University of Florida
Department of Electrical and Computer Engineering
EEL 5666
Intelligent Machines Design L aboratory

Joshua Phillips
Graffiti-Bot
4-25-2001

Table of Contents

ADSEFACT. ... bt e e nnenne e pg. 03.
gL o U Tk o) o S pg. 03.
INEEQr At SYSLEM......eiiiiirieeeeee e pg. 03.
M OB PLatfOr M. pg. 03.
o U= 4] o S pg. 04
SENISON Sttt e Rt R e b e n e n e nenneenn pg. 04
27 7= Y/ S pg. 09
CONCIUSION. ...ttt b e bbbt et et e s e e et seenbe e pg. 14
Documentation (ASSEMbIY COUE)........ccouiiiiiiriiiieeee e pg. 15.
Appendices (Touch pad data Sheet)........ccccveeeieeie e pg. 46.

Abstract

This project will focus on moving arobot in a straight line and then extracting some
behaviors from this ability. A closed loop system for accurate movement will be
implemented in Graffiti-bot. This system must alow for movement in a straight line and
precise turns. These behaviors will then alow graffiti-bot to write messages in block
letters. This report will discuss all aspects of the robot but will concentrate on the closed
loop system for accurate movement.

I ntroduction

Graffiti-bot will be asimple symmetrical rectangular box platform. Since one of the
overal goals of the robot will be to move in a straight line, the location of the wheels,
motors, and sensors will be important. Good symmetry about the robot will help reduce
but not eliminate the tendency of most platforms to stray from their original path. For
example, wheels of unequal radius (even if not noticeable by the human eye) will
eventually cause the robot to veer off course and the driving motors will seldom react
exactly the same given the same input. When al of these factors are taken into account,
the need for afeedback system is quite apparent. The standard behavior of obstacle
avoidance will also be implemented. It is anticipated that the feedback system introduced
above will eliminate some of the problems with typical avoidance systems.

Integrated System

The brain for Graffiti-bot will be implemented with a Microchip PIC16F877
Microcontroller. Several sensors will be used to gather information about the robots
environment. Some of these sensors will be infrared sensors, “bump” switches, and a
PS/2 optical mouse for accurate movement. The microcontroller will be used to gather
and interpret the information from the sensors about the environment and update the
robots behaviors accordingly. A Liquid Crystal Display (LCD) will be mounted on
Graffiti-bot and used for troubleshooting and general information display. All of these
components will be

MobilePlatform

The physical platform for the robot is made of balsawood and cutout on the “T-tech”
machine in lab. The basic structure of the robot will be a ssimple rectangular box. Graffiti-
bot is atwo-wheeled robot. The wheels will be rear mounted and the front of the robot
will rest on the PS/2 mouse. Accurate measurements must be made, as the mounting of
the PS/2 mouse is critical. The motors should also be mounted as symmetrically as
possible to aid in moving straight. The wheels are three-inch diameter and were obtained
from Mekatronix.

Actuation

Graffiti-bot will use two Nema size 17 stepper motors to drive the wheels. The motors
were obtained from Jameco part number 155432. The stepper motors will make
navigation and steering corrections easier as a fairly accurate measurement of the number
of revolutions can be obtained by counting the number of pulses sent to each motor. This
can then be combined with the circumference of each wheel to yield the distance each
wheel traveled. To interface the motors to the microprocessor, Allegro Microsystems part
number UCN5804B BiMos Il Unipolar Stepper-Motor Driver is used. These I.C.’s make
an easy 3 wire interface for controlling the motors. One general-purpose output pin for
each control signal: motor direction, output enable, and one step input.

Sensors

The main sensors used for collision avoidance are two Sharp part number GP2D02 High
Sensitive Distance Measuring Sensors. These each contain an I.R. transmitter, receiver,
and alensthat can be changed to alter the range of the device. The Sharp GP2D02 can
sample about once every 72 milliseconds and sends it data via a synchronous serial
stream. The interface with the |.R. sensor is afairly simple four-wire interface but it
should be noted that the user must supply the clock and that the clock pin on the sensor is
an open drain input. Also, the clock lineis really a control line and must do more than
simply supply aclock signal. For example, to instruct the sensor to take a measurement
the clock pin must be held low for 70 milliseconds. One circuit that works well and is
simple is shown below.

Vg

I 8 Bit Seria Output Microprocessor
3

1 2 >

i Clock Signal

The diode only alows the microprocessor to pull the open drain clock pin low. The data
sheet for the Sharp GP2DO02 is included in the appendix.

The main sensor for gathering data about the relative movement of the robot is a
Logitech PS/2 optical mouse part number 830386-0000. Using an optical mouse is
advantageous because there are no moving parts and it never needs cleaning. Also the
resolution of an optical mouse is usualy better than a standard ball mouse. As the PS/2
protocol is rather lengthy | will discuss only the information necessary to implement the

PS/2 mouse into a feedback system on a mobile robot. For the remainder of this

discussion of the PS/2 protocol and interface the term “host” shall refer to the unit

guerying the mouse and the term “device” shall refer to the mouse itself.

PS/2 Protocol

The PS/2 protocol is afour-wire interface consisting of power, ground, clock, and data.

The clock and data lines are bi-directional open collector signals. Clock and data

normally float high and are pulled low by either device or host. The data and clock line
are NEVER asserted high by the host or device. The information is transmitted viaan 11
bit serial stream consisting of one start bit (low), eight data bits (L SB first), one odd

parity bit, and one stop bit (high). Three to four of these 11 bit streams are usually

combined into one packet depending on the mode of operation and information requested
from the device. Communication can occur from host to device or from device to host. In
either case the mouse always provides the clock signal. The data packet format, two types
of communication, the electrical interface, and the device initialization are described in

detail below.

Data Packet For mat

The following packet is the format used in default mode. Other mice may include options
to add extra packets for more buttons or features but default mode is fine for this project.

Bit 7 Bit 6 Bit5 Bit4 Bit 3 Bit 2 Bit 1 Bit 0
Bytel |Yovfl | Xovfl |Ysign | Xsign 1 0 R Button | L Button
Byte2 | X7 X6 X5 X4 X3 X2 X1 X0
Byte3 | Y7 Y6 Y5 Y4 Y3 Y2 Y1 YO
Y ovfl : overflow flag for the Y movement accumulator (Byte 3).

0 1=anoverflow occurred.
o O0=anoverflow did not occur.
X ovfl : overflow flag for the X movement accumulator (Byte 2).
0 1=anoverflow occurred.
o O0=anoverflow did not occur.
Y sign : Sign bit for Byte 3
0 1= Byte 3isnegative (mouse is moving backwards).
o 0= Byte3iszero or positive (mouse is moving forwards).
X sgn @ €ign bit for Byte 2
0 1 =Byte 2 isnegative (mouse is moving left).
o0 0= Byte2iszeroor positive (mouse is moving right).
R Button : Right mouse button status bit
0 1 =right mouse button is pressed.
o 0 =right mouse button is not pressed.
L Button : Left mouse button status bit
0 1= Ileft mouse button is pressed.

o0 0= left mouse button is not pressed.
Byte 2 is the amount of movement in the x direction (left or right) the mouse has detected
since the last transmission. Byte 3 is the amount of movement in the y direction (forwards
or backwards) the mouse has detected since the last transmission.

Host to Device Communication

To change the mode of the device to “host request to send” mode the host must
follow the following procedure:

o Hold the clock line low for at least 100 microseconds (longer is ok).

o Pull the data line low.

0 Releasethe clock line.
Once the device isin “host request to send” mode it will pulse the clock low 11
times.
The host changes data when the clock is low.
The device latches data when the clock is high.
After sensing a valid stop bit the device will pull data low and pulse the clock line
low one more time to indicate that a framing error did not occur.
If aframing error did occur (invalid stop or parity bit) the device will send the
“resend” command (OhFE) to the host.
If the data transfer was successful the device will respond by sending an
acknowledge byte (OhFA) followed by any data the host command requires.

Deviceto Host Communication

When the device has information to send to the host it checks the state of the
clock and data line.

o If Dataand Clock are both high the bus state is idle and the device will
transmit the data.

o |If the Clock lineis low the Host isinhibiting transmission and the device
will continue to accumulate data and wait for the host to release the clock
line.

o If Clock ishigh and Data is low the host has requested “host request to
send” mode is ready to transmit data to the device.

If the busisidle the device will transmit the data by pulsing the clock line low
once and then high 11 more times while changing the data line appropriately.
The device changes the data when the clock is high.

The host should latch the data when the clock is low.

If invalid data is detected (bad parity bit) the host can issue the Resend command

(OhFE).

Electrical I nterface

As mentioned above the clock and data lines are bi-directional open collector signals.
One interface (the one | used) that works well is shown below. This setup requires two
genera-purpose input pins with internal weak pull-up resistors, two general-purpose

output pins, and two NPN switching transistors. The output pins turn on the switching
transistors to pull the appropriate line (clock or data) low. The internal weak pull-up
resistors on the microprocessor allow the line to float high when the transistors are off.

MICROPROCESSOR

DATA

CLOCK

CLOCK CONTROL

—0

DATA CONTROL

@)

x

PS/2 MOUSE

DATA

CLOCK

If internal weak pull-up resistors are not available then externa pull-up resistors (5 to 10
kOhms) can be added as follows:

Vd Vad
MICROPROCESSOR PS/2 MOUSE
DATA O DATA
CLOCK O CLOCK
DATA CONTROL 4@
CLOCK CONTROL K—

Device | nitialization

The PS/2 protocol allows several modes of operation for a mouse such as Polling Mode
or Continuous Stream Mode. | decided to use a controlled continuous stream mode. A
few initializations must be made upon powering up or hot-plugging the mouse, as it will
remain in disabled mode until given an enable code by the user. Before sending the
enable code and setting the mode the host must wait about for the device to complete its
power on self-test and calibration. This typically takes between 300 and 1000
milliseconds. Once the self-test and calibration is complete the device will transmit the
code OhAA followed by Oh00. Once this “ready” code is received an enable command
(OhF4) must be sent. This will enable the mouse to transmit data in its default mode. The
default mode is continuous stream mode (which is the mode | will be using) so no other
initialization is needed. A full list of commands and modes is contained in a sample of

pages from a Synaptics PS/2 touch pad data sheet in the appendix of this document. The
full document will be included on the floppy disk accompanying this report This
document is a good resource for adjusting the resolution of the mouse and
troubleshooting.

Useful Hintsfor Using the PS/2 M ouse

When enabled, the PS/2 mouse sends a packet of data upon an event. For
example, if the mouse is not being moved and no buttons have been pressed or
released, the mouse will not transmit any data. Once the mouse detects movement
or a button changes state the mouse will transmit the data if the busisidle (clock
and data lines both high). Thisis important if you are going to poll the device
clock during transmission. If the mouse does not change state the clock will
remain high permanently and you will be polling for a very long time. A timeout
routine should be included if you plan to poll the device clock line.

If the busis not idle and the mouse has data to send, the mouse will continue
accumulating x and y movement data until the busisidle. This could result in an
overflow of the x or y movement byte if transmission is inhibited by the host for
too long. For this reason the overflow bit should aways be checked when using
the mouse x and y movement data.

In order not to lose packets, the host should inhibit transmission by pulling the
clock line low anytime the host is not monitoring the bus. For example, if the
microprocessor is reading the |.R. data and the mouse is moving, the mouse will
transmit its data packet if the busisidle. The processor would miss this unless the
clock line was held low in which case the movement would just be added into the
next packet of data. (An ideal way to solve this problem is to have a dedicated
system reading the mouse continuously, but | went for a one-chip design.)
Remember the mouse always supplies the clock, once enabled the mouse will
always send data packets (event driven) if the busisidle.

Any command sent by the host will cause the motion accumulators to be cleared.

Bump Switches

The last sensor used in Graffiti-bot is a normally open single pull single throw switch.
The switch is attached to a bumper that runs along portions of the exterior that would be
prone to bumping into objects or walls should the other sensors fail. These switches
connect a genera-purpose input pin to either ground or Vg depending on the state of the
switch. Polling the different input pins allows graffiti-bot to determine which side of the
robot has collided with an object.

Behaviors

All of the sensors generate stimuli for the robot to respond to. These responses to the
sensor input can then be abstracted to behaviors. The first behavior of Graffiti-bot will be
obstacle avoidance. The robot must be able to protect itself from injury and must also
ensure it does not injure other objects. This behavior is accomplished via the Sharp I.R.

sensors. Taking samples from the I.R. once every 70 milliseconds, the |.R. datais tested
against afixed value (or distance). When the object is closer than the preset threshold, the
robot will choose a random course of action (except, of course, continuing toward the
object).

Another behavior that Graffiti-bot is capable of is moving in a straight line. Thisis
accomplished using the PS/2 mouse. The X accumulator is sampled about 100 times a
second along with the “X sign” bit to tell the direction and magnitude of deviation from a
straight line. Depending on the direction and magnitude, the appropriate wheel speed is
reduced or increased as necessary until the robot moves straight. It is important to align
the mouse accurately as a misaligned mouse will yield false readings and cause the robot
to move in circles or other undesired motion. The mouse should be mounted with the
bisecting line aong the vertical of the mouse aligned with the bisecting line along the
vertical of the robot as seen from a birds eye view in the following diagram:

L1

Note: The mouse can be mounted anywhere along the blue line.
The preferable location has the center of the mouse
“eye” located half the distance of the red line above the
intersection of the red and blue lines.

10

To fine-tune the control system, an error much larger than would be experienced during
normal operation was forced into the system. The feedback system variables were
changed incrementally and the deviation (measured in degrees) from the desired path
after 10 ft was recorded. The test would be similar to the following diagram:

Actual Path Desired Path

10 Feet

11

deviation in degrees after 10 feet of trave

After severd tests the following graph was formed:

ability of robot to go straight

45

40

w
)]

w
o

N
ol

—— degree deviation from desired path after 10
feet of travel

N
o

[y
]

Juny
o

0 50 100 150 200 250 300
tolerance in 360ths of an inch

Note: The point at zero isinvalid as it causes oscillation and other unwanted behavior.

