PC-EYE BOT / TORO

Final Report

Michael Reiser
IMDL Fall 1999

December 8, 1999

Table of Contents

PC-EYE BOT/TORO
Table of Contents

Abstract

Executive Summary
Introduction

Integrated System

M obile Platform

Actuation

Sensors

Behaviors

Experimental Layout and Results

Conclusion
Documentation

Appendix A —1CC11 Code

Appendix B — Visual Basic Code

10

17

19

20

22

23

25

Abstract

The purpose of this project is to implement an autonomous platform with all of the
advantages and the flexibility of a fully functional Intel-based PC. PC-EYE BOT isa
robot that will exhibit vision, and use it to make real-time decisions based on the
detection of colors. The robot’s basic control will be supplied by a 68HC11, and the
image capabilities and higher functionalities will be provided by the on-board Laptop.
The robot is able to accomplish many advanced features without the costs traditionally
associated with these abilities. The robot is equipped with five sensor systems, each
driving its own behavior, and a real-time user interface program. This program controls
all behavior arbitration and represents all underlying actions in graphical manner to the
user. Thisrobot is to serve as a research platform for complex behavior interactions that
cannot be accomplished with lesser computational ability.

Executive Summary

PC-EY E BOT represents a significant effort to construct a fairly ambitious autonomous
mobile platform. The robot has an extensive sensor suite, consisting of Infrared
Emitter/Detector pairs, Bump Switches, a PC Seria Link, a Joystick, and a Color
Camera. The main function of the robot is to use these sensors to navigate and exhibit
intelligent behavior. The most notable of these sensorsis the camera, sinceitisahigh
bandwidth device, and using its data in areal-time application is not atrivial issue.
Therefore the robot has been designed as a color detector/follower. The implementation
of this behavior is not nearly the most complex behavior possible with the platform, but

serves as arealizable goal for a project of this type.

The robot is atwo-tiered and two-wheeled rolling platform that houses two separate
centers of computation. The lower level functions of sensor data collection and motor
control are handled by a 6BHC11 running a very short icc11- compiled program. The
higher level functions of camera operation, joystick polling, decision making, and user
interfacing are handled by a Pentium-based laptop. The Most significant accomplishment
in this project is the ssimple interface between the two systems, and the clearly defined

tasks required of each system.

This paper details the results of this project. It includes both the hardware and the
software descriptions and implementation details, and offers an explanation of the many

features of the robot.

I ntroduction

| wanted my robot to be able to implement vision. | was continuously discouraged from
attempting to solve the problem of vision with too little computational horsepower. So
reluctantly, | decided that to perform vision successfully, the obvious solution isto
supply ample computation ability. As the name implies, the BOT implements both a PC
(personal computer) and an EY E (a camera). The jump to afull-blown PC
implementation has many beneficial side-effects. Basically anything that can be done
with a PC (and done quite easily) can now be done on the robot. This makes expanding
the robot nearly trivial, as demonstrated by the ease with which a camera can be added.
Also, for control purposes, | added a Joystick interface at the last second. This addition
was aso very fast to implement. The camera on the robot is connected to the PC, and the
PC is used to make decisions about the robot’ s behavior, based on the captured images.
In this instance of the project, the camerais sensitive to the color red and seeks it out.
There is aless powerful microcontroller on the robot that controls the motion of the robot

as well asthe basic sensors.

Integrated System

The PC-EYE BOT contains several systems:
The 68HC11 microcontroller--this board provides the control logic for:
The Drive system — uses servos to direct the motion of the robot.
The Low-Level Sensors— uses IR sensors for collision avoidance — detecting the
proximity to objets and changing direction. Bump sensors are also used to detect
collisions if the IR sensorsfail to initiate a change in direction. The vision
information from the camera is also used to control collision avoidance.
The PC onboard the robot was initially intended to be a full computer, complete with
motherboard and all of the possibilities of a PC’s peripheral components. This was to be
run off of battery power. Unfortunately due to several compatibility issues, | borrowed a

laptop computer and use thisin the end result. In my design | use the PC to control:

The Vision System — | use a*“web-cam” type camera (color QuickCam 2) and the
computer’s parallel port interface. | wrote the software that runs on the PC and performs
rudimentary image processing on the video data. Initially, | attempted to implement
color-following. This behavior was successful, but | did not have time to implement more
complex behaviors.

The Communications System — | intended to equip the PC with a wireless Ethernet
system so that | can run a TCP/IP network and communicate with my robot. The big
advantage of thisisthat | can remotely have access to nearly all of the PC’ s capabilities.
This goal was dropped in that the laptop provided its own interface, and the wireless

Ethernet capability would have been unnecessary.

The most important feature of the communication system is that the PC maintains a
constant bi-directional communication with the 6BHC11 through a serial connection. The
logical separation of functionsis then simple. The PC usesthe 68HC11’s actions and
incoming sensor data as well as the data from its own set of sensors to generate decisions
(e.0. go l€ft, stop). These decisions are then sent to the 68HC11 viathe serial port. Hereis
the block diagram for this interaction, showing the persistent control loop present on the

robot:

TORO Communications Overview

Start Process, send $FF

Parse Text-=values % Send Back ASCT string:

Get Joystick info LR CF,B,
Start Camera Capture
Send to Direction Motor Arbitrator
Interpreter Send Back Direction: > smoothes motor
F.R,L.B,H changes introduces
Start Next Process - random noise
Send $FF

Mobile Platform

The platform has been kept very simple. The primary requirement is that there is enough
room to hold all of the hardware and sensors as well as provide space for future
expansion. The body of PC-EY E BOT isimplemented as atiered rolling platform,
dightly elongated (oval—shaped). The size has been chosen as dightly larger than that of
the PC motherboard. Although a motherboard was never used, this design was adequate
to hold the laptop with only minor modifications. Initially three layers were to be used.
The lower layer contains wheels, servos and batteries. Since the weight of the platform
was an issue | over-designed and reinforced this portion of the robot. On the final form of
the robot, the bottom layer contained “storage room” for: 68’ 11, communications board,
IR emitters, battery pack, servos, wheels, and small bundles of the PC’ s connection
cables. Above this layer is the control layer — this layer contains the PC laptop, al of the
sensors or connections to sensors, and all the cables and connections necessary to support
al of the hardware. There was intended to be alayer above this to house the PC
additional components — the batteries for the PC, the hard drive, and the camera. Thiswas

never needed with the laptop design.

Actuation

This robot autonomously interacts with its environment while continuously collecting

video data and making decisions based on that data. But how does the robot get around?

