
Jiggabot

University of Florida
EEL 5666

Intelligent Machine Design Lab

Student Name: Jerone Hammond

Date: April 25, 2001

Instructor: Dr. A. Arroyo

1

Table of Contents

Abstract……………………………………….2

Executive Summary…………………………3

Introduction…………………………………..4

Mobile Platform……………………………...5

Actuation……………………………………..6

Electronics..7

Sensors……………………………………....8

Special Sensor……………………………....9

Behaviors...12

Experimental Layout and Results………...13

Conclusion…………………………………..14

Appendix

Jiggabot code……………………………....15

Jiggabot photos………………………….....25

2

 Abstract

Jiggabot is an autonomous cleaning robot with voice recognition capabilities. It’s

behaviors are controlled by an Motorola 68HC11 micro-controller. There are a

total of four different actuators that operate this robot. Two motors are used to

navigate the robot, one servo is used to lower/raise the cleaning mechanism and

the other is used to drive the cleaning brush.

3

 Executive Summary

This robot is designed to search smooth surfaced floors for foreign debris and

then clean it up. While doing this action it is able to follow walls and avoid any

obstacle that it might encounter. This robot is controlled by an Motorola 68HC11

micro-controller which controls four motors, five IR receivers and emitters and six

different switches. There are 2 front IR’s for obstacle avoidance and 2 right side

IR’s for wall following. There is also an IR and receiver in front near the floor

used in a break beam configuration used to detect objects. There are also 4

bump switches located around the robot used as a fail-safe in case the IR’s miss

an obstacle. This micro-controller is also used in conjunction with a circuit, which

gives the robot voice recognition. It is possible to train this circuit up to 15

different commands in its current configuration, the maximum limitation of the

circuit is 60 words. Under the current configuration of the robot the initiation

command is the only word programmed, in order to increase the number of

words the input port must be expanded. The robot initially follows a wall and

when it encounters a wall directly in front it switches mode and tries to go in a

zig-zag motion in order to clean the floor in an efficient manner.

4

Introduction

I was inspired to build this robot because of my military experience. In the

military I served as an aircraft electrician. There were many regulations that we

had to deal abide to when working on jet aircraft. One of the most boring things

we had to do is called a F.O.D. (foreign object debris) walk. This task entailed

walking up and down the whole flight line twice a day looking for any debris,

which could cause harm to the jet aircraft engine. I hated doing this since it was

so boring and I had always thought about building something that would

accomplish this task for me.

5

Mobile Platform

The platform I will use will be a simple platform that I designed in Autocad. It is a

basic design consisting of two front wheels and one rear support bracket that

gives the robot the capability of turning in a complete circle. The platform

resembles the basic layout for any typical car. In the rear half of the platform I

cut out a section for the cleaning mechanism. In this area I built a boom that will

rise and lower depending if the break beam detected any objects. I made this

platform a little oversized in order to give plenty of room, which made placing the

components easier, but on the other hand it made the robot less mobile. The

robot had a more difficult time making turns next to walls than the typical round

robot, which could swivel in a smaller radius of a circle.

6

Actuation

In my design I used a total of 4 motors. There will be one servo for each wheel

on the robot. I am also using a servo to raise/lower the cleaning mechanism.

There will also be a 3-volt dc motor that will run the sweeper brush.

I will control the servos used to moving the robot by using the output compare on

the micro-controller. This will allow me to control the duty cycle of the pwm

signal, which will regulate the speed of the motor. Limit switches will control the

raising/lowering of the cleaning mechanism. This in turn will let me control the

distance that the boom lowers or rises. Finally I controlled the 3-volt dc motor

with a relay. This motor will have its own power supply, which is connected to a

relay. This relay will be connected to one of the Port D pins on the TJPRO

board. Whenever an object is found I will send a 5-volt signal to the relay which

will connect the motor to power and drive the sweeper brush.

