
Department of Electrical and Computer Engineering

EEL 5666

Intelligent Machine Design Laboratory

S.L.I.K. 2001

Salt Laying Ice Killer

FINAL REPORT

Daren Curry

April 22, 2001

Table of Contents

Abstract……………………………………………………………….. 3

Executive Summary…………………………………………………… 4

Introduction…………………………………………………………… 5

Integrated System………..……………………………………………. 6

Mobile Platform………..……………………………………………… 7

Sensors………………………………………………………………… 8

Actuation……………………………………………………………… 11

Behaviors……………………………………………………………… 12

Conclusion…………………………………………………………….. 13

Code………………….……………………………………………… 14

Abstract

The following paper describes the design of an autonomous robot that distributes salt

where metal is present. The idea behind laying salt is that the target of the robot is iced

over driveways. It is therefore reasonable to lay salt where metal if found because rebar

is used in the construction of most driveways. The robot is being built using an existing

toy bulldozer platform with a pull-behind hopper. The robot will be designed to spiral

out looking for metal, spread salt while metal is detected, avoid all obstacles, and stop

once the hopper is empty. The mobile platform will use a TJPRO11 board and sensors

for feedback from the environment. S.L.I.K. will use IR detectors and emitters; bump

sensors, and a pair of metal detectors for sensing metal. The motivation behind the design

of this robot was derived from visiting a dear friend who lives in Indiana. In the mythical

state of Indiana, it is not uncommon for white, flaky stuff to fall in the winter, and due to

this and the cold weather, ice forms everywhere. Moreover, while visiting this dear

friend of mine, it was necessary to get a running start at his driveway in order to assure

reaching the house, since the driveway was rather steep. After realizing how dangerous

this was, I enquired about how to fix the problem I was given a bag of salt and made to

throw it in the cold. The use of this robot will keep driveways from icing up and keep me

from freezing my ass off.

EXECUTIVE SUMMARY

S.L.I.K. is a tracked autonomous robot. Its sole purpose is to seek out metal and throw

salt in an effort to de-ice driveways. If it doesn’t find metal, and both servos have

reached their maximum speed, S.L.I.K. reinitiates the spiral pattern so he does not

continue off in a straight line. If metal is found, the hopper is activated until the metal is

no longer present or the hopper runs out. If the hopper runs out S.L.I.K. stops and waits

to be filled and reset. Lastly if an obstacle is encountered, S.L.I.K. takes appropriate

actions to avoid objects. S.L.I.K. consists of a preexisting toy bulldozer platform made

of plastic and a hand-held hopper modified to be pulled behind S.L.I.K. The main

challenge of this project is to determine the presence of metal. The other challenge was

to program the correct timing and speed. The fully integrated platform was achieved by

using the TJPRO11 board, Infrared sensors, bump sensors, and metal detectors. The

designed sensor was the metal detectors used to determine if metal is present. The

hopper was used to hold and distribute the salt. The infrared sensors were utilized in the

object avoidance. The contact switches were used as a redundant system for obstacle

avoidance, and were used to determine if the hopper was empty. The tracks are actuated

by to “hacked” servos.

Introduction:

Going up north and watching people throwing salt and having the misfortune to do it my

self in the cold, made me realize that there had to be a better way. This led to the creation

of S.L.I.K. Many places suffer from cold weather, and could appreciate the value of a

robot that salted driveways. However, since the beginning of this project, it has occurred

to me that with slight modifications, S.L.I.K. could be used to spread fertilizers and such

in a yard. Since S.L.I.K. is a tracked vehicle, the only major physical modifications lay

in the hopper. I have tested S.L.I.K. in grass of moderate height and encountered no

problems with locomotion. A small, inexpensive autonomous robot that could perform

these and other repetitive tasks is worth pursuing. The objective of this project is to build

an autonomous robot that will distribute material when metal is found. This objective

will be met using a variety of sensors, servos and motors. The paper will discuss the

entire integrated system, following with servos and the sensors used to accomplish the

objective. Finally, I will discuss behavior algorithms and the specific code used to

achieve the required objective.