The actuators used on the robot are fully-hacked high torque servos, Tower Hobby brand
with alisted torque output of 128 ounce-inches at 6V. Since | am running the servos at a
higher voltage (closer to 8 volts) | expect than an even greater maximum torque is
generated. | also used two large wheels sold as model airplane wheels. These wheels gave
me plenty of trouble. They were big (4.5 diameter) and so were an issue to mount to the
servos. Eventually | screwed the servo horn into the wheel, covered the joint in epoxy,
and then screwed through the joint to provide a connection mechanism. The screws for
the servos were also very hard to find, but eventually | found the correct size screw
(2mm) with a hex lock on it which made screwing the wheels in quite easy since | could

used an Allen Wrench. | also had dual swivel castersin the rear for support.

Problems with this setup:

Very near to the demo day, when my robot was finally assembled it was obvious that the
robot was having a hard time going straight. This had alot to do with the power level on
the batteries, but also with the big sick wheels dlipping and the casters misaligning and
forcing the platform to favor one side. The wheel dlipping | was able to completely fix. |
made "treads’ on the wheels with vertical stripes of hot glue, and then o top of this, glued
atacky rubber band around the perimeter of the wheel. | have never seen any robot with

wheels that don’'t dip at al, and mine did not. The weight being placed directly above the

wheels may have had something to do with it aswell. | also removed the second caster
and centered the one | was using. These two fixes enabled my robot to maintain a

“straight enough” path.

All motor control was done using theiccl1 code for motor routines. | use a smoothing
function to average desired and previous values of the motor speeds. The agorithm used
Isvery smple:
Essentialy the 5 directions are interepreted as settin gup a desired spped for each
wheel: FORWARD: des_speedr = SPEEDR,; des _speedl = SPEEDL;
RIGHT: des speedr = -SPEEDR; des speedl = SPEEDL;
LEFT: des_speedr = SPEEDR,; des_speed| = -SPEEDL,;
BACK: des_speedr = -SPEEDR; des_speed| = -SPEEDL ;
STOP: des_speedr = 0; des_speedl =0;
The speed is then arrived at by:
cur_speedr = ((6* cur_speedr)+add _noise(des_speedr))/7;
cur_speedl = ((6* cur_speedl)+add noise(des _speedl))/7;
As can be seen, random noise is added at this point. The noise is on the order of about
20% of the total motor speed value, and adds some needed robustness to the motor

control. With the noise, even faulty sensor reading will not cause the robot to trap itself

The code for thisislisted in Appendix A.

Sensors

PC-EY E BOT contains several types of sensors that allow the machine to intelligently
interact with its environment. Since the purpose of the robot isto operate using the video
data coming from the camera, there is no physical or tactile interaction with the
environment. The most important low level sensors are necessary to provide for obstacle
avoidance. The “high level” sensors needed are the robot’s “brain,” the PC, and the

robot’s “eyes,” the camera.

The robot contains the following sensor types:
IR transmitters/receivers
Bump Switches
PC system
Camera connected to the PC

Joystick for interacting with the PC

Following is an explanation of each system.

IR
PC-EY E BOT contains Three Forward-Facing and one Rear IR Emitter/Receiver pairs.

Each emitter isan LED that sends out a modulated 40kHz IR signal which is then
detected by the receivers. The receivers and emitters are positioned in such away that
there is no direct line of sight between the pair, so all detected IR must be bouncing off of
an object. The IR Receivers used are hacked Sharp sensors. These have been hacked to

return an analog voltage that is connected to the A/D port of the 6BHC11. The analog

10

values, when digitized return avalue ranging from 88 to 128. A higher number indicates
that more IR is being detected by the sensor, and proximity to an object is expected. Here

is some sample data from the IR detectors when pointing straight at awall:

IR Data from PC-EYE BOT

110 / ——LEFTIR
7/ —8—RIGHT IR

Analog Reading
|_\
o
a1

100 CENTER IR
95 X
90 WU/
85
n+——————r——r—————

5 45 4 35 3 25 2 15 1 05 O
Distance from wall (feet)

It can be seen that the distance vs. IR valuesisfairly linear over a range from about 4 feet
to 0.5 feet away from the wall.

Obstacle avoidance using IR would then be accomplished by comparing values of IR and
moving so as to counteract the highest values. | have found it helpful to set athreshold
above which the IR values are “high,” in this case a value of 100 seems appropriate since

it indicates a distance of between 2 and 3 feet from the obstacle. For example:
If al three IR are above the threshold, then reverse direction
If left or left/center are above the threshold, and left>right, then turn right

If right or right/center are above the threshold, and right>left, then turn left

11

The code implementing this algorithm isin Appendix B.

Hereis a data set showing that the above behaviors will implement obstacle avoidance:

IR Data for Obstacle Avoidance

130

N
120 ﬂ
110 5 !

7]
()
= / \\ / —e—LEFT
>
= 100 / - —®— RIGHT
2 CENTER
g 9 ,.:# o _
80
70 T

1 OO 1O N~ O «=H= ™M O N~ O <« ™
T o = +d4 <« N N

Sample #

Here the first bump shows an obstacle on the left and the second shown an obstacle right.

BUMP SENSORS
In the event that the IR data should not be properly handled, or some conditions occur

that render this data inaccurate (i.e. dark corners) a system is implemented to back-up the
IR. Bump sensors are used to detect a direct collision with an object and to assist the
robot in getting free of that object. The sensors are just switches that are connected viaa
resistor divider network to the A/D ports of the 68HC11. By properly selecting the values
of the resistors the robot can determine the side at which the collision occurred, and move
away from that side. The bump sensors are surrounded by a cantilevered wooden bump
ring that has a small range of free movement. The bumpers work by pushing into the

switch when contact is made and then using the switches springiness to bounce back.

12

This bump system is one of the most successful features of the robot, and is more than
capable of distributing the collision to one (or more) of the switches. There are six
switches on the robot, three in the front and three in the back, spaced out so that a sensor
isat each “corner” and at the direct front and direct rear of the platform. Hereisan

AutoCad sketch of the positioning of the sensors:

In this image the squares represent the IR receivers and the rectangles are the sites for the
bump switches.
Hereis the data gathered for the values returned by the A/D unit for the bump switches.