7

Electronics

The TJPRO board was the circuit of choice in my robot. The board was readily

equipped with a Motorola 68HC11 micro-controller. This board was very user

friendly and was setup nicely for a robot applications. It has the IR bus setup as

well as the bus for the servos. The input and output ports were very easily read

and many of the libraries were already established in C. This board gave me

more time to work on the construction of my robot and the software rather than

spending large amounts of time dealing with interfacing issues.

8

 Sensors

Jiggabot has a total of four different types of sensors. First of all I am using IR

sensors for obstacle avoidance and detecting objects. There are two IR emitters

and detectors located at the upper front of the robot. These two sensors are for

the obstacle avoidance. These sensors are hacked in order to output a analog

voltage. The voltage output of the detectors is then converted into a

hexadecimal number by the micro-controller. The values range from 8016 to

13016 where 8016 is no IR and 13016 is full IR. I also used IR sensors for object

detection. In this case I placed an IR detector and emitter directly across from

each other with about ten inches between them and collimated both the IR

receiver and emitter. This gave me a very narrow range to detect any IR light.

Both the receiver and emitter were placed in front of the robot as close to the

ground as possible. This would allow the robot to maneuver around and be able

to detect any objects that may cross its path. This is essentially like a large-scale

optical switch or break beam.

In this robot I also implemented some bumper switches. There are a total of four

switches strategically placed around the exterior of the robot. There are two in

front and two in the rear. The two up front are mainly for backup in case the IR’s

don’t see any obstacles. This can be a problem when there are black obstacles.

The black surface seems to saturate the IR light and detection is not always

accurate. If any of the bump switches are pressed it will make the robot either

back up or pull forward depending on which switch it was.

9

I also implemented some limit switches for the cleaning mechanism. On this

system there are two lever switches. One switch will detect when the cleaning

mechanism has reached the maximum height and the other will detect when the

cleaning mechanism has reached the floor. Both of these switches are hooked

up into a resistive network which give different analog outputs depending on

which switch is activated.

 Special Sensor

On this robot I decided to go with a voice recognition circuit for my special

sensor. I was able to purchase this sensor pre-manufactured from

www.VoiceActivation.com. This sensor’s main component is a micro-controller in

the RSC family, which a low cost 8-bit controller designed for use in consumer

electronics. All members of the RSC family are fully integrated and include a

speech processor, A/D, D/A, Rom and Ram circuitry on chip. The RSC family of

micro-controllers can perform a full range of speech and audio functions

including speech recognition, speaker verification, speech and music synthesis,

and voice record and playback.

This particular sensor is capable of three different modes of operation: Speaker

Dependent and two types of Continuous Listening. Speaker Dependent is

initialized when a user presses a button then the senor will start listening for the

10

programmed commands. In Continuous Listening the user must program a key

word plus the command word. The key word will signal the sensor to begin

listening for the command word. The difference in both type of Continuous

Listening mode is that one only has one keyword and the other has three

different keywords. This sensor is capable of recognizing up to 60 words or

phrases in slave mode or 15 words in stand alone mode. I will be using this

sensor in stand alone mode. It is also capable of being 99% accurate depending

on the proper design. The output that this sensor emits, are five volt pulses that

stay high for one second at different pins according to the command word. The

table below depicts the output compared to the command word.

11

The two figures below show the pin-out of the sensor and the schematic.

12

Behaviors

Jiggabot will have a simple set of behaviors. It will do nothing unless it is the

given the voice command to do so. Once it is activated it will initially search for

objects on the ground while following a wall. While it searches it will be avoiding

obstacles that it might encounter. Eventually if it ever gets into a position where

the front IR’s get a certain specified distance from the wall it will go into just an

obstacle avoidance mode. When it is in this mode it will try to search in a zig-zag

pattern to effectively searching the entire area of the room. When it finally

senses an object on the floor it will then stop and lower the cleaning mechanism.

After it lower the cleaning mechanism the cleaning brush will start spinning and

will then proceed forward at half speed. While it is cleaning it will proceed

forward while still looking for objects on the ground. If there are no objects it will

move forward a certain amount of time then stop and raise the cleaning

mechanism into the upright position and then proceed forward at normal

searching speed. Otherwise it will keep on cleaning.