Integrated System:

The completed system will consist of two metal detectors for metal finding, two ir

emitters and receivers for obstacle avoidance, three contact switches, two for backup to

the ir and one for the hopper empty detection. These two servos are connected to PA4

and PA5 on the TJPRO 11 board. The integrated system will be powered by six AA

Nickel-metal Hydride batteries (for the micro-controller), four AA Alkaline batteries (for

the hopper), and two 9 Volt batteries (for the metal detectors). The Infrared emitters are

powered by a 40 KHz signal generated by the PE2 and PE3 port on the TJPRO 11 board.

The front left and right contact switches will be connected to the FBRSW and FBLSW

port respectively on the TJPRO11 board. The hopper empty switch will be connected to

the RBSW port on the TJPRO11 board. Motion will be accomplished by two servos.

These two servos are connected to PA3 and PA7 on the TJPRO 11 board.

Mobile Platform:

The mobile platform consists of a pre-existing toy platform that contains Ir detectors and

contact switches for object avoidance, wheels attached to hacked servos for locomotion,

and two metal detectors, and a pull-behind hopper. The Robot will travel in a spiral

pattern until it bumps into metal or an obstacle. Once the robot has found metal, the

hopper will be triggered, and the robot will go straight for a predetermined amount of

time. If a non-metallic object is encountered the avoidance routines will be executed.

The most significant problem was the interference of the metal detectors with themselves.

To combat this problem, I placed ferrite material in between them to isolate them. The

only problem with this was the creation of a “blind-spot” in the middle of the sensors.

Since this introduced a blind spot, the presence of metal is not assured. The robot might

not know if it has just encountered metal or if it has already been encountered. However,

there is a solution to this problem. To fix this problem is to add a third metal detector

that would determine if the robot is still on the line or not. Unfortunately, no metal

detectors were available at radio shack, and that project was post-poned till the summer.

Sensors:

I attached most sensors to the TJPRO11 board directly. Since, the code for reading the

sensors has already been written by Professor Doty, the made the job of coding much

easier. My design called for seven sensors: two IR sensors, three contact switches, and

two metal detectors.

IR:

Figure 1

Figure 1 above, depicts the hacked version of the Sharp GP1U58 IR detector that I used

for obstacle avoidance. This allowed me to determine approximately, how far away

S.L.I.K. was from an object or person. The Ir was placed on top of the plow (see figure

2).

Figure 2

 Further, when the port PE2 or PE3 got a reading of 127, the robot was approximately 3

inches away from the object. Some factors determine the capability of the detectors. For

example, if it was a dark wall in front of the robot, the robot could not detect.

Bump:

The bump sensors consist of 3 contact switches, 2 mounted at the front of the platform,

and 1 in the hopper (see figures 2 and 3). The front 2 are used when the robot is moving

forward, and as a backup to the ire. If the bumper is getting activated an obstacle has

been hit and the robot will go into the avoidance routines. If the rear bumper was pressed,

that means the hopper is full. If the rear bumper is not pressed, the hopper is empty and

the robot stops.

 Figure 3

Metal Detectors:

The metal detectors are located in the bottom of the plow (see figure 4). The metal

detectors are used to find metal. The input to the micro controller was done by gluing a

CDS cell to the stock diode on the metal detectors. If metal is present, the ports read over

230, and under 190 if metal is not present.

Figure 4

Actuation:
The locomotion of S.L.I.K. was provided through two hacked servos. The servos were
mounted by removing the factory drive train, and rigidly mounting the servos to the body
of the robot (see figure 5 and 6).

Figure 5

Figure 6
The only problem with this was the tendency to hop slightly. However, the robot did go
fairly straight, especially since no feedback exists on the platform.

