.BUMP_B.Caption = SensorValues(4)

End Sub

Function FindNum(StrInput As String, StrStart As String, StrStop As String) As Integer

'This function returns the numeric value of a section of

'a string starting after StrStart and ending with StrStop

 Dim StPos As Integer

 Dim EndPos As Integer

 StPos = InStr(StrInput, StrStart)

 EndPos = InStr(StPos, StrInput, StrStop)

 FindNum = Val(Mid(StrInput, StPos + Len(StrStart), (EndPos - StPos)))

End Function

Function GetTextBoxLastLinePos(TxtBox As TextBox) As Integer

GetTextBoxLastLinePos = InStrRev(TxtBox.Text, vbCrLf, Len(TxtBox.Text) - 1) + 1

End Function

Sub StartNext()

If Form1.ShowVid.Value = 0 Then

GetNewPicture

Else: GetNewPictureSlow

End If

If (Form1.MSComm1.PortOpen = True) Then

 Form1.MSComm1.Output = Chr(255)

End If

End Sub

Sub GetNewPicture()

 Dim test, j, x, y As Integer

 Dim Pixels(1, 1) As Long

 Dim RedsArray(intUpperBoundX, 1) As Integer

 Dim NumReds, RVal As Integer

 Dim bytRed, bytGreen, bytBlue, bytAverage As Integer

Form1.VidWin.CapSingleFrame

Form1.VidWin.SaveDIB ("c:\VBCODE\temp.bmp")

Form1.Picture3.PaintPicture LoadPicture("c:\VBCODE\temp.bmp"), 0, 0, Form1.Picture3.ScaleWidth, Form1.Picture3.ScaleHeight

 For x = 1 To intUpperBoundX

 NumReds = 0

 For y = 8 To intUpperBoundY - 5

 Pixels(1, 1) = Form1.Picture3.Point(x, y)

 bytRed = Pixels(1, 1) And &HFF

 bytGreen = ((Pixels(1, 1) And &HFF00) / &H100) Mod &H100

 bytBlue = ((Pixels(1, 1) And &HFF0000) / &H10000) Mod &H100

 If bytRed + bytGreen + bytBlue < 150 Then

 Pixels(1, 1) = RGB(256, 256, 256)

 ElseIf (bytRed > 125 And bytGreen < 100 And bytBlue < 125) Then

 'bytGreen + bytBlue Then

 NumReds = NumReds + 1

 Pixels(1, 1) = RGB(256, 0, 0)

 Else

 Pixels(1, 1) = RGB(256, 256, 256)

 End If

 Next y

 RedsArray(x, 1) = NumReds

 Next x

 R = 0

 C = 0

 L = 0

 For j = 1 To 12

 L = L + RedsArray(j, 1)

 Next j

 For j = 13 To 28

 C = C + RedsArray(j, 1)

 Next j

 For j = 29 To 40

 R = R + RedsArray(j, 1)

 Next j

 Form1.pictxt(0).Text = L

 Form1.pictxt(0).Refresh

 Form1.pictxt(1).Text = C

 Form1.pictxt(1).Refresh

 Form1.pictxt(2).Text = R

 Form1.pictxt(2).Refresh

End Sub

Sub GetNewPictureSlow()

 Dim test, j, x, y As Integer

 Dim Pixels(1, 1) As Long

 Dim RedsArray(intUpperBoundX, 1) As Integer

 Dim NumReds, RVal As Integer

 'Public R, RC, LC, L, C As Integer

 Dim bytRed, bytGreen, bytBlue, bytAverage As Integer

Form1.VidWin.CapSingleFrame

Form1.VidWin.SaveDIB ("c:\VBCODE\temp.bmp")

Form1.Picture3.PaintPicture LoadPicture("c:\VBCODE\temp.bmp"), 0, 0, Form1.Picture3.ScaleWidth, Form1.Picture3.ScaleHeight

 Form1.Picture2.Cls

 For x = 1 To intUpperBoundX

 NumReds = 0

 For y = 8 To intUpperBoundY - 5

 Pixels(1, 1) = Form1.Picture3.Point(x, y)

 bytRed = Pixels(1, 1) And &HFF

 bytGreen = ((Pixels(1, 1) And &HFF00) / &H100) Mod &H100

 bytBlue = ((Pixels(1, 1) And &HFF0000) / &H10000) Mod &H100

 If bytRed + bytGreen + bytBlue < 150 Then

 Pixels(1, 1) = RGB(256, 256, 256)

 ElseIf (bytRed > 125 And bytGreen < 100 And bytBlue < 125) Then

 'bytGreen + bytBlue Then

 NumReds = NumReds + 1

 Pixels(1, 1) = RGB(256, 0, 0)

 Else

 Pixels(1, 1) = RGB(256, 256, 256)

 End If

 Form1.Picture2.PSet (x * 3, y * 3), Pixels(1, 1)

 Next y

 'Picture2.PSet (x, y), RGB(0, 0, 0)

 RVal = NumReds * 30 + 50

 Form1.Picture2.PSet (x * 3, y * 3 + 1), RGB(RVal, RVal, RVal)

 Form1.Picture2.PSet (x * 3, y * 3 + 2), RGB(RVal, RVal, RVal)

 Form1.Picture2.PSet (x * 3, y * 3 + 3), RGB(RVal, RVal, RVal)

 RedsArray(x, 1) = NumReds

 Next x

 R = 0

 'RC = 0

 C = 0

 'LC = 0

 L = 0

 For j = 1 To 13

 L = L + RedsArray(j, 1)

 Next j

 'For j = 8 To 14

 ' RC = RC + RedsArray(j, 1)

 'Next j

 For j = 14 To 26

 C = C + RedsArray(j, 1)

 Next j

 'For j = 27 To 33

 ' LC = LC + RedsArray(j, 1)