13

 Experimental Layout and Results

After assembling the voice recognition circuit I did a series of test to determine

the accuracy of the circuit. In testing this circuit I did test measuring the accuracy

compared to distance in a quite and noisy environment. In the graph below you

can see that the accuracy drops tremendously as distance increases (red bar is

amount correct). I repeated the test again with the servos running the results

were even worse with the percent accuracy down to around zero. In order to

alleviate the problem I tried to implement a wireless communication system by

using a set of walkie-talkies. I was able to establish communications with the

board but only at very short distances, even worse than with the existing

microphone. I believe this was due to the inexpensive walkie-talkies that I

purchased.

Percent Accuracy

0%

10%
20%

30%
40%

50%

60%
70%

80%
90%

100%

0 0.5 1 1.5 2 2.5 3

Distance From Microphone (ft)

P
er

ce
n

t
C

o
rr

ec
t

14

Conclusion

I have had this idea for this robot for a few years now. I felt that this project was

fun as well as being somewhat challenging. I was able to successfully integrate

the majority of the systems I wanted and the ones that were implemented were

successful. Overall this robot was an accomplishment. This robot can be very

useful in many different applications and could possible be a standard in the near

future.

15

 Appendix

 Code for Jiggabot

/***
*
 * *
 * Title jigabot.c *
 * ProgrammerJerone Hammond *
 * Date Spring 2001 *
 * Version 1 *
 * *
 * Description *
 * A very simple collision avoidance program. TJ PRO will read *
 * each IR detectors, and turn away from any obstacles in its *
 * path. Also, if something hits TJ PRO's bumper, it will back up,*
 * turn, and go on. *
 * *

*

**
/

/*************************** Includes ********************************/

#include <sensory2.h>
#include <stdio.h>
#include <hc11.h>
/************************ End of Includes ****************************/

/*************************** Constants ********************************/

#define AVOID_THRESHOLD 100
#define FAR 90
#define MODERATE 100
#define CLOSE 110

/************************ End of Constants ****************************/

/*************************** Prototypes *********************************/
void turn(void);
/************************ End of Prototypes *****************************/

16

void main(void)
/****************************** Main ***********************************/
{
 int irdr, irdl, rfir, rbir, speedr, speedl;
 int mode = 0;
 int zigzag =0;
 init_analog();
 init_motortjp();
 init_clocktjp();
 init_servotjp();

 IRE_ON; /* turn on IR emitters */

 START; /*Press the break beam to start the program*/

 while(1)
 {

/*
 The following block will read the IR detectors, and decide whether TJ
 needs to turn to avoid any obstacles
*/

if(mode == 0)
{

 while ((Wall_FR < 95)&&(Wall_BA < 95)&&(RIGHT_IR < 90)&&(LEFT_IR <
90))
 {
 motorp(RIGHT_MOTOR, SLIGHT_TURN);
 motorp(LEFT_MOTOR, MAX_SPEED);
 }

 if((Wall_FR > Wall_BA)&&(Wall_FR > 95)&&(Wall_BA > 95))
 {
 if (Wall_FR > CLOSE)
 {
 speedr = MAX_SPEED;
 speedl = ZERO_SPEED;
 }
 else if ((Wall_FR > MODERATE) && (Wall_FR < CLOSE))
 {
 speedr = MAX_SPEED;

17

 speedl = SLOW_TURN;
 }
 else if ((Wall_FR > FAR) && (Wall_FR < MODERATE))
 {
 speedr = MAX_SPEED;
 speedr = SLOWER_TURN;
 }
 else if (RIGHT_IR > CLOSE)
 {
 speedr = MAX_SPEED;
 speedl = SLOW_TURN;
 }

 else
 {
 speedl = MAX_SPEED;
 speedr = MAX_SPEED;
 }
 }

 else if ((Wall_BA > Wall_FR)&&(Wall_BA > 95)&&(Wall_FR > 95))
 {
 speedl = MAX_SPEED;
 speedr = 50;
 }