Behaviors:
The four behaviors that will be demonstrated are search, metal detection, avoidance, and
hopper empty. The initial behavior is the search. Upon hitting the reset button, S.L.I.K.
will start in a small spiral, and gradually increasing one servo in order to increase the
diameter of the circle. The only problem with this is that in small circles it repeats
several times, but with out this delay, the spiral would not be complete when the motors
are close to the maximum speed. The pattern is also reset after the maximum value for
the servo is reached. The next behavior is metal detection. In this behavior, while metal
is detected, the hopper will be activated, and S.L.I.K. will move off in a straight line.
Once the metal is no longer present, the spiral pattern will be resumed. The avoidance is
a sub-function within the prior two. If at anytime an object is encountered, the avoidance
routine is called. The avoidance routine reacts differently depending on what sensor
senses the object. If a front ir detects the presence of an object, the robot will turn away
from it. If the front bump switches are hit, the robot backs up and turns to the right.
Lastly, if the hopper empty condition arises S.L.I.K. simply stops and waits to be refilled
and reset.

Conclusion:
I believe that my robot has potential. Even though the original goals of line following
were not achieved, I think that with some modifications to the existing platform will
allow for the addition of line following. I also think that it could be a good proof of
concept robot.

Code:

/*************************** Includes ********************************/

#include <tjpbase.h>
#include <stdio.h>
#include <hc11.h>

/************************ End of Includes ****************************/

/*************************** Constants
********************************/

#define AVOID_THRESHOLD 100
#define Metal_detect 230

/************************ End of Constants
****************************/

void main(void)
/****************************** Main
***********************************/
{

 int count , inc , speedr , speedl, check;
 check = 0;
 count = 0;

inc = 0;
init_analog();

 init_motortjp();
 init_clocktjp();

 IRE_ON; /* turn on IR emitters */

while (BUMPER > 120)
{
/********************************* spiral
routine*************************/
 if (check == 0)
 {

speedl = MAX_SPEED;
 speedr = 60;
 check = check + 1;
 }
 else
 {
 inc = check/350;
 check = check + 1;
 speedl = MAX_SPEED;
 speedr = 60 + inc;
 }
 motorp(LEFT_MOTOR, speedl);
 motorp(RIGHT_MOTOR, speedr);

 wait(30);
/******************************* find metal/ turn on
hopper***************/

 if (RIGHT_MD > Metal_detect)
 {
 DDRD = 0x10;

PORTD = 0x10;
motorp(RIGHT_MOTOR, MAX_SPEED);

 motorp(LEFT_MOTOR, MAX_SPEED);
 wait (2250);
 }
 else
 {
 DDRD = 0x10;
 PORTD = 0x00 ;
 }

if (LEFT_MD > Metal_detect)
 {

 DDRD = 0x10;

PORTD = 0x10;
wait (1500);
motorp(RIGHT_MOTOR, MAX_SPEED);

 motorp(LEFT_MOTOR, MAX_SPEED);
 wait (2250);
 }

 else
 {
 DDRD = 0x10;
 PORTD = 0x00 ;
 }

/************************************* avoid
*********************************/
 if (LEFT_IR > AVOID_THRESHOLD)
 { motorp(RIGHT_MOTOR, -MAX_SPEED);
 motorp(LEFT_MOTOR, MAX_SPEED);
 wait(450);
 }

 if (RIGHT_IR > AVOID_THRESHOLD)
 {
 motorp(RIGHT_MOTOR, MAX_SPEED);
 motorp(LEFT_MOTOR, -MAX_SPEED);
 wait(450);
 }

 if(FRONT_BUMP)
 {
 motorp(LEFT_MOTOR, -MAX_SPEED);
 motorp(RIGHT_MOTOR, -MAX_SPEED);
 wait(600);
 }

 if (inc== 40)
 {
 check=0;
 }

 }/*END WHILE (BUMPER <120)*/
 /************************************ hopper empty
*********************/

 while (BUMPER < 120)
 {
 motorp(LEFT_MOTOR, 0);
 motorp(RIGHT_MOTOR, 0);
 wait(600);
 }
}