The find result of the experiment was that the optimal threshold for comparison with the
X magnitude was between 0h06 and Oh07. This value will increase or decrease depending
on the alignment of the mouse, symmetry in the mounting of the motors, wheel alignment
and wheel similarity. Using afina result of seven in the threshold register, the robot was
able to travel 10 feet with a deviation of one degree or less from the desired path.

The last behavior Graffiti-bot exhibits is message writing. By attaching a solenoid-
controlled pen to the robot platform simple text can be written in block letters. The ability
to make an accurate 90-degree turn is essential to make block letters. This can easily
accomplished with the stepper motors and checked with the mouse. Using the diagram

below the correct number of steps needed to turn the robot 90-degrees about the wheel
center can be calculated.

Forward

» > 90’ turn

After the 90 degree turn each wheel has traveled a distance of R* p/2 aong the dotted
green line. The number of steps is then calculated as:

Number of steps= (R * p/2) / (number of degrees per step * wheel radius)

The robot will have a difficult time making an exact 90-degree turn due to the
discreetness of the stepper motors. The 1.8 degree per step motors on Graffiti-bot were
able to make an 89.5 degree turn. Thisis accurate enough for the purposes of this project,
however, after several turns the accumulated error begins to show. This can be rectified
by turning 90.5 degrees half of the time and turning 89.5 degrees the other half of the
time. With these details implemented, Graffiti-bot successfully writes messages.

13

Conclusion

Graffiti-bot is a success. The ability to drive straight was successful and provided the
means to develop the other behaviors. However, the method of integration used amongst
the sensors and peripheral devices could be improved. Using a single processor to control
every device on the robot is space saving but complicates the software development.
Using a dedicated system for each sensor or peripheral device removes some of the
burden from the main processor and makes software development much easier. If done
again, | wouldn’t hesitate to adopt this philosophy.

14

LI ST

G affiti-bot Code for IMDL spring 2001 Prof Arroyo by Joshua Phillips

P=PI C16F877 ;

i ncl ude "pl6f877.inc"

’

BRI Sk Sk S Sk S S Sk kS Rk S R S S Sk S S
)

’

LABELS

R R R S S S S S S S R R R S S R R S S S S R R S Sk S S S S S R R S S S S S R S
)

#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i

ne | RFDAT PORTB, 0x07
ne | RFCLK PORTB, 0x06
ne MSDATA PORTB, 0x05
ne MSCLOCK PORTB, 0x04
ne NMSCCTRL
ne NMBDCTRL
ne | RRDAT PORTB, 0x01
ne | RRCLK PORTB, 0x00
ne MOTORL PORTA, 0x00
ne MOTORR PORTA, 0x01
ne MOTL_OE PORTA, 0x02
ne MOTR_OE PORTA, 0x03
ne MOTR_DRPORTC, 0x07
ne MOTL_DRPORTA, 0x05
neRS L@ PORTC, 0x00
ne RWLQ@ PORTC, 0x01
neE LQD PORTC, 0x02
ne BUMP_F PORTC, 0x06
ne BUWP_L PORTC, 0x05
ne BUMP_R PORTC, 0x04
ne MARKER PORTC, 0x03
ne LQD PORTD

ne BUSYFL PORTD, 0x07

#define Y_OVER BUTTONS, 0x07
#def i ne X_ OVER BUTTONS, 0x06
#def i ne Y_SI GN BUTTONS, 0x05
#def i ne X_SI GN BUTTONS, 0x04

#defineR_BUT BUTTONS, 0x01
#definelL_BUT BUTTONS, 0x00
COUNT equ 0x24
COUNT1 equ 0x25
COUNT2 equ 0x26
MBI NFO equ 0x27
PARI TY equ 0x28
LQDDATAequ 0x29
REVTEMP equ Ox2A
REVTMP2 equ 0x2B
REVTMP3 equ 0x2C
REVTMP4 equ 0x2D
TI MEQUT equ Ox2F
I NCNT equ 0x30
QUTCNT equ 0x31
RWI equ 0x32
LWI'H equ 0x33
LWI'L equ 0x34
TMRCNT equ 0x35
| RDATA equ 0x36
| RTEST equ 0x37
IR equ 0x38
| RRDATAequ 0x39
LWCNT equ 0x3A
RWCNT equ 0x3B
STCOUNT equ 0x3C
| DLE_MSequ 0x3D
BUTTONS equ 0x3E
X_MAG equ Ox3F
Y_MAG equ 0x40
RAND equ 0x41
TQUT_2 equ 0x42
TOUT_3 equ 0x43

’
)
’

’
)
’
)
’

PORTB, 0x03 :
PORTB, 0X02 :

nit needed
nit needed
no init needed
no init needed

no i
i
i
i
no init needed
i
i
i
i

no

no init needed

no init needed

no init needed

no init needed

no init needed

Period for R ght whee
Period for Left wheel upper byte
Period for left wheel |ower byte
70 ns timer in TIMER2 interrupt
no init needed

flag for IR routines (indicates a measurenent has been
started)

flag for main routine to validate data / flag for IR
routines to choose front or rear IR

no init needed

counters for nouse to be read once every LWOCNT tines the
wheel is turned

counters for LCD to be updated once every RWCNT tines
the wheel is turned

tineout counter for nouse routine

flag for main routine to recogni ze a tineout
needed

nouse data

nmouse dat a

nouse data

a random nunber

anot her tinmeout counter

anot her timeout counter

pul se (8 Bit)

routine (IR

no init

15

PULSES equ 0x44 ; for navigation

DI ST equ 0x45 ; for navigation

NAV_CK equ 0x46 ; for nav init to 0x00

SECONDS equ 0x47 ;

CDELAY equ 0x48 ;

| DELAY equ 0x49 ;

NDELAY equ 0x4A ;

M5_CNTRequ 0x4B ; init to 3

M5_CNTL equ 0x4C ; init to 3

RADI US equ 0x4D ;

RPULSES equ Ox4E ;

LPULSESequ Ox4F ;

RWI_TMPequ 0x50 ;

LWIHTMP equ 0x51 ;

LWILTMPequ 0x52 ;

ACCRCNT equ 0x53 ;

ACCLCNT equ 0x54 ;

TOPSPD equ 0x55 ;

MAX_ACCequ 0x56 ;

MS_USE equ 0x57 ;

MALI G\NBequ 0x58 ;

MALI GNF equ 0x59 ;

FI RST_Fequ Ox5A ;

WTEMP equ 0x70 ; tenporary register for wavailable in all banks

S TEMP equ 0x71 ; tenp reg for the status reg (all banks)
org 0x00 ; Set RESET vect or
goto INIT ; to begi nning of program
org 0x04 ; set | NTERRUPT vector to
goto I NTRUPT ; begi nni ng of | NTERRUPT service routine
org 0x05 ; start of program

INIT bcf STATUS, RPO ; sel ect bank O
bcf STATUS, RP1 sel ect bank 0

nmovlw 0x60

movwf

| NTCON

khkkkhkkkhkkhkkhkkhkkhkkhkkhkhkhkhkhkkhkhkkhkkhkhkhkhkhkkhkkkkkkk**x*x
R R Sk Sk Sk Sk ko kS
IR EEEEEEEEEEEEEEEEE RS E R EE R R R R R R R R R R EEEEREEEEEEEEEEEEEEEEESS

| NTERRUPT CONTROL REGQ STER
initialize to:
GLOBAL | NTERRUPT ENABLE
PERI PHERAL | NTERRUPT ENABLE
TI MERO OVERFLOW | NTERRUPT
EXTERNAL | NTERRUPT PI N
PORTB | NTERRUPT ON CHANGE
LONER 3 BI TS ARE FLAGS

R R Sk Sk Sk R S S S S kS kS

. DI SABLED 0
ENABLED 1
ENABLED 1
DI SABLED 0
DI SABLED 0
. DONT CARE XXX

; initialize interrupt control reister

1
IR E RS RS R R R RS SRR R RS R EREEEEEEEESS

BRIk Sk Sk S Sk S S Sk S S S Sk S S R Sk S S S S kS S S

: OPTI ON REG STER
; initialize to:

PORTB | NTERNAL PULLUP RESI STORS ENABLED 0
EXTERNAL | NTERRUPT EDGE SELECT RI SING EDGE 1
TI MERO CLOCK SOURCE SELECT Fosc/ 4 0
TI MERO SOURCE EDGE SELECT lowto high 0

TI MERO 0
LONER 3 BI TS ARE PRESCALER 1/ 256 111

: PRESCALER ASS| GNVENT

B R e R E

bsf
bcf

STATUS, RPO
STATUS, RP1

movlw 0x47

nmovwf OPTI ON_REG

. ’
R E R R R R S S S S S S S R R S R R S S R S S S S S R S S S R S

; sel ect bank 1
; sel ect bank 1

initialize option register

PERI PHERAL | NTERRUPT REG STER 1
initialize to:

PARALLEL SLAVE PORT R/ W I NTERRUPT ENABLE DI SABLED 0

A D CONVERTER | NTERRUPT ENABLE DI SABLED 0
USART RECI EVE | NTERRUPT ENABLE DI SABLED 0
USART TRANSM T | NTERRUPT ENABLE DI SABLED 0

DI SABLED 0
Di SABLED 0

SYNCHRONQUS SERI AL PORT | NTERRUPT ENABLE
CAPTURE/ COMPARE 1 | NTERRUPT ENABLE

16

TIMER2 TO PR2 MATCH | NTERRUPT : ENABLED 1
TI MERL OVERFLOW | NTERRUPT ENABLE : ENABLED 1
IR R R E RS EEREEREEREEEEEEES
moviw 0x03 ;
movwf Pl E1 ; initialize PIEL1 register

R R R S S S S S S S R R R S S R R S S S S R R S Sk S S S S S R R S S S S S R S

PERI PHERAL | NTERRUPT REQ STER 2
initialize to:

BIT 7-5 : ALWAYS 000

EEPROM VIRl TE | NTERRUPT ENABLE . DI SABLED 0O

BUS CCLLISI ON | NTERRUPT ENABLE : DI SABLED 0
BIT 2-1 © ALWAYS 00

CAPTURE COVPARE 2 | NTERRUPT ENABLE : DI SABLED 0

R R R R S S S S S S R S S S S R R S S S S R R S S S S S S S S R S S S Sk R S S S
)

movlw 0x00;
movwf PIE2; initialize PIE2 register

B R e R R X

PORT A (6 bits wide)

Anal og input O thru 4 are on this port along with

TIMERO' s external clock input pin

A0 will be the left notor signal

Al will be the right notor signal

A2 will be the notor driver ouput enable signal (active |ow)

A4 and A5 will be notor direction pins

Al other pins are inputs
EEEEEREEEEEEEEEEEEEEEEEEEEEEEEEEREEEEEEEEEEEEEEREEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEES

nmovlw 0x00 ;

mvwf TR SA ; data direction register for PORTA

chkkkkkhkkhkkhkkhkkhkkhkkhkkhkkkkkk*x*x

PORT B (8 bits wide)
General purpose in-out.

Bit 0O and 1 will control the rear IR
Bit 2 will control the nouse data |ine.
Bit 3 will control the nouse clock line.
Bit 4 will be used as nouse cl ock.

Bit 5 will be used as nouse data.

Bit 6 will be the IR front clock.

Bit 7 will be the IR front data.

Al pins will be used as inputs.

IR EEEEEEEEEEEEEEE R R RS R R EE R R R R R R R R R R R R EEEEREEEEEEEEEEEEEEEEESS

moviw 0xB2 ;
mvwf TR SB ; data direction register for PORTB

BRIk Sk Sk S Sk S S Sk S S S Sk S S kS R S S kS S

PORT C (8 bits wide)
General purpose in-out, PWVoutput, SPI, USART, CAPTURE 1&2
PORT CPINS 0,1,2 will be control lines for the LQD
PORT CPIN 7 will be MOTOR LEFT DI RECTI ON
IR R R E RS EEREEREEREEEEEESES
moviw 0x70 ; 0111 0000
movwf TRI SC ; data direction register for PORTC

BRI Sk Sk S Sk S S Sk S S S Sk S R Sk S R S S S S S S S S kS S S kS

PORT D (8 bits wide)
Port D can be used as a parallel slave port or general in-out
This port will send data to the LQD
all pins are outputs
R R R R RS EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEESEEEEEEEEEEEEEEEEEEEEE SRS EEEE SRS RS
novliw 0x00 ; 0000 0000
movwf TR SD ; data direction register for PORTD

R R R SR S S S S S S S R S S S R R R S S S S R R S S S S S R S S S S S R S S S

PORT E (3 bits wide)
Port E can be used as general purpose in-out, Analog input 7 thru 5,
or as the control bits for parallel slave port node.
R E R R R R S S S S S S S R R S R R S S R S S S S S R S S S R S
movlw 0x07 ;
mvwf TR SE ; data direction register for PORTE
kkhkkkhkkhkkhkhkkhkkhkkkkkkkk*x*x
ANALOCG- TO-DI G TAL REG STER 1
This register selects the port configurations for analog or digital
input and selects the values for Vref+
This register also right/left justifies the A/D result register
The result is 10 bits wide in a 16 bit w de register.