 else if ((RIGHT_IR > CLOSE)&&(LEFT_IR > CLOSE))
 {
 speedl = -MAX_SPEED;
 speedr = -SLIGHT_TURN;
 motorp(RIGHT_MOTOR, -SLIGHT_TURN);
 motorp(LEFT_MOTOR, -MAX_SPEED);
 wait(500);
 mode = 1;
 }

 else if ((RIGHT_IR > MODERATE)&&(LEFT_IR > MODERATE))
 {
 speedl = ZERO_SPEED;
 speedr = MAX_SPEED;
 motorp(RIGHT_MOTOR, MAX_SPEED);
 motorp(LEFT_MOTOR, -SLOW_TURN);
 wait(400);
 }

 else

18

 {
 speedl = MAX_SPEED;
 speedr = MAX_SPEED;
 }

 motorp(RIGHT_MOTOR, speedr);
 motorp(LEFT_MOTOR, speedl);
 wait(70);
}

if(mode == 1)
{

if ((LEFT_IR > 110)&&(RIGHT_IR < 110))
{

 motorp(RIGHT_MOTOR, -MAX_SPEED);
 motorp(LEFT_MOTOR, MAX_SPEED);
 }
 else if ((RIGHT_IR > 110)&&(LEFT_IR < 110))
 {
 motorp(LEFT_MOTOR, -MAX_SPEED);
 motorp(RIGHT_MOTOR, MAX_SPEED);
 }

 else if ((LEFT_IR > AVOID_THRESHOLD)&&(RIGHT_IR >
AVOID_THRESHOLD)&&(zigzag ==0))
 {
 motorp(RIGHT_MOTOR, -MAX_SPEED);
 motorp(LEFT_MOTOR, MAX_SPEED);
 wait(700);
 motorp(RIGHT_MOTOR, MAX_SPEED);
 motorp(LEFT_MOTOR, MAX_SPEED);
 wait(400);
 motorp(RIGHT_MOTOR, -MAX_SPEED);
 motorp(LEFT_MOTOR, MAX_SPEED);
 wait(900);
 motorp(RIGHT_MOTOR, MAX_SPEED);
 motorp(LEFT_MOTOR, MAX_SPEED);
 zigzag = 1;
 }
 else if ((LEFT_IR > AVOID_THRESHOLD)&&(RIGHT_IR >
AVOID_THRESHOLD)&&(zigzag ==1))

 {
 motorp(RIGHT_MOTOR, MAX_SPEED);
 motorp(LEFT_MOTOR, -MAX_SPEED);
 wait(700);
 motorp(RIGHT_MOTOR, MAX_SPEED);

19

 motorp(LEFT_MOTOR, MAX_SPEED);
 wait(400);
 motorp(RIGHT_MOTOR, MAX_SPEED);
 motorp(LEFT_MOTOR, -MAX_SPEED);
 wait(900);
 motorp(RIGHT_MOTOR, MAX_SPEED);
 motorp(LEFT_MOTOR, MAX_SPEED);

 zigzag = 0;

 }

 else if((BUMPER > 20)&&(BUMPER < 30))
 {
 motorp(RIGHT_MOTOR, -SLOWER_TURN);
 motorp(LEFT_MOTOR, -MAX_SPEED);
 wait(1000);
 }
 else if ((BUMPER > 40)&&(BUMPER < 70))
 {
 motorp(RIGHT_MOTOR, -MAX_SPEED);
 motorp(LEFT_MOTOR, -SLOWER_TURN);
 wait(1000);
 }
 else if ((BUMPER > 70)&&(BUMPER < 120))
 {
 motorp(RIGHT_MOTOR, MAX_SPEED);
 motorp(LEFT_MOTOR, SLOW_TURN);
 wait(1000);
 }
 else if ((BUMPER > 120)&&(BUMPER < 140))
 {
 motorp(RIGHT_MOTOR, SLOWER_TURN);
 motorp(LEFT_MOTOR, MAX_SPEED);
 wait(1000);
 }
 else
 {
 motorp(RIGHT_MOTOR,MAX_SPEED);
 motorp(LEFT_MOTOR, MAX_SPEED);