The font and rear network have been wired in the same way so the values are the same:

13

Switch(es) Pressed Lowest A/D Vaue Highest A/D Value
Left 41 44
Right 127 129
Center 76 79
Left, Center 100 102
Right, Center 149 153
COMPUTER

The most complex “sensor” used on the robot is the PC. The PC used is not a 486
desktop system as initially planned--but rather alaptop. The specifications for the laptop:
CPU: Pentium 120 MHz

Memory: 24 MB RAM

Hard Drive capacity: ~800 MB

Operating System: Windows 98

In addition all necessary development tools (M S visua Studio and ICC11) have been
loaded onto the laptop so that the development of the software can occur on the robot

itself. The laptop is placed directly on top of the robot as seen below:

14

The laptop is connected to the 68HC11 through a serial connection to the communication

board that provides for trandation from RS232 valuesto TTL levels.

THE CAMERA
The camera used is a Parallel Port connected Web Camera capable of resolutions

between 160" 120 pixelsto 640" 480 pixels. The cameraimplements automatic gain
control and is capable of 4 bit to 24 bit colors. The current camera performance is about
12fps, with poor detail in low light. The only solution to the lighting problem isto
provide alight source on the robot. The camera driver uses the Video For Windows
Standard and is thus programmable from within a windows environment. The camera
setting used during the demo are: 160 120, with 256 colors and automatic lighting and
hue settings. The camera data is used to perform image processing. A control called

“ezVidCap.ocx” is used to handle the acquisition of the images.

The images are then reduced into a40” 30 image and pixel-by-pixel image processing is
done on the smaller image. The processing | use to find red is a combination of
thresholding filters. The filter used is: “If (bytRed > 125 And bytGreen < 100 And
bytBlue < 125)” then thisis very likely to be ared pixel, add to count of red pixels. It
was a so helpful to filter out dark colors since they were affecting the algorithm, thisis
done by “If bytRed + bytGreen + bytBlue < 150" then ignore this value since it is very
dark. Then the count of red pixelsin each of the 40 columnsis totaled and flattened into 3
values. These values represent the amount of red in the Right, Center, and Left part of the

robot’sfiled of view. A threshold value of 6 pixels per screen third is used, after the

15

threshold has been met, the desired direction is ssmply the screen portion with the most

red pixels.

THE JOYSTICK
Thejoystick used is a Microsoft Sidewinder Pro. This joystick is capable of 3D control

and has nearly a dozen buttons on it. | implemented the joystick as a 2D, 4 button
joystick, and was able to receive x and y coordinates and button presses from the
windows API. Since the range of values for each axisis large—it isalong value from O

to ~64k—I only used the very extremes of the joystick’s position for a value.

16

Behaviors

Asillustrated in the block diagram in the Integrated Systems section, the robot operates

in a persistent control loop. The interface between the PC and the 68HC11 is as follows:
The PC requests from the 68BHC11 its string of sensor values. The OC then uses this
information and its own sensors to come up with a direction (do left, right, straight, back,
etc...) to send the 68HC11. All of these communications are just ASCII values sent
between the two. The directions sent to the 68HC11 are determined based on both IR data
and picture data, and the bump sensor data. The PC is running a windows program to

handle this operation.

The robot has 4 main sensor systems. camera, joystick, IR and bump sensors. Each
system drives its own behavior. For each time period where all sensor datais collected,
there is afunction that interprets each sensor’s data and generates a direction decision for
that sensor. Each sensor has a default direction of either Halt or Forward. Thereisthen a
direction arbitrator that generates an overall direction decision by maintaining a
hierarchy:

Joystick

Camera

Bump
IR

Thisis not a strict hierarchy in that there are exceptions to this system. For example if
Camerais seeing alot of red and the bump sensor is pressed then the assumption is that

the target has been hit and the robot stops. The default direction is used to seeif the

17

sensor requires attention. If the sensor is passing its default direction then it is ignored

and the next relevant sensor in the hierarchy is used to determine the direction.

Since this behavior architecture is used it makes it very ssimple to disable a sensor, in
which case it isignored. Each sensor can be disabled from the main program or via the
joystick. Unplugging the joystick will disable it as a sensor. The API provides for
detecting that the joystick is unplugged and the program uses this to ignore the joystick.
The simplest method of seeing each behavior is disabling the other sensors. For example:
to demo the robot, | disabled all sensors but the camera. The robot then remains idle until
the camera sensor calls for attention, when it has found red, at which point the sensor’s
behavior assumes control of the overall system behavior. Because of this enabling and

disabling of behaviors, there are actually 4! behaviors.

18

Experimental Layout and Results

All of the meaningful experimentation was carried out with the computer program

application running. Here is a screen shot of the program:

wm. TORO demo
Contral

Serial Port Data

aoveTiek [

As can be seen this program shows everything that is occurring with al of the sensors so
it isvery easy to see what is happening and correct it in real-time. The only necessary
tests that were conducted were for performance. The overall performance of this
application in controlling and & communicating with the robot is found by running the
control loop 50 times and timing its duration.

The results:

In Demo Mode: 50 timesin 32 seconds — 1.56 Hz

In standard Mode: 50 timesin 15 seconds — 3.33 Hz

19

Conclusion

| think that with the implementation of TORO, | accomplished many things. | was able to
perform near real-time image processing for navigation purposes with an unusual set of
tools: a $40 camera, a crumbling laptop, and a Visual Basic control program. The biggest
limitation of the robot is the performance of the control program. There are many other
avenues that can be explored for tightening the code and the overall performance while
still keeping the framework currently used. | believe that with no great adjustments the
3.33 Hz rate could be improved to about 5 Hz. By using other methods of image
processing | believe this rate could nearly be doubled. Is thisimportant? It is so that true
real-time navigation decisions can be made, and the robot’ s movements would be very
smooth. As the robot is currently implemented, he may have ared object in his field of
view off to the right, he turns right, and by the time he takes the next snap shot he has
passed the red object. Compensating for this effect greatly complicates the program. The
other limitation is the narrow field of view of the camera. This also leads to the same

pattern of behavior described above.

Perhaps the biggest disappointment | had was not enough time to implement intelligent
behaviors. One thing | learned from programming behaviors s that the jump from 1 to 2
sensors does not result in a doubling of code, but actually a quadrupling of code since the
interactions between the data must be accounted for. For thisreason it is very difficult to
have consistent intelligent behavior from so many sensor systems without programming
for very complex interactions. Because of this| feel my platform is seriously under-

utilized and could be used for much more interesting work.

20

The changes | made to my wheels and caster right before the demo were very significant
in the success of the robot. | was able to implement a virtually dlip-free platform.
Although it isjust anice thing to have on my robot, it would be wonderful for someone

implementing navigation or anything else where a shaft encoder is used.