17

; The pins wll
; PORT E AAD pins = Digita

; PORT A PI NO = Digital
; Pl N1 = Digita
; Pl N2 = Digita
; Pl N3 = Digita
: Pl N4 = Digita
; Pl N5 = Digita

movlw 0x06 ;

nmovwf ADCONL ;

be used as foll ows:

1/0
/0
/0
/0
I/0

/0
/0

config A/ D

R e R e R R E]

R R R R S S S S S S S S R R S S S S R R S S S S R R S S S S S S S S S R S S S S S R S S S
)

; ANALOG- TO DI G TAL REGQ STER 0
; This register is mainly used to start and stop the conversions

; and sel ect which anal og i nput

; not e:

bcf
bcf
bsf
bcf
bcf
bcf
bcf
bcf

mov|l w
nmovwf

is to be used for the next conversion

The required pause before the next acquisition can beginis
2*the value selected in bits 7 and 6 - int
. 8us @ 20Wnz

chkkkkkhkkhkkhkkhkkhkkhkkhkkhkkhkhkkkkk*x*x
i

woul d yi el d about

STATUS, RPO
STATUS, RP1
ADCONO, 0x07
ADCONO, 0x06
ADCONO, 0x05
ADCONO, 0x04
ADCONO, 0x03
ADCONO, 0x00

OX7F
T2CON

; TI MER1 SETUP

; Timerl will

prescale = 1:1

)
chkkkkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkhhkhkhkhkkhkkhkhkhkhkhkkhkkhkkkhkkkkkkkkk*x*x
i

0011 0101

nmovl w
movwf

0x01
T1CON

i

i
)
i
)

i

i

)

)

SELECT BANK 0

hi s case Fosc/ 32

conversion clock set to Fosc/ 32

sel ect anal og input 0
turn off the A/D converter

EEEREEREEEEEEEEEEEEEEEEESS
)

; TIMER2 Setup

IR EEEEE SR EEEEEEEE R SRR R R R R R R R R R R R R R R R EEEEEEEEEEEEEEEEEEESS
)

prescal e of 16

post scal e of 16

khkkkhkkkhkkhkkhkkhkkhkkhkkhkhkhkhkhkkhkhkkhkkhkhkhkhkhkkhkkkkkkk**x*x

be used to generate the pul ses for the notors

i
IR EEE SRS EEEEEEEE RS R R R R R R R R R R R R R R R R R R R EEEEEEEEEEEEEEEEESS
)

; MAI N PROGRAM
IR R R R R R R R R R RS R R R RS R R R R R R R R SR SRR R R R R R R R RS R R R
Initialize PS/2 Muse and wite data to LQD

initialize Liquid Cystal

cal l
cal l
bsf
bsf
clrf
clrf
clrf
clrf
clrf
bsf
bsf
bcf
bsf
nmovl w
nmovwf
nmovwf
nmovwf
nmovl w
nmovwf
nmovl w
nmovwf
nmovwf
clrf
clrf
clrf
nmovl w
nmovwf
nmovwf
nmovl w

MB_TX
LODINT
| RFCLK
MBCCTRL
| RTEST
IR
X_MAG

Y _MAG
BUTTONS
MOTL_OE
MOTR_CE
MOTL_DR
MOTR_DR
0x00
LWI'H
LWIL
RWI
0x06
TM2CNT
0x03
M5_CNTL
M5_CNTR
RWT_TMP
LWIHTMP
LWILTMP
0x07
ACCRCNT
ACCLCNT
OxFF

1

’

Di spl ay

pul | nouse clock line | ow (disable transm ssion)

init to nove forward

70 s tiner

for

IR routine

18

(rmouse i s disabl ed)

lift up pen

; X_MAG AND Y_MAG are 9 bit signed 2's conplinment nunbers
; the 9th bit is the Y_sign or X sign bit belowin the button register

; BUTTONS REG STER

‘BIT 7 6 5 4 3 2 1 0

NAME Y_OVER X _OVER YSIAGN XSIAN 1 0 R _BUT L_BUT
IF 1 overflow overfl ow DOWN LEFT 1 0 PRESSED PRESSED
IF 0 no overflow no overflow upP RIGHT 1 0 NOT PRESSED NOT

PRESSED

(LEFT MOTOR O = forward, 1 = reverse) (RIGHT MOTOR 0 = reverse, 1 = reverse)

WAl TAMEgot 0 HERE

clrf BUTTONS

call M5_| NFO
btfsc BUTTONS, 0x00
got o LEFTMB

btfsc BUTTONS, 0x01
got o Rl GHTVB

got o WAl TAME

wait until the left nouse button is pushed before
doi ng anyt hi ng.

btfss MOTL_DR
got o L_FOR
got o L_REV

check direction of LEFT MOTOR

LEFTMB bsf I NTCON, G E enabl e unmasked interrupts
bsf MSCCTRL pul | mouse clock |ine |ow (disable transm ssion)
bcf MOTL_CE ;
bcf MOTR_CE ;

HERE bsf I NTCON, G E ; enabl e unmasked interrupts
bcf MOTL_CE ;
bcf MOTR_CE ;
bcf MB_USE, 0x00 ; di sabl e nouse
nmovlw 0x00 ;
movwf LWIH ;
nmovwf LWIL ;
movwf RW ;

L FOR btfsc MOTR DR ; LEFT MOTOR i s going forwards check R GHT MOTOR
goto FORWARD ; BOTH MOTORS FORWARD
goto R_TURN ; RIGHT TURN

L_REV btfsc MOTR DR ; LEFT MOTOR i s goi ng backwards check Rl GHT MOTOR

goto L_TURN LEFT TURN
got o REVERSE REVERSE

FORWARDbcf I R, 0x00 ; choose front IR
btfss BUW_F ;
goto OPT 3 ; if front collision go backward
btfss BUW_L ; if left collision go backward
goto OPT_3 ;
btfss BUW_R ; if right collision go backward
goto OoPT_3 ;
btfsc X OVER ; if an overflow occured do not hing
goto STRT ;

btfsc X SIGN

19

got o
got o

MOVI NGRnovI w
subwf

btfss
goto
nmovl w
addwf
clrf
goto
MOVI NGL nmovI w
xor wf
i ncf
nmovl w

subwf

bt fss
goto
nmovl w
addwf
clrf
goto
btfsc
goto
bt fss
goto
mov|l w
subwf
btfss
goto
mov f
nmovwf
subl w
btfsc
goto
nmovf
subl w
btfsc
goto
goto
OPT_1 bcf
bcf
call
cal l
goto
OPT_2 bsf
bsf
cal l
call
goto
OPT_3 bsf
bcf
cal l
cal l
goto
REVERSE bsf
btfsc
goto
btfss
goto
nmovl w
subwf
btfss
goto
nmovf
nmovwf
subl w

STRT

MOVI NGL
MOVI NGR

0x33
X_MAG, 0x00

STATUS, 0x00
STRT

0x01

RWT, 0x01
X_MAG

STRT

OXFF

X_MAG, 0x01
X_MAG, 0x01
0x33

X_MAG, 0x00

STATUS, 0x00
STRT

0x01

LWIL, 0x01
X_MAG

STRT

| R, 0x07
$-1

| R, 0x07
$-1

0x83

| RDATA, 0x00
STATUS, 0x00
HERE

TMRO, 0x00
RAND

0x55
STATUS, 0x00
OPT 1

RAND, 0x00
OxAA
STATUS, 0x00
OPT_2

OPT 3
MOTL_DR
MOTR_DR
DELAY
DELAY

HERE
MOTL_DR
MOTR_DR
DELAY
DELAY

HERE
MOTL_DR
MOTR_DR
DELAY
DELAY

HERE

I R, 0x00

I R, 0x07
$-1

I R, 0x07
$-1

0x83

| RRDATA, 0x00

STATUS, 0x00
HERE

TMRO, 0x00
RAND

0x55

robot is nmoving left / increase |left notor speed?

robot is nmoving right or straight / increase right notor
speed?

check X_MAG fromnouse if less than wreg dont do
anyt hi ng

if greater than wreg adjust notor times to correct
steering

take 2's conplinent

flip the bits

add 1

check X _MAG from nouse if
anyt hi ng

if greater than wreg adjust notor times to correct
steering

| ess than wreg dont do

check if new data bei ng aquired

check if data is valid

check if object is near

get a random nunber

store random nunber

check for a range of 0 to 85

check if a borrow occured

i f between 0 and 85 choose option 1
get same nunber again

check for a range of 85 to 170

check if a borrow occured

if between 85 and 170 choose option 2
if between 170 and 255 choose option 3
turn right

turn left

nove in reverse node

choose rear IR
check if new data being aquired

check if data is valid

check if object is near

get a random nunber
store random nunber
check for a range of 0 to 85

btfsc STATUS, 0x00 ; check if a borrow occured

goto OPT_R1 if between 0 and 85 choose option 1
nmov f RAND, 0x00 get same nunber again

sublw OxAA check for a range of 85 to 170

btfsc STATUS, 0x00 check if a borrow occured

goto OPT_R2 if between 85 and 170 choose option 2
goto OPT_R3 if between 170 and 255 choose option 3

btfsc IR 0x07
got o $-1
btfss IR, 0x07 ; check if data is valid
goto $-1
nmovlw 0x83

subwf | RDATA, 0x00
btfsc STATUS, 0x00

check if new data being aquired

OPT_R1l bcf MOTL_DR ; turn right
bcf MOTR_DR ;
call DELAY ;
call DELAY :
got o HERE ;
OPT_R2 bsf MOTL_DR ; turn left
bsf MOTR_DR ;
call DELAY :
call DELAY ;
goto HERE :
OPT_R3 bcf MOTL_DR ; nove forward
bsf MOTR_DR ;
call DELAY ;
cal l DELAY ;
got o HERE ;
R TURN bcf I R, 0x00 ; choose front IR
btfss BUW_L ; if left collision go backward
goto OPT_3 ;
btfss BUW_R ; if right collision go backward
goto OPT_3 ;

check if object is near

got o HERE
bcf MOTL_DR nove forward
bsf MOTR_DR
call DELAY
call DELAY
got o HERE
L_TURN bcf I R, 0x00 choose front IR

btfss BUW_L
got o OPT_3
btfss BUW_R
got o OPT_3
btfsc IR 0x07

if left collision go backward
if right collision go backward

check if new data being aquired

goto $-1
btfss IR, 0x07 check if data is valid
got o $-1

nmovlw 0x83
subwf | RDATA, 0x00
btfsc STATUS, 0x00

check if object is near

got o HERE

bcf MOTL_DR ; move forward
bsf MOTR_DR :

call DELAY :

call DELAY ;

goto HERE

; TH' S IS THE GRAFFI TTI BEHAVI OR (robot will wite GO GATORS)

)

Rl GHTMBcal | LETTERG ;
cal l LETTERO ;
cal l BLANK_S ;
cal l LETTERG ;
cal l LETTERA X
cal l LETTERT ;
cal l LETTERO ;
cal l LETTERR ;
cal l LETTERS ;

got o WAl TAME

21

IR E RS E R R R R RS SRR R RS R SRR R R EREEEEEEEESS

; I NTERRUPT ROUTI NE

IR E RS E R R R R RS SRR R RS R EREEEEEEEESS

| NTRUPT novwf
btfss
goto
bcf
btfss
goto
goto
bsf
btfsc
decf
goto
bcf
goto
bsf
call
nov f
nmovwf
novf

LEFT_M

MAKELH

MAKEL L

LSETT

R GHT_M bt fss
goto
goto
bsf
btfsc
decf
goto
bcf
goto
bcf
cal
nmovf
movwf

MAKERH

VAKERL

RSETT

goto
decfsz
goto
nmovl w
movwf
cal
cal
novf
nmovwf
cal
nmovf
nmovwf
cal
novf
nmovwf
cal
cal
novf
nmovwf
cal
nmovf
nmovwf
cal

W TEMP
PIRL, TMRLI F
NEXT1

PI RL, TMRLI F
MOTORL
MAKELH
MAKELL
MOTORL
NAV_CK, 0x00
LPULSES, 0x01
LSETT

MOTORL

LSETT

NAV_CX, 0x01
ACC

LWTHTMP, 0x00
TMRLH
LWILTMP, 0x00
TMRIL

I NT_END

| NTOON, 0x02
NEXT2

| NTOON, 0x02
MOTORR
MAKERH
MAKERL
MOTORR
NAV_CK, 0x00
RPULSES, 0x01
RSETT

Y_MAG, 0x00
REVTEMP
REV_ASC
REVTMP3, 0x00
LQDDATA
LQD_SND

1

save w reg contents
Check if Timer 1 interrupt

clear flag

check if left motor pulse is high or |ow
if | ow nake high

i f high nake | ow

set pulse width

set pulse width
tell ACC routine which notor is being updated

Check if Timer O interrupt

clear flag

check if right notor pulse is high or |ow
if | ow make high

i f high nmake | ow

set pul se width

set pul se width
tell ACC routine which notor is being updated

Check if Timer 2 interrupt

clear flag

novf
movwf
call
goto
btfsc
goto
goto
FRONTI Rbcf
btfsc
goto

IR RD

decfsz
goto
nmovl w
nmovwf
bcf
bsf
btfsc

got o
bsf

got o
bt fss
got o

TESTOK

bsf
bsf
call
bcf
bsf
call
| R7 bsf
bsf
btfss
goto
goto
| RLOW bcf
goto
| RHI GH7 bsf
goto
call
bcf
bsf
cal l
bsf
bsf
btfss
goto
goto
| RLONM bcf
goto
| RHI GH6 bsf
goto
cal l
bcf
bsf
cal l
bsf
bsf
bt fss
goto
goto
| RLOMNS bcf
goto
| RHI GH5 bsf
goto
call
bcf
bsf
cal l
bsf