 }
}

20

 if (Break_Beam < 90)
 {
 motorp(RIGHT_MOTOR, ZERO_SPEED); /*Stop motors when object
detected*/
 motorp(LEFT_MOTOR, ZERO_SPEED);
 servo(1,4000);
 wait(1000);

 goto CLEAN; /*go to cleaning subroutine*/
 }

 CLEANBACK:
 wait(35);

 }

 CLEAN:
 {
 while (Switch > 80)
 {
 servo(1,4000); /*lower sweeper until switch
pressed*/
 }

 servo(1,0000); /*when switch presssed stop servo*/

 DDRD = 0x10;
 PORTD = 0x10;

 if (LEFT_IR > AVOID_THRESHOLD)
 speedr = -MAX_SPEED;
 else
 speedr = MAX_SPEED;
 if (RIGHT_IR > AVOID_THRESHOLD)
 speedl = -MAX_SPEED;
 else
 speedl = MAX_SPEED;

 motorp(RIGHT_MOTOR, speedr);
 motorp(LEFT_MOTOR, speedl);

21

 }

 wait(4000);

 if(Break_Beam > 90)
 {
 motorp(RIGHT_MOTOR, ZERO_SPEED); /*Stop motors when object
detected*/
 motorp(LEFT_MOTOR, ZERO_SPEED);
 servo(1,300);
 DDRD = 0x10;
 PORTD = 0x00;

 wait(5000);

 while (Switch < 130)
 {
 servo(1,300);
 }

 }
 servo(1,0);

 goto CLEANBACK;
}
/**************************** End of Main ******************************/

void turn(void)
/***
*
 * Function: Will turn in a random direction for a "random" amount of *
 * time, dictated by the fast changine lower bits in *
 * mseconds(). *
 * Returns: None *
 * *
 * Inputs *
 * Parameters: None *
 * Globals: None *
 * Registers: TCNT *
 * Outputs *
 * Parameters: None *
 * Globals: None *
 * Registers: None *
 * Functions called: motorp(), wait() *

22

 * Notes: *

**
/
{
 int i;
 unsigned rand;

 rand = TCNT;

 if (rand & 0x0001)
 /*turn left*/
 {
 motorp(RIGHT_MOTOR, MAX_SPEED);
 motorp(LEFT_MOTOR, -MAX_SPEED);
 }
 else
 /*turn right*/
 {
 motorp(RIGHT_MOTOR, -MAX_SPEED);
 motorp(LEFT_MOTOR, MAX_SPEED);
 }

 i=(rand % 1024);
 if(i>250) wait(i); else wait(250);

}

/***********************End Function turn ****************************/

23

INCLUDE FILE SENSORY2.H

/*************************** Includes ********************************/

#include <analog.h>

#include <clocktjp.h>

#include <motortjp.h>

#include <servotjp.h>

#include <serialtp.h>

#include <isrdecl.h>

#include <vectors.h>

/************************ End of Includes ****************************/

/**************************** Constants *********************************/

#define LEFT_MOTOR 0

#define RIGHT_MOTOR 1

#define MAX_SPEED 100

#define ZERO_SPEED 0
#define SLOW_TURN 60
#define SLOWER_TURN 80

#define BUMPER analog(0)

#define RIGHT_IR analog(2)

24

#define LEFT_IR analog(3)

#define Break_Beam analog(4)

#defineVoice1 analog(7)

#define Switch analog(6)

#define Wall_FR analog(5)

#define Wall_BA analog(1)

#define START while(Voice1<230)

/* Enable OC4 interrupt and all servo operations */

#define SERVOS_ON SET_BIT(TMSK1,0x10)

/*Disable OC4 interrupt: Stops all servo holding torques, useful for energy savings*/

#define SERVOS_OFF CLEAR_BIT(TMSK1, 0x10)

#define IRE_ON *(unsigned char *)(0x7000) = 0x07

#define IRE_OFF *(unsigned char *)(0x7000) = 0x00

/************************ End of Constants ****************************/

25

Jiggabot Photos

Error! Unknown switch argument.

Error! Unknown switch argument.

Error! Unknown switch argument.