If | wereto redo my project, | would:
Build a much sturdier platform, and have it shaped to nicely accommodate the
hardware | was using
Keep the platform very modular. | would like to implement a small cube with the
processor, batteries, etc. inside and have a common connector on the outside of the
cube. Thislittle module could then be easily taken in and out of the robot.
Do more research first—always look for code someone else ha written before writing
my own. It would have saved me considerable time.
Focus more time on intelligent behavior. | would have been able to do thisif | had not
encountered so many technical difficulties with my PC platform earlier in the

semester.

21

Documentation

Robotics Reference Books:

Fred Martin, The 6.270 Robot Builder’s Guide, MIT Media Lab, Cambridge, MA, 1992

Joseph Jones & Anita Flynn, Mobile Robots: Inspiration to Implementation, A.K. Peters

Publishers, Wellesley, MA, 1993

Visual Basic Books:

Mark Pruett, The Black Art of Visual Basic Game Programming, The Waite Group, 1993

Steven Holzner, Visual Basic 6 Black Book, The Coriolis Group, 1998

Video For Windows Programming:

http://ej.bantz.com, http://www.microsoft.com, http://i.am/shrinkwrapvb

Joystick Prgramming:

http://www.microsoft.com

IMDL references:

AutoCAD Tutorial, ICC11 Reference, Programming Behaviors, etc.

22

Appendix A —1CC11 Code

#i ncl
#i ncl

ude <tj pbase. h>
ude <stdi o. h>

I R I I I R I I I I EE I I I I I I I I I I I
/ End of Includes /

/ *gl obal vari abl es*/

int
int

di rection;
cur _speedr, cur _speedl , des_speedr, des_speedl! ;

/* Constants: */

#def i
#def i
#def i
#def i
#def i

#def i
#def i
#def i
#def i
#def i
#def i

voi d
voi d

ne RBUVPER anal og(7)
ne FBUWMPER anal og(5)

ne MD IR anal og(6)
ne SPEEDR 50

ne SPEEDL 60

ne FORWARD 0x38

ne Rl GHT 0x36
ne LEFT 0x34
ne BACK 0x32
ne STOP 0x35
ne SYNCH OxFF

not or _ar b(voi d);
send_serial (voi d);

int add_noi se(int);

/ *gl obal vari abl es*/

int
int

direction;
cur _speedr, cur _speedl , des_speedr, des_speed! ;

/***************************** NHI n **********************************/

voi d

{

ini
ini
ini
ini

mai n(voi d)

int command;

t _anal og();
t_clocktjp();
t_serial();
t_nmotortjp();

*(unsi gned char *)(0x7000) = OxFF;

/* Instead of | RE_ON; turn on IR enmtters */
cur_speedr = 0;

cur_speedl = 0;

whi | e(1)

command = getchar();

f (command == SYNCH) send_serial ();

el se

{

direction = conmand;

23

not or _arb();

wait(2);

}/*end while(1)*/

}

voi d send_seri al (void)

{

printf("L:%",LEFT_IR);

printf(",R%", RRGHT_IR);
printf(",C%",MD_IR);
printf(", F: %", FBUVWPER) ;
printf(",B: %, \n", RBUVPER) ;

}

voi d not or_arb(voi d)

switch (direction)/*Set up desired speeds */

{
case FORWARD: des_speedr = SPEEDR, des_speedl = SPEEDL; break;
case RIGHT: des_speedr = -SPEEDR, des_speedl = SPEEDL; break;
case LEFT: des_speedr = SPEEDR;, des_speedl = -SPEEDL; break;
case BACK: des_speedr = -SPEEDR; des_speedl = -SPEEDL; break;
case STOP: des_speedr = 0; des_speedl = 0; break;

}

cur_speedr = ((6*cur_speedr)+add_noi se(des_speedr))/7;

cur_speedl = ((6*cur_speedl)+add_noi se(des_speedl))/7;

if (direction == STOP) {
not or p(Rl GHT_MOTOR, 0) ;
not or p(LEFT_MOTOR, 0);

el se {
not or p(Rl GHT_MOTOR, cur _speedr);
not or p(LEFT_MOTOR, cur _speedl);

}

int add_noi se(int num
L

int i;

unsi gned rand;

rand = TCNT;
i=(rand % 12);

if (rand & 0x0001)
{ return num+ i; }
el se

{ return num- i; }

24

Appendix B — Visual Basic Code

FORM 1 CODE
Option Explicit

DimretVal As Variant
Public lcv As Integer
"Publ i ¢ Recei vedDat a As Bool ean

Const JoyXLeft = 10000
Const JoyXRi ght = 50000
Const JoyYForward = 10000
Const JoyYBack = 50000

Private Sub Ri ght_Cick()
"To go right send a 6
MsComml. Qut put = Chr (54)
End Sub

Private Sub Back_dick()
' To go back send a 2
MsCommi. Qut put = Chr (50)
End Sub

Private Sub Forward_dick()
' To go forward send an 8
MsComml. Qut put = Chr (56)
End Sub

Private Sub Left_dick()
' To go left send a 4
MsComml. Qut put = Chr (52)
End Sub

Private Sub Stop_dick()
' To stop send a 5
MsCommi. Qut put = Chr (53)
End Sub

Private Sub Form Load()
' CGet capabilities of joystickl
"rc = joyGCet DevCaps(JOYSTI CKI D1, caps, Len(caps))

'Set xaxis
'Set yaxis

axi s(0)
axi s(1)

Start the timer
End Sub

Private Sub Form Unl oad(Cancel As Integer)
retVal = PlaySound("c:\VBCODE\fil es\goodbye. wav", 0& &H20000)
End Sub

Private Sub muExit_dick()
Unl oad Me

25

End Sub

Private Sub muFormat i ck()

Vi dW n. ShowDl gVi deoFor mat
End Sub

Private Sub muSource_d i ck()

Vi dW n. ShowDl gVi deoSour ce
End Sub

Private Sub MsSCommil_OnComm()

Dimdir As Integer

Sel ect Case MsConmil. ConmEvent

Case conEvRecei ve
Sensor Text (0) .