I R6

I RS

| R4

REVTMP4, 0x00

LQDDATA
LQD_SND

| NT_END

| R, 0x00
REARI R
FRONTI R

I R, 0x07

| RTEST, 0x00
TESTCK

TMVRCNT, 0x01
| NT_END
0x06
TMVRCNT

| RFCLK
MSCCTRL

| RFDAT

$-1

| RDATA, 0x07
I R6

| RDATA, 0x07
I R6

DELAY

I RFCLK
MBCCTRL
DELAY

I RFCLK
MBCCTRL

| RFDAT

I RLON

I RHI GH6

| RDATA, 0x06
I RS

| RDATA, 0x06
I RS

DELAY

I RFCLK
MBCCTRL
DELAY

I RFCLK
MBCCTRL

| RFDAT

I RLOM

I RHI G5

| RDATA, 0x05
| R4

| RDATA, 0x05
| R4

DELAY

I RFCLK
MBCCTRL
DELAY

I RFCLK

check is front IR (0) or rear IR (1) should be checked

for main loop to wait for valid data

check if measurenment has been initiated

if yes go check if measurenment is finished el se proceed
with init

wait for 70 ns before reading |.R

reset 70 nms counter

make clock signal lowto initiate a neasurenent

pul | nouse clock line | ow (disable transm ssion)

check for data signal to go |low (ack that a neasurenent
is in progress)

set flag to indicate a neasurenent has been started

check for neasurenent conplete
el se end interrupt so other routines may continue

processing

start bit

pul | nmouse clock line | ow (disable transm ssion)
pul | nmouse clock line | ow (disable transm ssion)
bit 7

pul | rouse clock line |ow (disable transm ssion)
bit 6

pul | mouse clock line |ow (disable transm ssion)
pul | nouse clock line | ow (disable transm ssion)
bit 5

pul | nmouse clock line | ow (disable transmn ssion)
pul | mouse clock line |ow (disable transm ssion)
bit 4

pul | nmouse clock line | ow (disable transm ssion)

bsf
btfss
goto
goto
bcf
goto
| RHI G4 bsf
goto
cal l
bcf
bsf
cal l
bsf
bsf
bt fss
goto
goto
bcf
goto
| RHI GH3 bsf
goto
call
bcf
bsf
cal l
bsf
bsf
btfss
goto
goto
bcf
goto
| RHI GH2 bsf
goto
call
bcf
bsf
cal l
bsf
bsf
btfss
goto
goto
bcf
goto
| RHI GHL bsf
goto
cal l
bcf
bsf
call
bsf
bsf
bt fss
goto
goto
bcf
goto
| RHI GHO bsf
goto
bcf
bsf

| RLOM

I R3

I RLONB

I R2

I RLOA2

IRl

| RLOML

I RO

| RLON

I R_END

decfsz
goto

MSCCTRL

| RFDAT

| RLOM

| RHI GH4

| RDATA, 0x04
I R3

| RDATA, 0x04
IR3

DELAY

| RFCLK
MSCCTRL
DELAY

| RFECLK
MSCCTRL

| RFDAT

| RLOVB

| RHI GH3

| RDATA, 0x03
IR

| RDATA, 0x03
IR

DELAY

| RFCLK
MBCCTRL
DELAY

| RFCLK
MSCCTRL

| RFDAT

| RLOW2

| RHI GH2

| RDATA, 0x02
IRl

| RDATA, 0x02
IRl

DELAY

| RFCLK
MSCCTRL
DELAY

| RFCLK
MBCCTRL

| RFDAT

| RLOM

| RHI GHL

| RDATA, 0x01
I RO

| RDATA, 0x01
I RO

DELAY

| RFCLK
MSCCTRL
DELAY

| RFCLK
MSCCTRL

| RFDAT

| RLOWD

| RHI GHO

| RDATA, 0x00
| R_END

IR 0x07
| RTEST, 0x01
TESTOKR

TMRCNT, 0x01
| NT_END

pul I nouse
bit 3

pul I nouse
pul | nouse
bit 2

pul I nouse
pul | nouse
bit 1

pul | mouse
pul | nouse
bit O

pul I nouse
pul | nouse
reset flag

valid data

cl ock |

cl ock |

cl ock |

clock |

cl ock |

cl ock |

clock |

cl ock |

clock |

ne

ne

ne

ne

ne

ne

ne

| ow (disabl e

| ow (disabl e

| ow (disable

| ow (di sabl e

| ow (disable

| ow (di sabl e

| ow (disabl e

| ow (disabl e

transm ssi

transm ss

transm ssi

transm ssi

transm ss

transm ss

transm ss

transm ssi

| ow (di sabl e transm ss

to indicate a nmeasurenent has not

for main loop to wait for valid data
check if measurenment has been initiated
if yes go check if neasurenment is finished el se proceed

with init

wait for 70 ms before reading |I.R

on)

on)

on)

on)

on)

on)

on)

on)

on)

been started

24

nmovl w
movwf
bcf
bsf
btfsc

goto
bsf
goto
TESTOKRbt f ss
goto

bsf
bsf
cal l
bcf
bsf
call
| RR7 bsf
bsf
bt fss
goto
goto
Lowr bcf
goto
H GH7 bsf
goto
| RR6 cal
bcf
bsf
call
bsf
bsf
btfss
goto
goto
LOW6 bcf
goto
H G bsf
goto
| RR5 cal
bcf
bsf
cal l
bsf
bsf
btfss
goto
goto
LOWb bcf
goto
H G5 bsf
goto
| RR4 cal
bcf
bsf
cal l
bsf
bsf
bt fss
goto
goto
Lowm bcf
goto
H G# bsf
goto
I RR3 cal
bcf
bsf
cal l
bsf

0x06
TM2CNT
| RRCLK
MSCCTRL
| RRDAT

$-1

| RTEST, 0x01
| NT_END

| RRDAT

| NT_END

I RRCLK
MBCCTRL
DELAY

I RRCLK
MBCCTRL
DELAY

I RRCLK
MBCCTRL

| RRDAT

LOW

H GH7

| RRDATA, 0x07
| RR6

| RRDATA, 0x07
| RR6

DELAY

I RRCLK
MBCCTRL
DELAY

I RRCLK
MSCCTRL

| RRDAT

LOVG

H GH6

| RRDATA, 0x06
| RR5

| RRDATA, 0x06
| RR5

DELAY

I RRCLK
MBCCTRL
DELAY

I RRCLK
MBCCTRL

| RRDAT

LOWS

H G5B

| RRDATA, 0x05
| RR4

| RRDATA, 0x05
| RR4

DELAY

I RRCLK
MBCCTRL
DELAY

I RRCLK
MBCCTRL

| RRDAT

Lowm

H G#4

| RRDATA, 0x04
| RR3

| RRDATA, 0x04
| RR3

DELAY

I RRCLK
MBCCTRL
DELAY

I RRCLK

reset 70 ns counter

make clock signal lowto initiate a nmeasurenent
pul | mouse clock line |ow (disable transm ssion)

check for data signal to go low (ack that a measurenent

is in progress)

set flag to indicate a nmeasurenment has been started

check for neasurenent conplete

el se end interrupt so other routines nay continue

processing
start bit
pul | nmouse clock line | ow (disable transm ssion)

pul | nouse clock line | ow (disable transm ssion)

bit 7
pul | mouse clock line | ow (disable transm ssion)

bit 6

pul | nmouse clock line | ow (disable transm ssion)

pul | mouse clock |ine |ow (disable transm ssion)

bit 5

pul | mouse clock line |ow (disable transm ssion)

pul | nouse clock line | ow (disable transm ssion)

bit 4

pul | nouse clock |ine |ow (disable transm ssion)

pul | mouse clock line |ow (disable transm ssion)

bit 3

pul | nmouse clock line | ow (disable transm ssion)

25

bsf
btfss
goto
goto
LOWB bcf
goto
H GH3 bsf
goto
| RR2 cal
bcf
bsf
cal l
bsf
bsf
btf ss
goto
goto
Lowe bcf
goto
H G2 bsf
goto
| RR1 cal
bcf
bsf
cal l
bsf
bsf
btfss
goto
goto
Lo bcf
goto
H GHL bsf
goto
I RRO cal
bcf
bsf
cal l
bsf
bsf
btfss
goto
goto
LOWD bcf
goto
H G0 bsf
goto
| RR_ENDbcf
bsf

I NT_ENDnovf

retfie

’
R R R R R R S S S S S S S R S S R S R R S S R S S S S S R S S R S S

M5 BIT btfss
goto
btfsc
goto
bt fss
goto
bsf
goto

MBCCTRL
| RRDAT

LOWB

H G

| RRDATA, 0x03
| RR2

| RRDATA, 0x03
| RR2

DELAY

| RRCLK
MBCCTRL
DELAY

| RRCLK
MBCCTRL

| RRDAT

Lo

H GH2

| RRDATA, 0x02
| RRL

| RRDATA, 0x02
| RRL

DELAY

| RROLK
MBCCTRL
DELAY

| RRCLK
MBCCTRL

| RRDAT

LOW.

H GHL

| RRDATA, 0x01
| RRO

| RRDATA, 0x01
| RRO

DELAY

| RRCLK
MBCCTRL
DELAY

| RRCLK
MBCCTRL

| RRDAT

LOWD

H GO

| RRDATA, 0x00
| RR_END

| RRDATA, 0x00
| RR_END

| RTEST, 0x01

I R 0x07

| NT_END

W TEMP, 0x00

SUBRQUTI NES

STATUS, 0x00
BI T_Rx

1

pul | nouse clock line | ow (disable transm ssion)

bit 2

pul | nmouse clock line | ow (disable transmn ssion)

pul | nmouse clock line | ow (disable transm ssion)

bit 1

pul | mouse clock line | ow (disable transm ssion)

pul | nmouse clock line | ow (disable transm ssion)

bit 0

pul | nouse clock line | ow (disable transm ssion)

pul | mouse clock line | ow (disable transm ssion)

reset flag to indicate a neasurenent has not been started

for main loop to wait for valid data

restore wreg contents

READ 1 bit of data from nouse
Data is sent LSB first

make sure clock is high
wait for falling edge

check if datais '1" or '0

26

BIT O bcf STATUS, 0x00 ;
BIT Rx rrf MBI NFO, 0x01 ; rotate new bit into tenp reg
return ;
; | NFORM MOUSE OF | NCOM NG Tx and Then Initialize the nouse
; Hol ds nouse clock line low for at |east 100 uSec
; At an .0000002 sec per instruction that takes 500 instruction cycles.
Ms_TX novliw OxA6 ; 166
nmovwf COUNT1 ;
bsf MBCCTRL ; pull nouse clock line low for >= 100 uSec
decfsz COUNT1, 0x01 ; worth one instruction cycle until countl =0
got o $-1 ; worth two instruction cycles
; thus 166 * 3 = 498 Instruction cycles
; plus 1 for the decfsz on the | ast count
; plus the bsf below =500 1.C"'s
M5_TXR bsf MSDCTRL ; pull nouse data line | ow
bcf MSCCTRL ; release the nouse clock |ine
btfsc MSCLOCK wait for mouse to pull clock |ow
got o $-1
bsf MBDCTRL Start Bit =0

btfss MSCLOCK
got o $-1
btfsc MSCLOCK
got o $-1

wait for nouse to pull clock high

wait for mouse to pull clock | ow

bsf VSDCTRL Bit 0 =0

btfss MSCLOCK wait for nouse to pull clock high
got o $-1

btfsc MSCLOCK wait for mouse to pull clock |ow
goto $-1 ;

bsf MSDCTRL ; Bit 1 =0

btfss MSCLOCK ; wait for nouse to pull clock high
goto $-1 ;

btfsc MSCLOCK ; wait for nouse to pull clock | ow
goto $-1 ;

bcf MSDCTRL ; Bit 2=1

btfss MSCLOCK ; wait for nouse to pull clock high
goto $-1 ;

btfsc MSCLOCK ; wait for nmouse to pull clock | ow
goto $-1 ;

bsf MSDCTRL ; Bit 3=0

btfss MSCLOCK ; wait for nmouse to pull clock high
goto $-1 ;

btfsc MSCLOCK ; wait for nmouse to pull clock | ow
goto $-1 ;

bcf MSDCTRL ; Bit 4=1

btfss MSCLOCK ; wait for nouse to pull clock high
goto $-1 ;

btfsc MSCLOCK ; wait for mouse to pull clock | ow
goto $-1 ;

bcf MSDCTRL ; Bit 5=1

btfss MSCLOCK ; wait for nouse to pull clock high
goto $-1 ;

btfsc MSCLOCK ; wait for nmouse to pull clock |ow
goto $-1 ;

bcf MSDCTRL Bit 6 =1

btfss MSCLOCK
goto $-1
btfsc MSCLOCK

; wait for nouse to pull clock high
goto $-1 ;

wait for mouse to pull clock | ow

bcf MSDCTRL Bit 7=1

btfss MSCLOCK wait for nmouse to pull clock high
goto $-1

btfsc MSCLOCK wait for nouse to pull clock | ow
goto $-1 ;

bsf VSDCTRL ; Parity Bit =0

btfss MSCLOCK
got o $-1

: wait for nouse to pull clock high
btfsc MSCLOCK wait for mouse to pull clock | ow

got o $-1
bcf MSDCTRL Stop Bit =1

btfss
goto
btfsc
goto
btfss
goto
bcf
bcf
nmovl w
nmovwf
btfsc
goto
btfsc
goto
cal l
decfsz
goto
btfss
goto
btfsc
goto
btfss
goto
btfsc
goto
btfss
goto
bsf

READB2

return

NB_ | NFObcf
bcf
mov|l w
movwf
TI MEIN decfsz
goto
goto
TOPL nmovl w
nmovwf

QUTERL decfsz
goto
goto
KLP btfss
goto
goto
LOOK nmovl w
nmovwf
nmovl w
nmovwf
decfsz
goto
goto
nmovl w
nmovwf
CHECCKO bt f sc
goto
goto
decfsz
goto
goto
btfsc

ClL3

ClL4

cL1

L2

MBCLOCK
$-1
VBDATA
$-1
VBDATA
$-1
MBCCTRL
VBDCTRL
0x08

MSCLOCK
$-1
VBDATA

MS BIT
COUNT2, 0x01
READB?
MBCLOCK
$-1
MBCLOCK
$-1
MBCLOCK

MBCLOCK
$-1
MBCLOCK
$-1
MBCCTRL

I NCNT, 0x01
TOPL
T _QUT
Ox7F

QUTCNT
QUTCNT, 0x01

KLP
LOOK
MBCLOCK

TI MEI'N
QUTERL

0x08

COUNT2
OxFF
TOUT 3
TQUT_3, 0x01
Cl L4

T QUrT

OxFF
TOUT 2
MSCLOCK

Cl L1

Cl L2
TOUT_ 2, 0x01
CHECCKO

Cl L3
VSDATA

wait for nmouse to pull clock high

wait for nouse to pull data | ow

wait for nouse to rel ease data
enabl e nouse tx
Initialize counter for 8 hits
wait for nmouse to bring cl ock | ow
wait for nobuse to bring data | ow
get one bit
decrenent counter
get next bit
make sure clock is high

PARI TY
wait for falling edge
make sure clock is high

STOP
wait for falling edge
wait for clock to float high again

pul | mouse clock line | ow (disable transm ssion)

enabl e nouse tx

This rountine may try to find the begi nning of a nouse
data packet 255 tinmes

If 255 tries all fail the routine times out and exits

| eavi ng the previous val ues intact

here is the timeout exit point

127 * . 2usec per instruction * about 6 instructions =
usec period of clock inactivity

if the mouse clock is not inactive for this period of
time the rountine has tried to read

nmouse data in the mddle of a packet (who knows what bit
is on) sotry again until a timeout occurs

152

here i s where the clock is checked as |ong as the clock
remains inits inactive state (high)

for the duration of the counter (QUTCNT) then the nouse

i s between packets and the next clock

edge (falling) will be the start bit of the first byte of
data in a new packet.