 'Next j

 For j = 27 To 40

 R = R + RedsArray(j, 1)

 Next j

 Form1.pictxt(0).Text = L

 Form1.pictxt(0).Refresh

 Form1.pictxt(1).Text = C

 Form1.pictxt(1).Refresh

 Form1.pictxt(2).Text = R

 Form1.pictxt(2).Refresh

End Sub

Public Sub GetJSVals()

Dim Plugged As Boolean

 rc = joyGetDevCaps(JOYSTICKID1, caps, Len(caps))

 ' Initialize struct

 ji.dwSize = Len(ji)

 ji.dwFlags = JOY_RETURNALL

 ' Get the current joystick data

 rc = joyGetPosEx(JOYSTICKID1, ji)

 ' Display the status

 If (rc = 0) Then

 Form1.status.Caption = "status: joystick connected"

 Plugged = True

 Else

 If (rc = JOYERR_UNPLUGGED) Then

 Form1.status.Caption = "status: joystick unplugged"

 Plugged = False

 Else

 Form1.status.Caption = "status: joyGetPosEx error, rc = " & rc

 End If

 End If

 ' Display the data on the form

 CurX = ji.dwXpos

 CurY = ji.dwYpos

 Form1.axis(0).Caption = CurX

 Form1.axis(1).Caption = CurY

 mask = 1

 For i = 0 To (caps.wNumButtons - 1)

 If (ji.dwButtons And mask) Then Form1.Button(i).Value = 1 Else Form1.Button(i).Value = 0

 mask = mask * 2

 Next

 If Form1.Button(1).Value = 1 Then

 Form1.Start_Command_Click

 ElseIf Form1.Button(0).Value = 1 Then

 Form1.sensors(2).Value = Abs(Form1.sensors(2).Value - 1)

 'sensors_Click (2)

 ElseIf Form1.Button(2).Value = 1 Then

 Form1.sensors(0).Value = Abs(Form1.sensors(0).Value - 1)

 'sensors_Click (0)

 ElseIf Form1.Button(3).Value = 1 Then

 Form1.sensors(1).Value = Abs(Form1.sensors(1).Value - 1)

 'sensors_Click (1)

 End If

End Sub

Sub WaitTime(WTime As Long)

Dim x, i As Variant

For i = 1 To WTime

x = (i * i / i) / i * i

Next i

End Sub

� EMBED Excel.Sheet.8 ���

� EMBED Excel.Sheet.8 ���

� EMBED PBrush ���

2
23

[image: image7.wmf]IR Data from PC-EYE BOT

80

85

90

95

100

105

110

115

120

125

130

5

4.5

4

3.5

3

2.5

2

1.5

1

0.5

0

Distance from wall (feet)

Analog Reading

LEFT IR

RIGHT IR

CENTER IR

[image: image8.wmf]IR Data for Obstacle Avoidance

70

80

90

100

110

120

130

1

3

5

7

9

11

13

15

17

19

21

23

Sample #

Analog Values

LEFT

RIGHT

CENTER

[image: image9.png]_1002964158.xls
Chart1

		87		87		89

		87		88		90

		89		90		93

		91		92		97

		91		92		97

		91		92		95

		103		104		110

		118		118		121

		123		120		125

		124		119		124

		105		112		117

		90		94		99

		92		96		101

		114		116		120

		114		118		120

		113		113		118

		100		98		104

		91		91		95

		90		91		93

		89		91		93

		88		88		91

		87		88		90

		87		91		94

LEFT

RIGHT

CENTER

Sample #

Analog Values

IR Data for Obstacle Avoidance

data2

		87		87		89

		87		88		90

		89		90		93

		91		92		97

		91		92		97

		91		92		95

		103		104		110

		118		118		121

		123		120		125

		124		119		124

		105		112		117

		90		94		99

		92		96		101

		114		116		120

		114		118		120

		113		113		118

		100		98		104

		91		91		95

		90		91		93

		89		91		93

		88		88		91

		87		88		90

		87		91		94

data2

		0		0		0

		0		0		0

		0		0		0

		0		0		0

		0		0		0

		0		0		0

		0		0		0

		0		0		0

		0		0		0

		0		0		0

		0		0		0

		0		0		0

		0		0		0

		0		0		0

		0		0		0

		0		0		0

		0		0		0

		0		0		0

		0		0		0

		0		0		0

		0		0		0

		0		0		0

		0		0		0

LEFT

RIGHT

CENTER

Sample #

Analog Values

IR Data for Obstacle Avoidance

_1003536572

_1002964143.xls
Chart1

		5		5		5

		4.5		4.5		4.5

		4		4		4

		3.5		3.5		3.5

		3		3		3

		2.5		2.5		2.5

		2		2		2

		1.5		1.5		1.5

		1		1		1

		0.5		0.5		0.5

		0		0		0

LEFT IR

RIGHT IR

CENTER IR

Distance from wall (feet)

Analog Reading

IR Data from PC-EYE BOT

88

89

91

88

89

92

89

90

94

91

92

97

93

94

100

97

98

104

103

104

110

112

113

118

120

122

123

125

127

128

127

127

128

data1

		88		89		91		5

		88		89		92		4.5

		89		90		94		4

		91		92		97		3.5

		93		94		100		3

		97		98		104		2.5

		103		104		110		2

		112		113		118		1.5

		120		122		123		1

		125		127		128		0.5

		127		127		128		0

data1

		0		0		0

		0		0		0

		0		0		0

		0		0		0

		0		0		0

		0		0		0

		0		0		0

		0		0		0

		0		0		0

		0		0		0

		0		0		0

LEFT IR

RIGHT IR

CENTER IR

Distance from wall (feet)

Analog Reading

IR Data from PC-EYE BOT

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