Text MSConm. | nput

Cet Last | Rval ues

GetJSval s
dir = DIRInterp(lRI nterp, BunpFlnterp, BunpRI nterp,
Cam nterp, Joylnterp)
I f (MSComml. Port Open = True) And (Showwvi d. Val ue = 0) Then
MSComil. Qut put = Chr (dir)
End If
St ar t Next
lcv = lcv + 1
If Icv = 50 Then Beep
End Sel ect
End Sub
Private Sub sensors_dick(lndex As Integer)
I f sensors(lndex).Value = 1 Then
Sel ect Case | ndex
Case 0O:
retVal = PlaySound("c:\VBCODE\files\iron.wav", 0& &H20000)
Case 1:
retVal = PlaySound("c:\VBCODE\fil es\bumpon.wav", 0& &H20000)
Case 2:
retVal = PlaySound("c:\VBCODE\fil es\canon.wav", 0& &H20000)
End Sel ect
El se
Sel ect Case | ndex
Case 0:
retVal = PlaySound("c:\VBCODE\files\iroff.wav", 0& &H20000)
Case 1:
retVal = PlaySound("c:\VBCODE\fil es\bunpoff.wav", 0& &H20000)
Case 2:
retVal = PlaySound("c:\VBCODE\fil es\canoff.wav", 0& &H20000)
End Sel ect
End If
End Sub

26

Private Sub Showvid_dick()
lcv = 0
If (Showid.Value = 0) Then
Pi cture2. Visible = Fal se
El se
Pi cture2. Vi si bl e True
MSConmil. Qut put = Chr (53)
End | f
End Sub

Public Sub Start_Command_d i ck()
I f MSCommi. Port Open Then

Ms5Conmil. Qut put = Chr(53)
MSComil. Port Open = Fal se
retVal = Pl aySound("c:\VBCODE\fil es\ DEACTI VE. wav", 0& &H20000)
Start_Command. Caption = "&Start™"
Start _Command. BackCol or = RGB(0, 255, 0)
El se
MsConml. | nBuf f er Count = 0
lcv = 0
retVal = PlaySound("c:\VBCODE\files\R2.wav", 0& &H20000)
' Turn on the port
MSCommil. Port Open = True
M5Conmil. Qut put = Chr (255)
Start _Command. Capti on = " S&t op”
Start _Command. BackCol or = RGB(255, 0, 0)
End If

End Sub

MODULE CODE - JOYSTICK.BAS

Option Explicit
Publ i c Const MAXPNAMELEN = 32

The JOYI NFOEX user-defined type contains extended informati on about the joystick
position

poi nt-of -view position, and button state
Type JOYI NFCEX

dwSi ze As Long ' size of structure

dwFl ags As Long ' flags to indicate what to return

dwXpos As Long ' X position

dwYpos As Long 'y position

dwZpos As Long ' z position

dwRpos As Long " rudder/4th axis position

dwUpos As Long ' Bth axis position

dwvpos As Long ' 6th axis position

dwButt ons As Long ' button states

dwBut t onNunber As Long ' current button nunber pressed

dwPOV As Long ' point of view state

dwReservedl As Long " reserved for communication between wi nmmdriver

dwReserved2 As Long " reserved for future expansion
End Type

The JOYCAPS user-defined type contains information about the joystick capabilities
Type JOYCAPS

27

wM d As I nteger '
the M DI output device

Indentifier topic in the

wPi d As I nteger '
device. For a list of

topic in the Miltimedia

szPname As String * MAXPNAMELEN '
product nane
wXmi n As
wXmax
wyni n
wYmax

Long '
Long '
Long '
Long '
wZni n Long '
wZmax As Long '
wNunBut t ons As Long '
wPeri odM n As Long '
captured by the joySetCapture function.
wPeri odvax As Long '
captured by the joySetCapture function.
wWRm n As Long '
axi s of novenent.
wRmax As Long '
axi s of novenent.
wUmi n As Long '
wUmax As Long '
wVnm n As Long '
wVmax As Long '
wCaps As Long '
follow ng flags

As
As
As
As

i nformati on.

(fourth axis) information.

(fifth axis) information.

(sixth axis) information.

i nformati on.

supports discrete values (centered,
supports conti nuous degree bearings.
wivaxAxes As Long '
j oysti ck.
wWNumAxes As Long '
wivaxBut t ons As Long '
j oysti ck.
szRegKey As String * MAXPNAMELEN '
j oysti ck.
End Type

Decl are Function joyGetPosEx Lib "winmmdll"

Long
' This function queries a joystick for
requires the follow ng paraneters;

' uJoyl D- integer
' JOYSTI CKI D1 or
prr-

' The function returns the constant JOYERR_NOERROR if successful or

follow ng error val ues:
' MVBYSERR_NODRI VER-

forward,

its position and button status.

The joystick driver

Manuf acturer identifier of the device driver for

For a list of identifiers, see the Manufacturer

Mul ti medi a Reference of the Pl atform SDK.

Product ldentifier Product of the M DI output

product identifiers, see the Product Identifiers
Ref erence of the Pl atform SDK.

Nul | -termi nated string containing the joystick

M ni mum X- coor di nat e.

Maxi mum X- coor di nat e.

M ni mum Y- coor di nat e

Maxi mum Y- coor di nat e

M ni mum Z- coor di nat e

Maxi mum Z- coor di nat e

Number of joystick buttons

Smal | est polling frequency supported when

Largest polling frequency supported when

M ni mum rudder val ue. The rudder is a fourth

Maxi mum rudder val ue. The rudder is a fourth
val ues.

val ues.

M ni mum u- coordi nate (fifth
Maxi mum u- coordi nate (fifth
M ni mum v-coordi nate (sixth axis) val ues.
Maxi mum v- coordi nate (sixth axis) val ues.
Joystick capabilities as defined by the

axi s)
axi s)

JOYCAPS_HASZ- Joystick has z-coordinate
JOYCAPS_HASR- Joystick has rudder
JOYCAPS_HASU- Joystick has u-coordinate
JOYCAPS_HASV- Joystick has v-coordinate
JOYCAPS_HASPOV- Joystick has point-of-view
JOYCAPS_POV4ADI R- Joysti ck point-of-view

backward, left, and right).
JOYCAPS_POVCTS Joysti ck point-of-view
Maxi mum nunber of axes supported by the

Number of axes
Maxi mum nunber

currently in use by the joystick.
of buttons supported by the

String containing the registry key for the
(ByVal

uJoyl D As Long, As JOYI NFOEX) As

pii

The function

identifying the joystick to be queried. Use the constants
JOYSTICKID2 for this val ue.

user-defined type variable that stores extended position information
and button status of the joystick. The information returned from
this function depends on the flags you specify in dwFl ags nenber of
the user-defined type variable.

one of the

is not present.