Initialize counter for 8 bhits

wait for nmouse to bring clock | ow

wait for nobuse to bring data | ow

28

goto
cal l
decfsz
goto
btfss
goto
btfsc
goto
bt fss
goto
btfsc
goto
bt fss
goto
bt fss
goto
goto
btfsc
goto
goto
novf
nmovwf
nmov| w
nmovwf
CHECCK1 bt f sc
goto
btfsc
goto
cal l
decfsz
goto
btfss
goto
btfsc
goto
btfss
goto
btfsc
goto
btfss
goto
novf
movwf
nmovl w
movwf
CHECCK2 bt f sc
goto
btfsc
goto
cal l
decf sz
goto
btfss
goto
btfsc
goto
btfss
goto
btfsc
goto
nmovf
nmovwf
goto
clrf
END bsf
return

X 01

K 02
| NFOOK

READX

$-1

NS Bl T
CCUNT2, 0x01
READB
MBCLOCK
$-1
MBCLOCK
$-1
MBCLOCK
$-1
MBCLOCK
$-1
MBCLOCK
$-1

MBI NFO, 0x02
X 01
RD_END

MBI NFO, 0x03
K_02
RD_END

MBI NFO, 0x00
BUTTONS
0x08
COUNT2
MBCLOCK
$-1
MBDATA
$-1

NS BI T
COUNT2, 0x01
READX
MSCLOCK
$-1
MSCLOCK
$-1
MSCLOCK
$-1
MBCLOCK
$-1
MSCLOCK
$-1

MBI NFO, 0x00

$-1
MBCLOCK
$-1
MBCLOCK
$-1
MBCLOCK
$-1
MBI NFO, 0x00
Y_MAG
RD_END
BUTTONS
MBCCTRL

get one bit
decrenent counter
get next bit
make sure clock is high
PARI TY
wait for falling edge

make sure clock is high
STOP
wait for falling edge

wait for clock to float high again

Initialize counter for 8 bhits

wait for nmouse to bring data | ow
(get start bit)
wait for nouse to bring clock | ow

get one bit
decrenent counter
get next bit
make sure clock is high
PARI TY
wait for falling edge

make sure clock is high
STOP
wait for falling edge

wait for clock to float high again

Initialize counter for 8 bits

wait for nmouse to bring data | ow
(get start bit)
wait for nmouse to bring clock | ow

get one bit
decrenent counter
get next bit
make sure clock is high
PARI TY
wait for falling edge

make sure clock is high
STOP
wait for falling edge

set cursor address

movwf LQD

bsf E LQD ;
nop)
nop ;
bcf E LQD ;
call CHK_BSY ;
nop ;
nop ;
return ;
Y_CURS bcf E LQD ; set cursor address
bcf RWLQD ;

)
i
)
i

mvwf LQD

bsf ELQD

nop

nop ;
bcf E LQD ;
call CHK_BSY ;
nop ;
nop ;
return ;

Send a character to the LQD
Character to be sent should be in register "LCQDDATA'

LQD_SNDbcf ELQD ;
bcf RWLQD ;
bsf RS LQD ;
mov f LQDDATA, 0x00
mvw LQD ; send char info to data bus
bsf E LQD ; enabl e instruction
nop ;
nop ;
bcf E LQD ;
call CHK_BSY ;
return ;

; LQOINT DUH!

LQDI NI Tcal | CHK_BSY ;
bcf ELQD ;
bcf RW LCD ;
bcf RS LQD ;
movliw 0x38 ;
movwf LQD ;
bsf E LQD ;
nop ;
bcf E LQD ;
call CHK_BSY ;
nop ;
nop ;
bcf ELQD
bcf RWLQD

bcf RS LQD
movlw OxO0E

nmovwf LQD ;
bsf ELQD ;
nop ;
bcf ELQD ;
cal l CHK_BSY ;
nop ;
nop ;
bcf ELQD ;
bcf RWLQD ;
bcf RS LQD ;
nmovlw 0x06 ;
nmovwf LQD ;
bsf E LQD ;

nop

bef E LQD

call CHK_BSY ;
nop)
nop ;
bcf E LQD ;
bcf RW LQD

bcf RS LQD
movliw 0x01

movwf LQD

bsf ELQD
nop

bef ELQD
call CHK_BSY
nop

nop

movlw 0x58
movwf LQDDATA
call LQD_SND
movlw 0x20
movwf LQDDATA
call LQD_SND
movlw 0x3D
movwf LQDDATA
call LQD_SND
movlw 0x20
movwf LQDDATA

movlw 0x59

movwf LQDDATA
call LQD_SND ;
movliw 0x20 ;
nmovwf LQDDATA ;
call LQD_SND ;
movliw 0x3D ;
movwf LQDDATA ;

call LQD_SND

bcf E LQD set cursor address
bcf RWLQD

bcf RS LQD ;
moviw 0xCO ;
mvw LQD ;
bsf E LQD ;
nop ;
nop ;
bcf E LQD ;
call CHK_BSY ;
nop ;
nop ;

call LQD_SND
movlw 0x20
movwf LQDDATA

call LQD_SND
return
CHK_BSY bsf RWLQD check for busy flag = 0
bcf RS_LQD
bsf STATUS, RPO sel ect bank 1
bcf STATUS, RP1 sel ect bank 1

nmovlw OxFF
nmovwf TRI SD ;
bcf STATUS, RPO ; sel ect bank 0

bcf STATUS, RP1 sel ect bank 0
KEEPCHK bcf E LQ

nop

bsf E LQD

nop

btfsc BUSYFL
got o KEEPCHK

bcf E LQD
bcf STATUS, RP1 sel ect bank 1

bsf STATUS, RPO sel ect bank 1

nmovlw 0x00

nmovwf
bcf
bcf
return

REV_ASCnovf
nmovwf
bcf
bcf
nmov f
nmovwf
bcf
bcf
bcf
bcf
swapf
novf
subl w
btfsc
goto
goto
nmovl w
addwf
nmovwf
goto
nmovl w
addwf
nmovwf
goto
REVNEXT nov f
movwf
bcf
bcf
bcf
bcf
nmovf
subl w
btfsc
goto
goto
mov|l w
addwf
movwf
goto
movl w
addwf
movwf
goto
REVDONE nov f
nmovwf
return

NVBR

LTTR

NVBR2

LTTR2

nmovwf
decfsz
goto
return

bsf
D2NL decfsz

goto

goto
D2CL nmovl w
nmovwf
decfsz
goto
goto
D21 L nmovl w

D202

TR SD
STATUS, RPO
STATUS, RP1

STATUS, 0x00
S TEMP
STATUS, RPO
STATUS, RP1
REVTEMP, 0x00
REVTMP2
REVTMP2, 0x00
REVTMP2, 0x01
REVTMP2, 0x02
REVTMP2, 0x03
REVTMP2, 0x01
REVTMP2, 0x00
0x09

STATUS, 0x00
NVBR

LTTR

0x30
REVTMP2, 0x00
REVTMP3
REVNEXT
0x37
REVTMP2, 0x00
REVTMP3
REVNEXT
REVTEMP, 0x00
REVTMP2
REVTMP2, 0x04
REVTMP2, 0x05
REVTMP2, 0x06
REVTMP2, 0x07
REVTMP2, 0x00
0x09

STATUS, 0x00
NVBR2

LTTR2

0x30
REVTMP2, 0x00
REVTMP4
REVDONE
0x37
REVTMP2, 0x00
REVTMP4
REVDONE
S_TEMP, 0x00
STATUS

SECONDS, 0x00
NDELAY
MOTL_CE
MOTR_CE
NDELAY, 0x01
D20L
D2_EXT
OxFF
CDELAY
CDELAY, 0x01
D21 L

D2NL

0x9D

sel ect bank 0
sel ect bank 0

Del ay causes a SECONDS second | ong del ay

nmovwf | DELAY ;
D2l L2 decfsz |DELAY, 0x01 ;
got o D2NOP ;
goto D20L2 ;
D2NOP goto D21 L2 ;
D2_EXI Treturn ;
90 degree turn routine (to the right)
NDT R nmoviw 0x92
movwf RPULSES

bsf MOTL_DR :
bsf MOTR_DR ;
bef MOTL_CE ;
bcf MOTR_CE ;
bsf NAV_CK, 0x00 :
bsf I NTCON, G E ; enabl e unmasked interrupts

CK_P novf RPULSES, 0x00
btfss STATUS, 0x02

got o CK_P ;
goto DWRT :
DWRT bcf I NTCON, G E ; enabl e unnasked interrupts
bsf MOTL_CE ;
bsf MOTR_CE ;
bcf NAV_CK, 0x00 ;
return ;

; 45 degree turn routine (to the right)

FFDT_R novliw Ox4A
movwf RPULSES

bsf MOTL_DR
bsf MOTR_DR
bcf MOTL_CE
bcf MOTR_CE
bsf I NTCON, G E enabl e unmasked interrupts

CK PZ novf RPULSES, 0x00
btfss STATUS, 0x02
got o CK_Pz

bsf NAV OK, OX00
goto DWEFRT :

DWFFRT bcf I NTQON, d E ; enabl e unnasked interrupts
bsf MOTL_CE ;
bsf MOTR_CE ;
bef NAV_CK, 0x00 :
return ;

NDT_L novlw 0x92 ;
movwf RPULSES ;
bcf MOTL_DR ;

bcf MOTR_DR

bcf MOTL_CE

bcf MOTR_CE

bsf NAV_CK, 0x00

bsf I NTCON, G E enabl e unmasked interrupts

CK P2 rmovf RPULSES, 0x00
btfss STATUS, Ox02 -
got o CK_P2 ;

got o DW.T
DW.T bcf I NTCON, G E enabl e unnmasked interrupts
bsf MOTL_OE
bsf MOTR_CE
bef NAV_CK, 0x00
return ;

FFDT L noviw Ox4A :
movwf RPULSES ;

bef MOTL_DR

bcf MOTR_DR ;
bcf MOTL_CE ;
bcf MOTR_CE ;
bsf NAV_CK, 0x00 ;
bsf I NTCON, G E enabl e unmasked interrupts

CK_P2Z novf RPULSES, 0x00 ;
btfss STATUS, 0x02 ;
got o CK_P2z ;
got o DWFFLT ;
DWFFLT bcf I NTCON, G E ; enabl e unnmasked interrupts

bsf MOTL_CE

bsf MOTR_CE

bcf NAV_CK, 0x00
return

; this rountine takes in the value of 1/10ths inches (actually .047 inches per pul se)
; to nove in the register D ST

MF nmovf DI ST,0x00
nmovwf RPULSES

CK_P3 novf RPULSES, 0x00
btfss STATUS, 0x02
got o CK_P3

bef MOTL_DR ;
bsf MOTR_DR ;
bef MOTL_OE ;
bcf MOTR_CE ;
bsf NAV_CK, 0x00 :
bsf I NTCON, G E ; enabl e unmasked interrupts

got o DM _F ;
DM _F bcf I NTCON, G E ; enabl e unnasked interrupts
bsf MOTL_CE ;
bsf MOTR_CE ;
bcf NAV_CK, 0x00 ;
return ;

this rountine takes in the value of 1/10ths inches (actually .047 inches per pul se)
to nmove in the register DI ST

M B mov f DI ST, 0x00 ;
movw RPULSES ;

bsf MOTL_DR
bef MOTR_DR
bef NOTL_CE
bef MOTR_OE
bsf NAV_CK, 0x00

BACKW novf RPULSES, 0x00
btfss STATUS, 0x02
got o BACKW

bsf I NTCON, G E enabl e unnasked interrupts
goto DM F12 :

DM F12 Dbcf I NTCON, G E enabl e unmasked interrupts
bsf MOTL_CE ;
bsf MOTR_CE ;
bcf NAV_CK, 0x00 ;
return ;

; ACC rountine accel erates the robot to the desired wheel speed to avoid stalls
ACC btfss NAV_CK 0x01 ;
goto R WH :
got o LW ;
R_WH nmov f RWI, 0x01 ; check if desired time is zero
btfss STATUS, 0x02 ;
goto RWNOT_Z ;
got o SLOW RW ;
SLOW RWEl 1 f RWI_TMP :
return ;
RWNOT_Zdecfsz ACCRCNT, Ox01
return ;

novf MAX_ACC, 0x00
movwf ACCRCNT
nmovf RWI, 0x00
subwf RW_TMP, 0x00
btfss STATUS, 0x00
got o ACC_RP
got o ACC_RN
ACC_ RN novf RWI, 0x00
subwf RW_TMP, 0x00
btfss STATUS, 0x02
goto KEEPRAN
got o DONERAN
KEEPRANdecf RWI_TMP, 0x01
DONERAN et ur n
ACC RP novf RWI, 0x00
subwf RW_TMP, 0x00
btfss STATUS, 0x02
got o KEEPRAP
goto DONERAP
KEEPRAPI ncf RWI_TMP, 0x01
DONERAPT et ur n
LW nmovf LWI'H, 0x01
btfss STATUS, 0x02
got o LWNOT_Z
goto SLOW LW
SLOW LWl r f LWIHT VP
return
LWNOT_Zdecfsz ACCLCNT, 0x01
return
nmovf MAX_ACC, 0x00
movwf ACCLCNT
nmovf LWI'H, 0x00
subwf LWIHTMP, 0x00
btfss STATUS, 0x00
goto ACC LP
got o ACC LN
ACC LN novf LWI'H, 0x00
subwf LWIHTMP, 0x00
btfss STATUS, 0x02
goto KEEPLAN
goto DONELAN
KEEPLANdecf LWHTMP, Ox01 ; decrenent wheel tinme by one
DONELANTr et ur n ;
ACC LP novf LWI'H, 0x00 ;
subwf LWHTMP, 0X00
btfss STATUS, 0x02 ;

get user desired wheel tine
conpare current value with dersired val ue

negative accel erati on needed
positive accel erati on needed
get user desired wheel tine
conpare current value with dersired val ue

decrenent wheel tinme by one

conpare current value with dersired val ue

increment wheel time by one

check if desired tine is zero

get user desired wheel tine
conpare current value with dersired val ue

negative accel erati on needed
positive accel erati on needed
get user desired wheel tine
conpare current value with dersired val ue

conpare current value with dersired val ue

got o KEEPLAP

goto DONELAP
KEEPLAPI ncf LWHTMP, 0x01
DONELAPT et urn

increment wheel time by one

;SQJARE rountine will drive the robot in a square shape with dinmensions DI ST x D ST

