FETCH

Final Report
EEL 5666
Carley Thompson
04-23-02

Table of Contents

ADSTTACT ...ttt ettt ettt ettt e b e et be et ens 3
EXECULIVE SUMMATYeiiiiiiiiciie ettt ettt e e st eeeebeeenaeeenseeeneee s 4
INETOAUCTION ...ttt ettt et et et e st e nbeenteseeenbeeneens 5
INtEEIated SYSEIM...c.uiiiiiiiieeiiieiie ettt ettt e ettt e et eesteeebeessbeebeeesbeesseessseenseesnsaens 5
IMODILE PIAtFOTIN ...ttt st 6
ACTUALION ...ttt ettt ettt ettt e ae e bt et e it e bt et e e st e ene e bt enteeatebeeneen 7
SEIISOTS ..ttt ettt ettt et a et sa bttt eht e et e e bttt e nat e et e nbeeeaeen 7
BERavIors ..o 11
CONCIUSION .ottt ettt e b e et e sb e st e s bt e et esbeesabeesaeeeas 12
APPCNAIX ittt ettt ettt ettt e et e s e bt e tbe e teeeabeenbeeetbeetaeeabeenbeeeseeenraas 13
SOUTCES FOT PATTScoiiiiiiiiiiiiie et 20
FINAL COA@ ..ttt ettt ettt 21

Abstract

Fetch is an autonomous robot whose purpose is to entertain my dog. Fetch
releases a ball when it hears a loud noise. Once it has released all of its balls, it collects
the balls one at a time and returns them to a home base. Once it collects and returns all of
the balls, it waits to be refilled and reset by a human.

Executive Summary

The main purpose of Fetch is to entertain my ball crazy Cocker Spaniel and keep
him busy. Fetch can successfully avoid obstacles while listening for a loud sound. Once
he detects a loud sound, Fetch can successfully release a ball and continue avoiding
obstacles until the break beam sensor detects that there are no more balls in the ball
container. Once there are no more balls in the ball container, the robot searches for the
balls he had released. Once one ball is in the scoop, the gate traps the found ball and
Fetch takes the ball to home base. After Fetch leaves the ball at home base, he goes in
search of the remaining dropped balls. Once Fetch has found all of the balls that he

released, he waits at the home base until he is reloaded and reset by a human.

Introduction

The idea for this robot came to me one day while I was playing with my dog. I
have a three year old Cocker Spaniel who is absolutely ball crazy. His favorite thing is to
chase balls around. So I thought, why not create a robot that can dispense a ball whenever
he wants it to. I also decided that when the robot had no more balls to dispense, it should
wander around and collect them. Thus came the creation of Fetch. In the rest of this paper
I will discuss the whole system integrated together, the design and construction of the
mobile platform, the actuation both for the wheels and the extra servos I used, a
description of each sensor I used and how I used them, and the different behaviors Fetch

was expected to perform.

Integrated System

For Fetch I chose the double stack boards, the MRSXO01 and the MRC11, also
know and the Talrik boards. I chose these as the brains of my robot because initially I did
not know exactly how many sensors I wanted to use and I wanted to have as many
options as possible. The final version of Fetch uses two completely hacked servos for the
wheels, two non-hacked servos for the releasing and collecting balls, four IR sensors, six
tactile switches, four cadmium sulfide cells (CdS cells), one laser diode, two flex (bend)

sensors, and a small condenser microphone to perform all of his designated behaviors.

Mobile Platform

The platform for Fetch was designed originally to be round for easier
maneuvering. It ended up being basically round with some parts sticking out. I decided
that I wanted the balls to be racquet balls and that I wanted them to dispense through
some pvc pipe. After buying the pvc pipe, I made measurements of the pve pipe and a
small bucket to be used as the ball container to determine how large the outer part of the
robot should be. After I got a rough estimate I went in search of a round container that
would work. I found a metal trashcan at Target” that had almost the exact dimensions I
wanted. I got some large wheels from an old radio control robot that I had lying around. I
built a wooden platform from an eighth inch thick piece of plywood to mount the wheels
on. I then bolted this platform to the bottom of the trashcan. I cut a hole in the front of the
trashcan so that the balls could come out. The electronics fit nicely under the ball
container. Inside the ball container I built a ramp for the balls to enter on. Under this
ramp | attached a servo to control a door that only lets out one ball at a time. I cut a hole
in the bottom of the ball container on the other side of the door and attached the pvc pipe
to that hole. I needed some way to collect the balls. Originally I wanted to actually scoop
up the balls and dump them back into the ball container, but I decided that was too
mechanically complicated. Before I decided it was too complicated, I bought an
enormous Tonka® bulldozer at Toys-R-Us® which I ripped the scoop off of (see figure 1
in appendix). I decided to use this scoop anyway. I extended the sides of it with balsa
wood so that it could corral the ball. Then I added a servo on one of the sides and
attached a gate so that I could trap the ball.