28

MVBYSERR | NVALPARAM An invalid paraneter was passed.
MVBYSERR _BADDEVI CEIl D- The specified joystick identifier is invalid.
JOYERR_UNPL UGGED- The specified joystick is not connected to the system

Decl are Function joyGetDevCaps Lib "wnnmdll" Alias "joyGetDevCapsA" (ByVal id As Long,
| pCaps As JOYCAPS, ByVal uSize As Long) As Long

Publ i
Publ i
Publ i
Publ i
Publ i
Publ i
Publ i
Publ i
Publ i
Publ i
Publ i
Publ i

Publ i
Publ i
Publ i
Publ i
Publ i
Publ i
Publ i
Publ i
Publ i

OO0OO0O000O0O00O0O0

Cc

Cc

Cc
Cc
Cc
Cc
Cc
Cc
Cc
Cc

uJoyl D-

pj c-
chj c-

This function queries a joystick to deternmine its capabilities. The function requires
the followi ng paraneters:

integer identifying the joystick to be queried. Use the contstants

JOYSTI CKI D1 or JOYSTICKID2 for this val ue.

user-defined type variable that stores the capabilities of the joystick.
Size, in bytes, of the pjc variable. Use the Len function for this val ue.

The function returns the constant JOYERR NOERROR if a joystick is present or one of
the follow ng error val ues:

MVBYSERR _NCDRI VER- The joystick driver is not present.
MVBYSERR | NVALPARAM An invalid paraneter was passed.

Const
Const
Const
Const
Const
Const
Const
Const
Const
Const
Const
Const

Const
Const
Const
Const
Const
Const
Const
Const
Const

JOYSTICKIDL = 0

JOYSTICKID2 = 1
JOY_RETURNBUTTONS = &H80&
JOY_RETURNCENTERED = &H400&
JOY_RETURNPOV = &H40&
JOY_RETURNR = &H8&
JOY_RETURNU = &H10
JOY_RETURNV = &H20

JOY_RETURNX

&H1&

JOY_RETURNY = &H2&

JOY_RETURNZ = &H4&

JOY_RETURNALL = (JOY_RETURNX Or JOY_RETURNY Or JOY_RETURNZ Or JOY_RETURNR Or
JOY_RETURNU Or JOY_RETURNV Or JOY_RETURNPOV Or JOY_RETURNBUTTONS)
JOYCAPS HASZ = &H1&

JOYCAPS_HASR = &H2&

JOYCAPS_HASU = &H4&

JOYCAPS_HASV = &H8&

JOYCAPS_HASPOV = &H10&

JOYCAPS_POVADI R = &H20&

JOYCAPS_POVCTS = &H40&

JOYERR BASE = 160

JOYERR_UNPLUGGED = (JOYERR BASE + 7)

MODULE CODE — PCEYEHELP.BAS

Publ i c SensorVal ues(4) As Integer
Public R, L, C As Integer

Public CurX, CurY As Long

AVO D _THRESHOLD = 100

CAM THRESHOLD = 6

Const
Const
Const
Const
Const
Const
Const

Const
Const
Const
Const
Const
Const
Const

"for joystick

Dimji

LBVal = 43

RBVal = 128

CBval = 78

LCBval = 101

RCBVal = 150
Forward = 56

Ri ght = 54

Left = 52

Back = 50

HALT = 53

i nt Upper BoundX = 40
i nt Upper BoundY = 30
As JOYI NFOEX ' joystick state buffer

29

Di m caps As JOYCAPS joystick capabilities
Dmrc As Long return code
Dmi As Long i ndex
D m mask As Long bi t mask
Di m xaxi s As Label x-axi s control
D m yaxi s As Label y-axi s control
Const JoyXLeft = 10000
Const JoyXRi ght = 50000
Const JoyYForward = 10000
Const JoyYBack = 50000
Decl are Function PlaySound Lib "winmmdl|l" Alias "PlaySoundA" (ByVal | pszNane
As String, ByVal hMddul e As Long, ByVal dwFlags As Long) As Long
Function DIRInterp(l Rval As Integer, FBVal As Integer, RBVal As |Integer, CAMal
As Integer, JSVal As Integer) As Integer
For nlL. CAMDI R. BackCol or = &HFFFFFF
For mL. FBUMPDI R. BackCol or = &HFFFFFF
For mL. RBUMPDI R. BackCol or = &HFFFFFF
For nml. | ROBS. BackCol or = &HFFFFFF
For nlL. JOYDI R BackCol or = &HFFFFFF
If (JSval <> 56) Then
DRI nterp = JSval
For nlL. JOYDI R BackCol or = &HB0FF&

El sel f ((Fornl.sensors(2).Value =

1) And (CAWal

And (FBval < 56)) Then

DR nterp = HALT

retVal = PlaySound("c:\VBCODE\fil es\beef.wav", 0& &H20000)
El sel f (Fornl. sensors(2). Val ue 1) And (CAMral <> 53) Then

I f (Fornl. MSConmi. Por t Open
For miL. MSCommi. Qut put
End If
Wi t Ti ne (20000)
DIRInterp = Forward
For mL. CAMDI R. BackCol or = &H30
El sel f ((Fornil.sensors(1).Value =
I f (Fornl. MSConmil. Port Open =
For miL. MSCommi. Qut put
End |f
Wi t Ti ne (50000)
DRI nterp = FBVal

True) And (Forml. Showvi d. Val ue
= Chr (CAMal)

FF&

1) And (FBVal < 56)) Then
True) And (Forml. Showvi d. Val ue
= Chr (FBVal)

For nlL. FBUWPDI R BackCol or = &HBOFF&
El sel f ((Fornl.sensors(1l).Value = 1) And (RBVal = 56)) Then
DRI nterp = RBVal
For nlL. RBUWPDI R BackCol or = &HBOFF&
El sel f (Fornl. sensors(0).Value = 1) Then
DIRIinterp = | Rval
For L. | ROBS. BackCol or = &HB0FF&
Else: DIRInterp = HALT
End |f
For mlL. For war d_B. BackCol or = &H8000000F
For ml. Ri ght _B. BackCol or = &H3000000F
Forml. Left_B. BackCol or = &H8000000F
For mlL. Back_B. BackCol or = &H8000000F
For ml. St op_B. BackCol or = &H8000000F

30

<> 53) And (L + R+ C > 40)

0) Then

0) Then

Sel ect Case DIRInterp
Case 56:

For mlL. For war d_B. BackCol or = RGB(255, 0, 0)

Forml. Di recti on. Text = "FORWARD"

Case 54:

Forml. Ri ght _B. BackCol or = RGB(255, 0, 0)
Forml. Direction. Text = "Rl GHT"

Case 52:

Forml. Left_B. BackCol or = RGB(255, 0, 0)
Forml. Direction. Text = "LEFT"

Case 50:

For ml. Back_B. BackCol or = RGB(255, 0, 0)
Forml. Di recti on. Text = "BACK"

Case 53:

Forml. St op_B. BackCol or = RGB(255, 0, 0)