1

SQUARE novlw 0x64 ; 100 deci nal
nmovwf DI ST ;
cal l MF ;
cal l DELAY2 ;
cal l NDT_R ;
cal l DELAY2 ;
nmovlw 0x64 ;100 deci nal
nmovwf DI ST ;
cal l MF ;
cal l DELAY2 ;
cal l NDT_R ;
cal l DELAY2 ;
novlw 0x64 ;100 deci nal
nmovwf DI ST ;
cal l MF ;
cal | DELAY2 ;
cal l NDT_R ;

call DELAY2

nmovlw 0x64 ;100 deci mal

movwf DI ST ;
call M F ;
cal l DELAY2 ;
call NDT_R ;
cal l DELAY2 ;
return ;

nmovwf LWIH ;
movliw 0x00 ;
movwf RW ;
bcf MOTL_DR ; move forward
bsf MOTR_DR ;
bcf MOTL_CE ;
bcf MOTR_CE ;
cal l DELAY2 ;
return ;
LETTERGbcf MARKER ;
cal l DELAY2 ;
movlw Ox7F ; * draw | eft portion of G
nmovwf DI ST ; *
call M F ; *
cal l DELAY2 ; *
bsf MARKER ; lift up pen
cal | DELAY2 ;
nmovf MALI GNB, OXx00 ; Approx 2.75 inches to re-align the pen
movwf DI ST ;
call MB ;
call DELAY2 ;
call NDT_R ; turn 90 degrees to the right
call DELAY2 ;
nmovf MALI GNF, OXx00 ; Approx 2.75 inches to re-align the pen
movwf DI ST ;
call M F ;
call DELAY2 ;
bcf MARKER ; put down pen
call DELAY2 ;
movlw 0x40 ;¥ * * % Top part of G
movwf DI ST ;
cal l M F ;
call DELAY2 ;
bsf MARKER ; lift up pen
call DELAY2 ;
nmov f MALI GNB, 0x00 ; Approx 2.75 inches to re-align the pen
movwi DI ST ;
cal l MB ;
call DELAY2 ;
call NDT_R ; turn 90 degrees to the right
call DELAY2 ;
movf MALI GNF, 0Xx00 ; Approx 2.75 inches to re-align the pen
movwf DI ST ;
cal l MF ;
call DELAY2 ;
nmovlw 0x40 ;
movwf DI ST ;
cal l MF ;
cal | DELAY2 ;
movf MALI GNB, 0x00 ; Approx 2.75 inches to re-align the pen
movwf DI ST ;
cal l MB ;
call DELAY2 ;
cal | NDT_R ; turn 90 degrees to the right
call DELAY2 ;
mov f MALI GNF, 0x00 ; Approx 2.75 inches to re-align the pen
movwf DI ST ;
cal l M F ;

call DELAY2

bcf
cal
nmovl w
movwf
cal
cal
bsf
cal l
nmovl w
nmovwf
cal l
cal l
novf
nmovwf
cal l
cal l
cal l
call
novf
nmovwf
cal l
call
bcf
call
nmovl w
nmovwf
cal l
call
bsf
cal l
mov f
nmovwf
call
cal l
call
cal l
mov f
nmovwf
call
cal l
bcf
cal l
movl w
nmovwf
cal l
cal l
bsf
cal l
movl w
nmovwf
call
cal l
movl w
nmovwf
cal l
cal l
nmovf
nmovwf
cal l
cal l
cal l
cal l
nmovf
nmovwf
cal l
cal l
return

MARKER
DELAY2
0x20
DI ST
MF
DELAY2
MARKER
DELAY2
0x20
DI ST
M B
DELAY2
MALI GN\B, 0x00
DI ST
M B
DELAY2
NDT_L
DELAY2
MALI GNF, 0x00
DI ST
M F
DELAY2
MARKER
DELAY2
0x40
DI ST
M F
DELAY2
MARKER
DELAY2
MALI G\B, 0x00
DI ST
MB
DELAY2
NDT_R
DELAY2
MALI GNF, 0x00
DI ST
M F
DELAY2
MARKER
DELAY2
0x40
DI ST
M F
DELAY2
MARKER
DELAY2
0x40
DI ST
MB
DELAY2
0x20
DI ST
MB
DELAY2
MALI G\B, 0x00
DI ST
MB
DELAY2
NDT_R
DELAY2
MALI GNF, 0x00
DI ST

DELAY2

put down pen
*** PART of G
pi ck up pen

Approx 2.75 inches to re-align the pen

turn 90 degrees to the left

Approx 2.75 inches to re-align the pen

put down pen

*

* PART of G
*

pi ck up pen

Approx 2.75 inches to re-align the pen

turn 90 degrees to the right

Approx 2.75 inches to re-align the pen

put down pen

*kkkkkk PAR‘I' Of G
pi ck up pen
get ready for next letter

space between letters

Approx 2.75 inches to re-align the pen

turn 90 degrees to the right

Approx 2.75 inches to re-align the pen

cal l
nmovl w

* draw | eft portion of A

37

nmovwf
cal l
call
bsf
call
nmov f
nmovwf
cal
cal l
cal l
cal l
nmov f
nmovwf
cal l
cal l
bcf
cal l
nmovl w
nmovwf
call
cal l
bsf
cal l
nmovf
nmovwe
call
cal l
call
cal l
nmovf
movwf
cal l
call
bcf
call
nmovl w
movwf
cal l
call
bsf
call
nmovl w
movwf
cal l
cal l
novf
movwf
cal |
call
cal l
call
novf
movwf
cal l
cal l
bcf
cal l
nmovl w
nmovwf
cal l
cal l
bsf
cal l
nmovl w
nmovwf
cal l
call
novf
nmovwf
cal l
call

DI ST
M F

DELAY2
MARKER
DELAY2

MALI GNB, 0x00
DI ST

M B

DELAY2

NDT_R

DELAY2

MALI GNF, 0x00
DI ST

MALI GNB, 0x00
DI ST

M B

DELAY2

NDT_R

DELAY2

MALI GNF, 0x00
DI ST

MALI GNB, 0x00
DI ST

M B

DELAY2

NDT_R

DELAY2

MALI GNF, 0x00
DI ST

M F
DELAY2
MARKER
DELAY2
0x40
DI ST
M F
DELAY2
MARKER
DELAY2
0x40
DI ST

M B
DELAY2

MALI GNB, 0x00
DI ST

M B

DELAY2

*
*
*

lift up pen

Approx 2.75 inches to re-align the pen

turn 90 degrees to the right

Approx 2.75 inches to re-align the pen

put down pen

* * * * Top part of A

lift up pen

Approx 2.75 inches to re-align the pen
turn 90 degrees to the right

Approx 2.75 inches to re-align the pen

* draw right portion of A
*

*
*

lift up pen

Approx 2.75 inches to re-align the pen

turn 90 degrees to the right

Approx 2.75 inches to re-align the pen

put down pen

M ddl e part of A ****

lift up pen

Approx 2.75 inches to re-align the pen

cal
cal
novf
movwf
cal
cal
nmovl w
nmovwf
cal l
cal l
novf
nmovwf
cal l
cal l
cal l
cal l
novf
nmovwf
cal l
call
nmovl w
nmovwf
cal l
call
novf
nmovwf
cal l
call
cal l
cal l
mov f
nmovwf
call
cal l
return

NDT_L

DELAY2

MALI GNF, 0x00
DI ST

MF

DELAY2

0x40

DI ST

M F

DELAY2

MALI G\B, 0x00
DI ST

M B

DELAY2

NDT_L

DELAY2

MALI GNF, 0x00
DI ST

M F

DELAY2

0x20

DI ST

M F

DELAY2

MALI GN\B, 0x00
DI ST

M B

DELAY2

NDT_L

DELAY2

MALI GNF, 0x00
DI ST

DELAY2

turn 90 degrees to the left

Approx 2.75 inches to re-align the pen

get ready for next letter

Approx 2.75 inches to re-align the pen

turn 90 degrees to the left

Approx 2.75 inches to re-align the pen

space between letters

Approx 2.75 inches to re-align the pen

turn 90 degrees to the left

Approx 2.75 inches to re-align the pen

cal l
mov|l w
nmovwf
call
cal l
mov f
nmovwf
cal l
cal l
call
cal l
mov f
nmovwf
call
cal l
bcf
cal l
nmovl w
nmovwf
cal l
cal l
bsf
cal l
nmovl w
nmovwf
cal l
cal l
nmovf
nmovwf
call
cal l
call
cal l
nmovf

MALI GNB, 0x00
DI ST

M B

DELAY2

NDT_R

DELAY2

MALI GNF, 0x00
DI ST

M F

DELAY2
MARKER
DELAY2

0x40

DI ST

MALI GNB, 0x00
DI ST

M B

DELAY2

NDT_R

DELAY2

MALI GNF, 0x00

Approx 2.75 inches to re-align the pen

turn 90 degrees to the right

Approx 2.75 inches to re-align the pen

put down pen

mAWTO:J Of T*********

pi ck up pen

Approx 2.75 inches to re-align the pen

turn 90 degrees to the right

Approx 2.75 inches to re-align the pen

39

nmovwf
cal
cal
bcf
cal
nmovl w
nmovwf
cal l
cal l
bsf
cal l
nmov f
nmovwf
cal l
cal l
cal l
cal l
nmovf
nmovwf
call
cal l
nmovl w
nmovwf
call
cal l
nmovl w
nmovwf
call
cal l
nmovf
movwf
cal l
call
cal l
call
nmovf
movwf
cal l
call
return

cal l
mov|w
movwf
cal l
call
bsf
call
novf
movwf
cal l
call
cal l
cal l
novf
nmovwf
cal l
cal l
bcf
cal l
nmovl w
nmovwf
cal l
cal l
bsf
call
novf
nmovwf
cal l
call

MALI GNB, 0x00
DI ST

M B

DELAY2

NDT_L

DELAY2

MALI GNF, 0x00
DI ST

M F

DELAY2

0x40

DI ST

M F

DELAY2

0x20

DI ST

M F

DELAY2

MALI GNB, 0x00
DI ST

M B

DELAY2

NDT_L

DELAY2

MALI GNF, 0x00
DI ST

M F

DELAY2

DELAY?2

MALI GNB, 0x00
DI ST

M B

DELAY2

NDT_R

DELAY2

MALI GNF, 0x00
DI ST

M F

DELAY2
MARKER
DELAY2

0x40

DI ST

MF
DELAY2
MARKER
DELAY2

MALI GNB, 0x00
DI ST

M B
DELAY2

put down pen

DRAW VERTI CAL PART of T

Ll

pi ck up pen

Approx 2.75 inches to re-align the pen

turn 90 degrees to the left

Approx 2.75 inches to re-align the pen

Approx 2.75 inches to re-align the pen

turn 90 degrees to the left

Approx 2.75 inches to re-align the pen

DRAW LEFT VERT CF O

pi ck up pen

Approx 2.75 inches to re-align the pen

turn 90 degrees to the right

Approx 2.75 inches to re-align the pen

put down pen

DRAWTOP OF O

pi ck up pen

Approx 2.75 inches to re-align the pen

cal
cal
novf
movwf
cal
cal
bcf
cal l
nmovl w
nmovwf
cal l
cal l
bsf
cal l
novf
nmovwf
cal l
call
cal l
call
novf
nmovwf
cal l
call
bcf
cal l
nmovl w
nmovwf
cal l
cal l
bsf
cal l
mov|l w
nmovwf
call
cal l
mov|l w
nmovwf
call
cal l
mov f
nmovwf
cal l
cal l
cal l
cal l
mov f
nmovwf
call
cal l
return

NDT_R

DELAY2

MALI GNF, 0x00
DI ST

MF

DELAY2
MARKER
DELAY2

Ox7F

DI ST

M F

DELAY2
MARKER
DELAY2

MALI G\B, 0x00
DI ST

M B

DELAY2

NDT_R

DELAY2

MALI GNF, 0x00
DI ST

M F

DELAY2
MARKER
DELAY2

0x40

DI ST

M F

DELAY2
MARKER
DELAY2

0x40

DI ST

MB

DELAY2

0x20

DI ST

M B

DELAY2

MALI G\B, 0x00
DI ST

MB

DELAY2

NDT_R

DELAY2

MALI GNF, 0x00
DI ST

DELAY2

turn 90 degrees to the right

Approx 2.75 inches to re-align the pen

put down pen

DRAW RI GHT VERT OF O

pi ck up pen

Approx 2.75 inches to re-align the pen

turn 90 degrees to the right

Approx 2.75 inches to re-align the pen

put down pen

DRAW BOTTOM OF O

pi ck up pen

space between letters

Approx 2.75 inches to re-align the pen

turn 90 degrees to the right

Approx 2.75 inches to re-align the pen

cal l
nmovl w
nmovwf
cal l
cal l
bsf
cal l
nmovf
nmovwf
cal l
cal l
cal l
cal l
nmovf
nmovw
call
cal l
bcf

MALI GNB, 0x00
DI ST

M B

DELAY2

NDT_R

DELAY2

MALI GNF, 0x00
DI ST

M F

DELAY2
MARKER

DRAW LEFT VERT CF R

pi ck up pen

Approx 2.75 inches to re-align the pen

turn 90 degrees to the right

Approx 2.75 inches to re-align the pen

put down pen

a4

cal
movl w
nmovwf
cal
cal
bsf
cal l
nmov f
nmovwf
cal l
cal l
cal l
cal l
nmov f
nmovwf
cal l
cal l
bcf
cal l
nmovl w
nmovwf
call
cal l
bsf
cal l
nmovf
nmovwf
call
cal l
cal l
call
nmovf
movwf
cal l
call
bcf
call
nmovl w
movwf
cal l
call
bsf
cal l
novf
movwf
cal l
call
cal l
call
novf
movwf
cal l
call
novf
nmovwf
cal l
cal l
cal l
cal l
novf
nmovwf
cal l
cal l
bcf
cal l
nmovl w
nmovwf
cal l
call
bsf
call

DELAY2
0x40

DI ST

M F

DELAY2
MARKER
DELAY2

MALI GNB, 0x00
DI ST

M B

DELAY2

NDT_R

DELAY2

MALI GNF, 0x00
DI ST

M F

DELAY2
MARKER
DELAY2

0x40

DI ST

DELAY2
MALI GNB, 0x00
DI ST

M B

DELAY2

NDT_R

DELAY2

MALI GNF, 0x00
DI ST

DELAY2
MALI GNB, 0x00
DI ST

M B

DELAY2

NDT_L

DELAY2

MALI GNF, 0x00
DI ST

M F

DELAY2

MALI GNB, 0x00
DI ST

M B
DELAY?2
FFDT_L
DELAY2

MALI GNF, 0x00
DI ST

M F

DELAY2
MARKER
DELAY2

Ox5A

DI ST

M F

DELAY2
MARKER
DELAY2

DRAWTOP OF R

pi ck up pen

Approx 2.75 inches to re-align the pen

turn 90 degrees to the right

Approx 2.75 inches to re-align the pen

put down pen

DRAW RI GHT VERT OF R

pi ck up pen

Approx 2.75 inches to re-align the pen

turn 90 degrees to the right

Approx 2.75 inches to re-align the pen

put down pen

DRAW M DDLE HORZ OF R

pi ck up pen

Approx 2.75 inches to re-align the pen

turn 90 degrees to the left

Approx 2.75 inches to re-align the pen

Approx 2.75 inches to re-align the pen

turn 45 degrees to the left

Approx 2. 75 inches to re-align the pen

put down pen

DRAW DI AGONAL CF R

pi ck up pen

V)

novf
movwf
cal
cal
cal
cal
novf
nmovwf
cal l
cal l
nmov| w
nmovwf
cal l
cal l
novf
nmovwf
cal l
call
cal l
call
novf
nmovwf
cal l
call
return

cal
nmovl w
nmovwf
cal
cal
bcf
cal l
mov|l w
nmovwf
call
cal l
bsf
cal l
mov f
nmovwf
cal l
cal l
cal l
cal l
mov f
nmovwf
call
cal l
bcf
cal l
movl w
nmovwf
cal l
cal l
bsf
cal l
nmovf
nmovwf
cal l
cal l
cal l
cal l
nmovf
nmovwf
call
cal l
nmovl w
nmovwf
call

MALI GN\B, 0x00
DI ST

M B

DELAY2
FFDT L
DELAY2

MALI GNF, 0x00
DI ST

M F

DELAY2

0x20

DI ST

M F

DELAY2

MALI GNB, 0x00
DI ST

M B

DELAY2

NDT_L

DELAY2

MALI GNF, 0x00
DI ST

DELAY2

DELAY2
MALI GNB, 0x00
DI ST

M B

DELAY2

NDT_R

DELAY2

MALI GNF, 0x00
DI ST

M F

DELAY2
MARKER
DELAY2

0x40

DI ST

DELAY2
MALI GNB, 0x00
DI ST

M B

DELAY2

NDT_R

DELAY2

MALI GNF, 0x00
DI ST

M F

DELAY2

0x40

DI ST

M F

Approx 2.75 inches to re-align

turn 45 degrees to the left

Approx 2.75 inches to re-align

space between letters

Approx 2.75 inches to re-align

turn 90 degrees to the left

Approx 2.75 inches to re-align

pi ck up pen

put down pen

draw |l eft vert of S

pi ck up pen

Approx 2.75 inches to re-align

turn 90 degrees to the right

Approx 2.75 inches to re-align

put down pen

draw TOP of S

pi ck up pen

Approx 2.75 inches to re-align

turn 90 degrees to the right

Approx 2.75 inches to re-align

the pen

the pen

the pen

the pen

the pen

the pen

the pen

the pen

cal
mov f
nmovwf
cal
cal
cal
cal l
nmov f
nmovwf
cal l
cal l
bcf
cal l
nmovl w
nmovwf
cal l
cal l
bsf
cal l
nmovl w
nmovwf
call
cal l
nmovf
nmovwf
call
call
call
cal l
nmovf
movwf
cal l
call
bcf
call
nmovl w
movwf
cal l
call
bsf
call
novf
movwf
cal l
cal l
cal l
call
nov f
movwf
cal l
call
bcf
call
nmovl w
nmovwf
cal l
cal l
bsf
cal l
nmovl w
nmovwf
cal l
cal l
nmovl w
nmovwf
cal l
call
novf
nmovwf
cal l
call

DELAY2
MALI GNB, 0x00
DI ST

M B

DELAY2

NDT_R

DELAY2

MALI GNF, 0x00
DI ST

MALI GNB, 0x00
DI ST

M B

DELAY2

NDT_L

DELAY2

MALI GNF, 0x00
DI ST

MALI G\B, 0x00
DI ST

MB

DELAY2

NDT_R

DELAY2

MALI GNF, 0x00
DI ST

MF

DELAY2
MARKER
DELAY2

0x40

DI ST

M F

DELAY2
MARKER
DELAY2

0x40

DI ST

M B
DELAY2
0x20
DI ST

M B
DELAY2

MALI GNB, 0x00
DI ST

M B

DELAY2

Approx 2.75 inches to re-align the pen

turn 90 degrees to the right

Approx 2.75 inches to re-align the pen

put down pen

draw M DDLE of S

pi ck up pen

Approx 2.75 inches to re-align the pen

turn 90 degrees to the left

Approx 2.75 inches to re-align the pen

put down pen

draw RIGHT VERT of S

pi ck up pen

Approx 2.75 inches to re-align the pen

turn 90 degrees to the right

Approx 2.75 inches to re-align the pen

put down pen

draw M DDLE of S

pi ck up pen

Approx 2.75 inches to re-align the pen

call NDT_R ; turn 90 degrees to the right
call DELAY2 ;
nmov f MALI GNF, 0x00 ; Approx 2.75 inches to re-align the pen
movwf DI ST ;
call M F ;
call DELAY2 ;
return ;
BLANK_Sbsf MARKER ;
call DELAY2 ;
nmov f MALI GNB, 0x00 ; Approx 2.75 inches to re-align the pen
movwf DI ST ;
cal l MB :
call DELAY2 ;
call NDT_R ; turn 90 degrees to the right
call DELAY2 ;
nmovf MALI GNF, OXx00 ; Approx 2.75 inches to re-align the pen
nmovwf DI ST ;
cal | MF ;
call DELAY2 ;
novlw 0x40 ;
nmovwf DI ST ;
cal l MF ;
call DELAY2 ;
mov f MALI GNB, 0x00 ; Approx 2.75 inches to re-align the pen
nmovwf DI ST ;
cal l MB ;
call DELAY2 ;
call NDT_L ; turn 90 degrees to the left
call DELAY2 ;
nmovf MALI GNF, 0OX00 ; Approx 2.75 inches to re-align the pen
movwf DI ST ;
call M F ;
call DELAY2 ;
return ;

3. PS/2 Protocol

The PS/2 protacol allows synchronous, bidirectional bit-senal communication between
the host and the pointing device. Either side may transmit a command or data byvte at any
time, although only one side can transmit at one time. During initalization, the host
sends command bytes to the device. Some commands are followed by argument bytes,
The device acknowledges each command and argument byte with an ACK (3FA) byte,
possibly followed by one or more data byees. I the host has enabled “Stream mode™
transmission, then the device may send spontanecus data packets to the host describing
finger motions and button state changes,

TouchPads mtegrated inwo notebook computers typically wse the PS/2 protocol.

3.1. Electrical interface

The PS/2 protocol includes two signal wires as well as +3V power and ground. The
signal wires, CLK and DATA, are bidirectional “open-collector”™ signals: they are
normally held at a high (+3%) level by a 5-10K pull-up resistor on the host, but either the
hast or the TouchPad device can pull them low at any time, When the port 15 wdle, bath
sigmal wires are floating high, The host can inhibit the device at any time by holding
CLK low.

Mote that neither side ever actively pulls CLE or DATA high: to output a logic 1. the
wire is left undriven and allowed to float high. The CLK and DATA lings should have a

total capacitance of no more than 500pF to ensure that the 5-10K pull-up resistor is able
tr drdve them 1o a high voliage level in a reasonable time,

An external PS/2 mouse port uses a mini-DIN-6 connector with the following pinout
{male connector view):

1] ST IATA
2 | NIC
3| Giroune 0V

4 | Power +5%
5 | PR2CLK
6 | MIC

Figure 3-1. PS2 cable pinous

On the Svnaptics Standard PS/2 TouchPad module TM4 1 Pax]34, the 8-pin FFC
connector has the following pinout:

|) i 4 3] 7]

Power P52 P52 Righ Lett Ground s g
: - - o e ' NA ot

15V DATA ClLK Swilch Switch o 2 X

Frgure 3-2. P82 mocdule conmector pinoni

Copvright © 1998 Swvnaptics, Inc. $3.1 Page 27

Synaptics TouchPad Interfacing Guide Second Editon

3.2. Byte transmission

Each byte transmitted between the device and the host includes a start bit (a logic 0],
eight data bits (LSB first), a parity bit (odd panty), and a stop bit (3 logic 1), Odd parity
muzans the eight data bits and the parity bit wogether contain an odd number of 175,
During transmission, the device pulses the CLK signal low for each of the 11 bits, while
the transmitting partv {either the host or the device) pulls the DATA wire low to signal a
logic 0 or allows DATA o float high to signal a logic 1.

Between transmissions, the bus can be in one of three states:
Idle. 1MCLEK and DATA are both high, there is no activity on the bus,

* Inhibit. If the host is holding CLE low. the device is inhibited from transmitting
data, However, intermal TouchPad processing continues to occur,

* Request to send. 1f the host is holding DATA low and allowing CLE to float
high. the host is ready 1o transmit a command or argument byvte o the device.

321, OQutput to host

The device can transmit a byvte to the host whenever the bus is idle. The device cannot
transiit il the bus is inhibited o in the request-to-send state,

If the bus is inhibited, the device waits for the bus to leave the inhibit state before
transmitting. The device is puaranteed to wait at least 30us after the inhibition ends
before pulling CLK low to begin the start bit. (The device may wait considerably longer
before heginning its transmission; the host’s raising of the CLK wire is not a command to
the device to begin transmission, but rather a signal that the device is now allowed to
transmit as soon as it is ready o do s0.)

If the bus is in the host request-to-send state, the device discards its pending transmission
and receives and processes the host command or argument byte. (The one exception is
the Resend (5FE) command. which responds by resending the most recent transmission
even if that transmission was interrupted by the Resend command itself)

The device wansmits a byvte ol data by pulsing CLK low and then high a wial of 11 times,
while transmitting the start bit, data bits, parity bit, and stop bit on the DATA wire. The
hast is expected o sample the DATA wire each time the CLK wire is low; the device
changes the state of the DATA wire duning the CLE high period,

If the host inhibits the bus by holding CLE low for at least 100ps during a deviee
transmigsion, the device will recognize this and abort the transmission. The device
recognizes an inhibit by noting that the CLK wire remains low during the high portion of
the clock cycle. If the inhibit occurs before the nsing edge of the tenth clock (the parity
bit), the transmission of the byte is cancelled and the device will resend the intermupted
bavte as soon as the inhibit s released, (An ACK (3FA) reply to a command or argument
bwvie is simply thrown away if cancelled. although the command being acknowledeed =
not cancelled. nor are the additional response bytes. if any. that follow the ACK.) If the
inhibit begins after the tenth clock. the transmission is considered complete and the host
must gocept the ransmitted byte,

47

Synaptics TouchPad Interfacing Guide Second Edition

The host may hold CLEK low after the transmission, effectively extending clock 11. 1o
inhibit the device from sending further data while the host processes the transmission.
When the Ahsofute and Reare mode bits are both 1, the TouchPad reports 6 = 80 = 480
bvtes per second, which allows for about 2 milliseeonds per byte, Since the waveform
shown in Figure 3-7 takes about one millisecond. the host should inhibit the bus for less
than one millisecond per bvte on average in order to achieve the maximum packet rate.

CLE] K2 CLKR
_"\" Start bit)I."{ Bii i3 }{ i | ::-{ el 15l 7 ::-{ Parity b ,-'Jr Saop bil
s

Figre 3-7. P82 omitpuit wovgforms

In Figure 3-7, the CLK signal is low for 30-50us (£1) and high for 30-30ps (12 in each
bit cell. DATA will be valid at least 5us before the falling edze (13) and at least 5us after
the rising edge (t4) of the clock. Device actions are shown in black; host actions are in
ETHY.

322 Input from host

The host signals its intent to transmit a command or argument byvte by holding CLE low
for at least 100us, then pulling DATA low and releasing CLE. thus putting the bus into
the host request-to-send state. The device chacks for this state at least every 10ms (15},
When the device detects a request-to-send, it pulses CLE low 11 times to receive a byte,
The host is expected to change the DATA line while CLK is low: the device samples the
DATA line while CLK is high. The host can abort the transmission midway through by
holding CLE low for at least 10005 at any fime before the eleventh CLK pulse.

Adfter the tenth clock, the device checks for a valid stop bit (DATA line high). and
responds by pulling DATA low and clocking ome mote time (the “line conteol B17). The
host can then hold CLE low within 50us (t12) to inhibit the device until the host is ready
to receive the reply. If the device finds DATA low during the stop bit, a framing error
has occurred: the device contimues to clock until DATA goes high, then sends a Resend
1o the host as described in the next section.

CLET CLE2 o LR] CLE 1 CLE 11

—‘\" Raguesi-in-sensd J,-"l i i x Rix 1 i Bt 7 }: Parity hil J,-"ri'\-lup bit *y Liow somirol. [/
D T ek

(] L 1 [+ tla LR -4 Bl

Figure 3-8, PN2 input wavetorms

In Figure 3-8, the CLK signal is low for 30-50us (v6) and high for 30-50ps (17 in each
bit cell, DATA is sampled when CLEK is high, and must be valid no later than 1ps after
the rsing edge of the clock (18 = ~1ps, 19 = 0ps). In the line control bit, DATA goes low
at least Sus before the falling edge (0107 and stavs low an least Sus after the rising edge
{11y of the clock, Device actions are shown m black; host actions are in gray.