Forml. Di recti on. Text = "STOP"
End Sel ect

End Function
Function Joylnterp() As Integer

If (CQurY = 0) And (CurX = 0) Then
Fornil. JOYDI R Text = " NONE

Joylnterp = Forward

El self (CurY < JoyYForward) Then
Fornl. JOYDI R Text = "STOP"
Joylnterp = HALT

El self (CurY > JoyYBack) Then
Fornl. JOYDI R Text = "BACK"
Joyl nterp = Back

El sel f (CurX < JoyXLeft) Then
Fornl. JOYDI R Text = "LEFT"
Joylnterp = Left

El sel f (CurX > JoyXRi ght) Then
Fornl. JOYDI R Text = "Rl GHT"
Joylnterp = Right

El se: Fornl.JOYDI R Text = "NONE
Joylnterp = Forward

End |f

End Function

Function Cami nterp() As Integer

I'f ((C> CAM THRESHOLD) And (C >= R) And (C >= L)) Then

For mL. CAMDI R. Text = " CENTER'

Cami nterp = Forward

El self ((R > CAM.THRESHOLD) And (R >= C And (R >= L)) Then

Fornl. CAMDI R Text = "Rl GHT"
Caminterp = Right

El self ((L > CAMTHRESHOLD) And (L >= R} And (L >= Q) Then

For mL. CAMDI R Text = "LEFT"
Caminterp = Left
El se
For mlL. CAMDI R Text = " NONE"
Caminterp = HALT
End |f
End Function

Function IRInterp() As Integer

If ((SensorValues(1) > AVO D THRESHOLD) And (Sensor Val ues(0) >
AVO D_THRESHOLD) And Abs(SensorVal ues(1) - SensorVal ues(0) < 10)) Then

Forml. | ROBS. Text = "FRONT"

31

IR nterp = Back

El sel f ((SensorVal ues(0) > AVO D THRESHOLD) And (Sensor Val ues(0) >
Sensor Val ues(1))) Then

Fornl. | ROBS. Text = "Rl GHT"
IRInterp = R ght

El sel f ((SensorVal ues(1) > AVO D THRESHOLD) And (SensorVal ues(1) >
Sensor Val ues(0))) Then

Fornml. | ROBS. Text = "Rl GHT"
IRInterp = Left

El se

Forml. | ROBS. Text = " NONE"
IRInterp = Forward

End |f

End Function

Function BunpFlnterp() As Integer

I f (SensorVal ues(3) > LBVal

FormL. FBUWPDI R Text = "LEFT"
BumpFl nterp = Ri ght

El sel f (SensorVal ues(3) > RBVal - 5) And (SensorVal ues(3) < RBVal
For ml. FBUMPDI R Text

"Rl GHT"

BumpFInterp = Left

El sel f (SensorVal ues(3) > CBVal - 5) And (SensorVal ues(3) < CBVal
For ml. FBUWPDI R Text

" CENTER"

BunmpFl nterp = Back

El sel f (SensorVal ues(3) > LCBVal - 5) And (SensorVal ues(3) < LCBVal

Then

For nil. FBUWPDI R Text = "LEFT, CEN'
BumpFl nterp = Ri ght

El sel f (SensorVal ues(3) > RCBVal - 5) And (SensorVal ues(3) < RCBVal

Then

For nl. FBUWPDI R Text = "RI GHT, CEN'
BumpFI nterp = Left

El sel f (SensorVal ues(3) > 5) Then
For nl. FBUWPDI R. Text = " FRONT"
BunmpFl nterp = Back

El se: Forml. FBUMPDI R Text = "NONE'
BunmpFI nterp = Forward

End |f
End Function

Function BunpRInterp() As Integer
If SensorValues(4) > 5 Then
For mL. RBUVPDI R Text = "REAR'
BumpRI nterp = Forward

El se

For mL. RBUVPDI R. Text = " NONE"
BunmpRIinterp = HALT

End |f

End Function

Sub Get Last | Rval ues()

D m TenpVal As String

Sensor Val ues(0)
Sensor Val ues(1)
Sensor Val ues(2)
Sensor Val ues(3)
Sensor Val ues(4)

Fi ndNun{ For mlL. Sensor Text (0) .
Fi ndNun{ For mlL. Sensor Text (0) .
Fi ndNun{ For mlL. Sensor Text (0) .
Fi ndNun{ For mlL. Sensor Text (0) .
Fi ndNun{ For mlL. Sensor Text (0) .

32

Text,
Text,
Text,
Text,
Text,

"L,
"R
okl
"Ft,
"B ",

- 5) And (SensorVal ues(3) < LBVal

+ 5) Then

+ 5) Then

+ 5) Then

+ 5)

+ 5)

Forml. | R L. Caption = Sensor Val ues(0)

Forml. | R_R Caption = Sensor Val ues(1)

Forml. | R_C. Caption = Sensor Val ues(2)

For mL. BUMP_F. Capti on = Sensor Val ues(3)

For ml. BUMP_B. Capti on = Sensor Val ues(4)
End Sub

Function FindNun(Strinput As String, StrStart As String, StrStop As String) As

| nt eger
"This function returns the nuneric value of a section of
'"a string starting after StrStart and ending with StrStop

D m St Pos As | nteger
Di m EndPos As | nteger

StPos = InStr(Strinput, StrStart)
EndPos = InStr(StPos, Strlnput, StrStop)
Fi ndNum = Val (M d(Strlnput, StPos + Len(StrStart), (EndPos - StPos)))

End Function

Functi on Get Text BoxLast Li nePos(Txt Box As Text Box) As | nteger

Get Text BoxLast Li nePos = I nStrRev(Txt Box. Text, vbCrLf, Len(TxtBox. Text) -
End Function

Sub St art Next ()

I f Fornll. Showvi d. Val ue = 0 Then
CGet NewPi cture

El se: Get NewPi ct ur eS| ow

End |f

If (Fornl. MSConmil. Port Qpen = True) Then
For mL. MSCommi. Qut put = Chr (255)
End |f

End Sub

Sub Get NewPi ct ur e()
Dmtest, j, x, y As Integer
Dim Pi xel s(1, 1) As Long
D m RedsArray(int Upper BoundX, 1) As Integer
D m NunReds, RVal As Integer

D m byt Red, byt G een, bytBlue, bytAverage As I|nteger

For mlL. Vi dW n. CapSi ngl eFr ane

Forml. Vi dW n. SaveDI B ("c:\ VBCODE\ t enp. brmp")