Synaptics TouchPad Interfacing Guide Second Edition

323 Acknowledgement of commands

Each command or argument byte produces at least one response byie from the device.
For every command or argument byte except the Resend (3FE) command, the response
always begins with an “Acknowledge™ or ACK ($FA) byte, Depending on the command,
the ACK bute may be followed by additonal data byies w make up a complete response.
For the Resend ($FE) command. the response sometimes does not begin with an ACK.

The device responds within 25ms, unless the host prevents it from doing so by inhibiting
the bus. [n multi-byte responses, the bytes of the response will be separated by no more
than 20ms. The Reset (SFF) command is an excepion, where the SFA and $AA byies
are separated by up o 500ms of calibration delay. The host muost wait for the complete
response to a command or argument before sending another byvte, If the host does
interrupt the response from a previcus command with a new command. the TouchPad
discards the unsent previous response a5 described in seetion 32,1,

If the device receives an erronecus input (an invalid command or argument byte, a byte
with incorrect parity, or a framing error), the device sends a Resend {SFE) response 1o the
host instead of an ACE. It the next input from the host is also invalid. the device sends
an Error (3FC) response. When the host gets an $FE response. it should retry the
offending command, [f an argument byte elicits an 3FE response, the host should
retransmil the entive command, not just the argument byte.

On many PCs, the PS2 port will also report a manufaciored SFE response if the device
does not send a response after a suitable timeour, or if the device does not respond o the
request-to-send signal at all. Thus. an apparent $FE response from the TouchPad may
also indicate that the TouchPad has been disconnected from the PS/2 port,

Histowrical nores!

Parity errors and framing ervors are detected properly by current Synaptics TouchPads
{version 4.x and later). but some earlier TouchPads ignored parity and framing errors.
Likewise, earlier TouchPads did no range checking on Set Resolution and Set Sample
Rate argument byvtes: modern 4. TouchPads will rgject out-of-range Resolution
arguments but sull do no range checking on Sample Rate arguments.

3.3, Power-on rasat

At power-on, the *5/2 device performs a self-test and calibration. then ransmits the
completion code $AA and 10D code $00, [the device fails its self-test, it ransmits error
code 8FC and [T code 30, This processing also occurs when a software Reset (3FF)
command is received. The host should not attempt to send commands to the device until
the calibration/self-test is complete.

Power-on self-test and calibration takes 300-1000ms. Self-test and calibration following
a software Reset command takes 300-300ms. (In the standard Synaptics TouchPad
device, the delays are nominally 750ms and 330ms, respectively.)

The Synaptics TouchPad never sends an $TC power-ondreset error code, Because the
calibration algorithm is designed to adapt to environmental conditions rather than signal a
hard failure. the power-on'reset response is alwayvs $AA, S04,

49

Synaptics TouchPad Interfacing Guide Second Edition

3.4. Command set

The Synaptics TouchPad accepts the full standard PS/2 “mouse” command set. This
section describes the full set of standard mouse commands, along with any special
properties of those commands as they are implemented on the Syvnaptics TouchPad.

If the device is in Stream mode (the default) and has been enabled with an Enable (3F4)
command. then the host should disable the device with a Disable (3F5) command before
sending any other command. However. if the host does send a command during enabled
Stream mode, the device abandons any data packet or previeuws command response that
was being transmitted at the time of the command; the device will not send any further
data packets umtil the response o the new comimand is finished.

As elsewhere in this document, “%" signifies hexadecimal notation,

$FF Reset. Perform a software reset and recalibration as described in section
3.3 above. Response is ACK (SFA), followed by SAA, 500 after a
calibration delay of 300-500ms.

$FE Resend. The host sends this command when it detects invalid cutput from
the device. The device retransmits the last packet of data. for example. a
three- or six-byte motion data packer. a one-byte response to the Read
Device Tvpe (3F2) command, or the two-byte completion-and-10 reset
response (BAA, 500), The ACK (3FA) byte sent to acknowledge a
command is not stored in any bulTer or resent; however, il the last output
from the device was an ACK with no additional data byres, Resand
responds with an ACK.

The device will send a Resend (3FE) to the host if it receives invalid input
[rom the host: see section 3.2.3.

$Fa Set Defaults. Kesore conditions to the initial power-up state. This resets
the sample rate, resolution, scaling. and Stream mode o the same swates as
for the Reset ($FF) command, and disables the device. This command
disables Absolute mode. but it leaves the rest of the TouchPad mode byvte
unaffected.

£Fs Disable. Disable Sweam mode repocting of motion data packets. All other
device operations continue as usual.

$F4 Enable. Bepin sending motion data packers if in Stream mode. To avoid
undesirable bus contention, driver software should send the Enable as the
very last command in its PS/2 innialization sequence.

Mote that a P5/2 device includes two distinet state bits: the enabla/disable
flag contrelled by commands $F4 and SF 5. and the Stream/Bemote flag
controdled by commands 3EA and $F0. These two flags are independent,
and both must be set properly (enabled. Stream mode) for the device to send
mation packets. The intention is that disabled Stream mode means the host
is not imterested in motion packets, while Remote mode means the host

Synaptics TouchPad Interfacing Guide Second Editon

£F3

$F2

tFo

fEE

3EC

EB

FEA

plans to poll explicitly for motion data. In practice. Remote mode and
disabled Stream mesde are identical in the Synaptics TowchPad,

Set Sample Rate. Followed by one argument bavte, this command sets the
PS/2 “sample rate” parameter to the specified value n samples per second.
Legal values are 10, 20, 40, 60, 80, 100, and 200 {decimal) samples per
second.

The Set Sample Rate command is a two-byte command. The command
byte and arpument bvte each receive an ACK {($FA) from the device. Thus,
a complete Set Sample Rate = 10 command consists of 573 from the host,
£FA from the device. $0A from the host. and $FA from the device.

The Synaptics TouchPPad records the sample rate areument and will respond
praperly 1o a later Status Request (3E9) command, but this value does not
actually affect TouchPad data reporting. Stream mode reporting ocours at
either 40 or 80 samples per second, and is controlled by the Bare bit of the
TouchPad mode bvte; see section 2.5,

Read Device Type. The response is an ACK (3FA) followed by a S00
device 1D byte.

Set Remote Mode. Switch to Remote mode. as distinet from the default
Stream madde. In Remote made, the device sends motion data packets only
in response to a Read Dara (SEB) command.

Set Wrap Mode. Switch into special "eche”™ or “Wrap™ mode. In this
made. all byvtes sent to the device except Reset (3FF) and Resst Wrap Mode
(3EC) are echoed back verbatim,

Reset Wreap Maode, [the device is in Weap mode, it returns 1 115 previous
male of operation, except that Stream mode data reporting is disabled. 1T
the device is not in Wrap mode, this command has no effect.

Read Data, The device replies with an ACK (3FA) followed by a three- or
six-byie motion data packet as described below in section 3.0, This
commiand is meant to be used in Remote mode (see command $FO), though
it also works in Stream mode. In Remote mode, this command 15 the only
way to pet a data packet. The packet is transmireed even if no motion or
button events have occurred. The hest can poll as often as P52 bus
handwidth allows, but since the underlying motion data are updated only 40
ar 80 times per second (according to the Bae hit; section 2.5), there s little
paint in pelling more often than thar.

Set Stream Mode. Switch to Stream mode, the default mode of operation.
In this mode, motion data packets are sent 1o the host whenever finger
mation or button events occur and data reporting has been enabled,
Maximum packet rate is poverned by the corrent TouchPad sample rate,
described below.

51

Synaptics TouchPad Interfacing Guide Second Edition

3E9

3ER

Stream mode is the recommended way to use a Synaptics TouchPad: nearly
all PC-compatible computers operate their pointing devices in Stream
mode,

Status Request. Response 15 an ACK (SFA), followed by a 3-bvie saus
packet consisting of the following data:

g7 Rt Hir 5 it d fir 3 Bt 2 i § B g
By 1] | Kemnte | Enable | Scalmg | i | Left Widdle Kight
1 1 t t t T
Bure 2 (1] 1] il 1 il 1] Koesaluiiom
)) |) ! |
Bure 4 Sample rate

Figwre 3-9. Standard stadus request response

Remote: 1 = Remote {polled) mode, 0 = Steeam mode.

Enalle: 1 = Data veporting enabled, 0 = disabled. This bt only has
effect in Stream mode.

Scaling: 1 =Sealing 15 2:1. 0 = scaling is 1:1. See commands 3E6 and
SET below,

Lefi: | = Left button is currently pressed, 0 = released.

Middle: 1= Middle button is currently pressed. 0 = released.

Right: 1 = Right button is currently pressed, 0 = released.

Resolution: The current resolution setting, from (¢ to 3 as described
under Set Resolution (3E8) below,

Sample rate: The current sample rate setting, from 10 to 200 a5
described under Set Sample Rate ($F3) above.

For example, after Resat or Ser Defaults. a Stats Request command will
return the byvtes

SFA R00 502 $64

indicating no buttons pressed, Stream mode, Disabled mode, Scaling 1:1,
Resolution 302, and Sample rate %64 = 100 decimal.

The Status Request command returns different data in the context of a
TouchPad special command sequence; see section 3.5 below,

Set Resolution. Followed by one argument byte, this command sets the
P52 "resolution” parameter. Legal argument values are 500, 501, 502, and
£03, corresponding 1o resolutions of 1, 2, 4, and § counts per mm,
respectively.

The Synaptics TouchPad records the resolution argument and will respond
properly to a later Status Request (3E9) command, but this value does not
actually affect TouchPad data reporting. Sections 232, 242 and 3.6.1
describe the actual resolution reported bv the TouchPad.

52

352, Mode setting sequence

If a Ser Sample Rate 20 {3F3, $14) command is preceded by four Set Resolution
commands encoding an 8-bit argument, the 8-bit argument is stored as the new value for
the TouchPad mode byte as described in seetion 2.5 and Fipure 2-14.

For example. to set the mode byie to $C1 (Absalute mode. high packer rate. Wmode
enabled) one would use the sequence of commands.

SE8 %03 $E& 500 IER 00 SEZ 301 $F3 314
where the argument 3C1 15 encoded as follows:
(S03 % 64) + ($00 % 16} + (500 = 4) + 501 = $CI.

All ren command and argument bvtes receive the usual ACK (3FA) acknowledzments.
Mote that, as described at the beginning of section 3.4, it is important to ensure that the
device is disabled (3F5) before sending this command sequence; to receive Absolute
mode packets, follow this sequence with an Enable (3F4) command,

Histarical mores

Older Synaptics TouchPads supported up w four mode bytes: the sequences 1o set those
bytes ended with Set Sample Rate commands with argumenis other than 514, On the
present (4.x) TouchPad. sequences of four Set Resolution commands followed by a Set
Sample Rate with any argument other than 314 have an undefined effect on the TowchPad
and should not be used.

Some older Synaptics TouchPads also supported a second wayv to read or write the mode
byte using P52 command code 3E1. See section 7.1.2.

3.6. Data reporting

The Synaptics TouchPad supports two formats for motion data packets, The default
Relative format is compatible with standard P52 mice, The Absolute format gives
additional information that may be of use to TouchPad-cognizant applications,

Data packets are sent in response to Read Data ($EB) commands. If Stream mode is
selected and data reporting 15 enabled, data packets are also sent unsolicited whenever
finger motion and/or button state changes oceur, Synaptics recommends using Stream
mode instead of Read Data commands o obtain data packers.

During transmissicn of a motion packet. the individual byvtes of the packet will be
separated by no more than 20ms (assuming the host does not inhibit the bus). While P52
mation packets are lacking in explicit synchronization bits, if the host sees a delav of
more than 20ms between byies it can assume the delay comes at a packer boundary,

36,1, Default packet format

In the default Relative format, each motion packet consists of theee bytes. The first byte
encodes various status bits, and the other two bvtes encode the amount of metion in X
and Y that has ocourred since the previous packet,

i 7 Hit & Bt 3 Hir d Hir 3 & 2 Hir] Hir il

et | Youl | Xovd | Yaign | Xsign | wisste | Righe | Len
Hyte 2 I I I X |.1:l.'|!il I I I
e § Y d:-:lm
Figare 317, PYE refative morion packet
Y ol I =% delta value exceeds the range —256,,,255, 0 = no overflow. 'When

thiz bir is set. the reported Y delta will be either —256 or +255,

Xovfl: 1 =X delta value exceeds the range —256.. 255, 0 = no overflow. When
this bit is set, the reported X delta will be either 256 or +255,

Y¥osign: | =Y dela value is negative, 0 =Y delta is zero or positive,

Hgign: 1= X delta value is negative, 0 = X delta is zero or positive.

Middle: 1= Middle buton is currently pressed. 0 = releasad.

Right: I = Right button is currently pressed, 0 = released.

Left: I = Left button 15 currently pressed {or gesture in progress), 0= released,

X delta: This is the amount ol motion AX that has occurred in the X (horizontal)
direction since the last motion data veport. This byvte and the X sign™ bit of
bvie 1 combine to form a nine-bit signed. two's-complement integer.
Rightward motion 15 positive. leftward is negative,

¥ delta: This is the amount of motion AY that has occurred in the Y (vertical)
direction. Upward motion is positive, downward is negative.

Mote that the three button state bits reflect a combination ol physical switeh inputs and
eestures, The “left button™ bit is set if either the left physical switch is closed. or a tap or
drag pesture is in progress. (If the OisGess mode bit is set, then the “left button™ bit
reports only the state of the physical lett switch.) The “right button™ bit is set only i the
right physical switch is closed. Becavse standard Synaptics TouchPads only support two
buttons. the “middle burton”™ bit s always zero.

The X and Y deltas report an accumulation of all motion that has occurred since the last
packet was sent, even if host inhibition has prevented packet ransmission for some time.
Also, any host command except Resend (SFE} clears the motion accumulators, discarding
any motion that had occurred belore the command but that had not vet been sent ina
packet.

The X and ¥ deltas have a resolution of aboutr 240 DPI on a standard Synaptics pad; see
section 2.6,3 for further detals,

56.2. Absolute packet format

When Absolute mode is enabled, each motion report consists of six bytes. These bytes
encode the absolute 20 Y location of the finger on the sensor pad, as well as the Z