For ml. Pi ct ur e3. Pai nt Pi ct ure LoadPi cture("c:\VBCODE\t enp. bnp"), 0, O,
For ml. Pi ct ure3. Scal eWdth, Forml. Pi cture3. Scal eHei ght

For x = 1 To i nt Upper BoundX
NunReds = 0
For y = 8 To intUpperBoundY - 5
Pi xel s(1, 1) = Forml. Picture3.Point(x, y)
byt Red = Pixels(1, 1) And &HFF
byt G een = ((Pixels(1, 1) And &HFFO0) / &H100) Mdd &H100
byt Blue = ((Pixels(1, 1) And &HFF0000) / &H10000) Mod &H100

33

1) +1

If bytRed + bytGeen + bytBlue < 150 Then
Pi xel s(1, 1) = RGB(256, 256, 256)

El self (bytRed > 125 And byt Green < 100 And bytBl ue < 125) Then
"byt G een + byt Bl ue Then

NunReds = NunReds + 1

Pi xel s(1, 1) = RGEB(256, 0, 0)

El se
Pi xel s(1, 1) = RGB(256, 256, 256)
End |f
Next vy
RedsArray(x, 1) = NunReds
Next x
R=0
c=0
L=0
For j =1 To 12
L =L + RedsArray(j, 1)
Next j
For j = 13 To 28
C=C+ RedsArray(j, 1)
Next j
For j = 29 To 40
R = R + RedsArray(j, 1)
Next j

Forml. pi ctxt (0). Text = L
For ml. pi ct xt (0) . Refresh
Forml. pictxt(1l).Text = C
Forml. pi ct xt (1) . Refresh
Forml. pictxt(2).Text = R
For ml. pi ct xt (2) . Refresh

End Sub

Sub Get NewPi ct ur eS|l ow()
Dmtest, j, x, y As Integer
Dim Pi xel s(1, 1) As Long
D m RedsArray(int Upper BoundX, 1) As Integer
D m NunReds, RVal As Integer
"Public R, RC, LC, L, C As Integer

D m byt Red, byt G een, bytBlue, bytAverage As I|nteger

For mlL. Vi dW n. CapSi ngl eFr ane

Forml. Vi dW n. SaveDI B ("c:\ VBCODE\ t enp. brmp")

For ml. Pi ct ur e3. Pai nt Pi ct ure LoadPi cture("c:\VBCCODE\t enp. bnp"), 0, O,
For ml. Pi ct ure3. Scal eWdth, Forml. Pi cture3. Scal eHei ght

Fornil. Picture2.d s
For x = 1 To i nt Upper BoundX
NunReds = 0
For y = 8 To intUpperBoundY - 5
Pi xel s(1, 1) = Forml. Picture3.Point(x, y)
byt Red = Pixels(1, 1) And &HFF
byt G een = ((Pixels(1, 1) And &HFFO0) / &H100) Mdd &H100
byt Blue = ((Pixels(1, 1) And &HFF0000) / &H10000) Mod &H100

If bytRed + bytGeen + bytBlue < 150 Then
Pi xel s(1, 1) = RGB(256, 256, 256)

El self (bytRed > 125 And byt Green < 100 And bytBl ue < 125) Then
"byt G een + byt Bl ue Then
NunReds = NunReds + 1
Pi xel s(1, 1) = RGEB(256, 0, 0)
El se
Pi xel s(1, 1) = RGB(256, 256, 256)
End |f
Forml. Picture2.PSet (x * 3, y * 3), Pixels(1, 1)

Next vy
"Picture2.PSet (x, y), RGB(0, 0, 0)
Rval = NunReds * 30 + 50
Forml. Picture2.PSet (x * 3, y * 3 + 1), RGB(Rval, Rval, Rval)
Forml. Picture2.PSet (x * 3, y * 3 + 2), RGB(Rval, Rval, Rval)
Forml. Picture2.PSet (x * 3, y * 3 + 3), RGB(Rval, Rval, Rval)
RedsArray(x, 1) = NunReds

Next x
R=0
'"RC =0
c=0
"LC =0
L=0
For j =1 To 13
L =L + RedsArray(j, 1)
Next j
"For j = 8 To 14
' RC = RC + RedsArray(j, 1)
" Next |
For j = 14 To 26
C=C+ RedsArray(j, 1)
Next j
"For j = 27 To 33
' LC = LC + RedsArray(j, 1)
" Next |
For j = 27 To 40
R = R + RedsArray(j, 1)
Next j

Forml. pi ctxt (0). Text = L
For ml. pi ct xt (0) . Refresh
Forml. pictxt(1l).Text = C
Forml. pi ct xt (1) . Refresh
Forml. pictxt(2).Text = R
For ml. pi ct xt (2) . Refresh

End Sub

Public Sub GetJSVal s()
D m Pl ugged As Bool ean
rc = joyGet DevCaps(JOYSTI CKI D1, caps, Len(caps))
Initialize struct
ji.dwSize = Len(ji)

35

For

ji.dwFlags = JOY RETURNALL

' CGet the current joystick data
rc = joyGet PosEx(JOYSTICKIDL, ji)
' Display the status
If (rc = 0) Then

Forml. status. Caption = "status: joystick connected"
Pl ugged = True
El se

If (rc = JOYERR UNPLUGGED) Then
Forml. st atus. Caption = "status: joystick unplugged"
Pl ugged = Fal se
El se
Forml. status. Caption = "status: joyGet PosEx error,
End |f
End I f

' Display the data on the form
Cur X = ji.dwXpos
CurY = ji.dwYpos

Forml. axi s(0). Capti on = CurX
Forml. axi s(1).Caption = CurY
mask = 1
For i = 0 To (caps. wWunButtons - 1)

If (ji.dwButtons And mask) Then Fornil. Button(i). Val ue
ml. Button(i).Value = 0
mask = mask * 2
Next
If Forml.Button(l).Value = 1 Then
Forml. Start_Command_d i ck
El sel f Forml.Button(0).Value = 1 Then
Forml. sensors(2).Val ue = Abs(Forml. sensors(2).Value - 1)
"sensors_Cick (2)
El self Forml.Button(2).Value = 1 Then
Forml. sensors(0). Val ue = Abs(Forml. sensors(0).Value - 1)
"sensors_Cick (0)
El self Forml.Button(3).Value = 1 Then
Forml. sensors(1).Val ue = Abs(Forml. sensors(1).Value - 1)
"sensors_Cick (1)
End I f

End Sub

Sub Vi t Ti ne(WIi me As Long)
Dmx, i As Variant

For i =1 To Wl ne
x=(i *i /[i) /[i*i
Next i

End Sub

36

rc

=" &rc

1 Else