Here are some lessons I learned:

1) Itis extremely difficult to cut a hole two inches in diameter in metal.

2) If you are using a power tool without enough lubrication, the metal gets really hot.

3) Cutting soft plastic with a Dremel® is not a good idea. The plastic melts and ruins
the cutting disc. (and burns your skin)

4) The heavier your robot, the faster your batteries wear out.

Actuation

For all four of my servos, both hacked and non-hacked, I used the Futaba S3003.
These servos are rated 44.4 oz-inch at 6VDC. For the wheels, I completely hacked two of
these servos. I removed the plastic tabs that prevent it from rotating 360° and I removed
the control circuitry. I used one of the other servos for the door in the ball container and I
used that last servo for the gate that traps the found ball. I did not hack these servos at all

because I wanted them to have limited ranges of motion.

Sensors

My robot uses IR sensors, CdS cells, tactile sensors, sound detection sensor, and
my unique sensor. Here is a description of each sensor.

I used four of the Sharp GP2D12 IR sensors. These have the detector and emitter
in one package and they do not need to be hacked. I used three of these for obstacle
avoidance and all four of them for finding the balls.

I used CdS cells to detect a bright light source. This bright light serves as the

robot’s home base. This is where it brings each ball that it finds.

I used tactile sensors for bump detection. Right now these sensors are useless
because they do not stick out far enough to ever be touched. I am using the front sensor to
start the robot.

I created a sound detection circuit, with the help of Michael Maines. This circuit
takes in an input from a microphone, amplifies the signal, and chops off the negative part
of the signal. (see figure 2 in appendix) The output is connected to the analog to digital
ports on the expansion board. When the microphone detects a loud sound, such as a clap
or a dog bark, it triggers a servo to release a ball. I had some trouble with the
microphone. The servos driving the wheels and the vibration of the robot would set off
the microphone circuit. Uriel Rodriguez suggested I raise the microphone up on a pole
above the robot. That helped tremendously, but I still had to raise the threshold level for
the microphone. This means that the sound must be incredibly loud for the robot to
release a ball.

My unique sensor is actually two sensors working independently of each other.
The first is a flex sensor, also called a bend sensor. The second sensor I am using is a
break beam sensor of sorts. It is made up of a laser diode and a CdS cell. Originally I
wanted to use a pressure sensor to determine if there where any balls left in the container.
This proved to be more difficult than I imagined though. For starters, I could only find
pressure sensors that measured either a liquid or a gas, not a mass. Therefore, I settled on
a flex sensor. | was originally going to use two flex sensors, one for the scoop and one for
the container. However, Aamir said that a flex sensor by itself is not that special and that

I should use a break beam sensor. Since a normal break beam sensor is not incredibly

useful to me because of the rather small distance between the light source and the
detector, I decided to make my own. Next is a detailed description of each unique sensor.

The flex sensor is a long thin piece of a plastic like material with two pins sticking
out of one end. As the device is bent toward a 90° angle, the resistance increases from
10kQ to around 40kQ. This process is highly non-linear. I used the sensor in a voltage
divider circuit connected to an op amp to utilize the flex sensor’s ability to change
resistance (see Figure 3 in appendix). [modified this circuit slightly by using negative
feedback to increase the gain of the op amp. (see Figure 4 in appendix) I connected the
output of the op amp to one of the IR ports on the MRSXO01 board. This way I can
convert the voltage into a digital number and use a program to compare the digital
numbers to determine if the sensor is bent or not. I am using this sensor in the scoop on
my robot. The scoop will be used to pick up a ball and carry it to a home base. This way I
will know if there is a ball in the scoop. I wrote a short program to determine what the
range of numbers is (see flextest] in appendix) and then I used these numbers to write
another program that will tell me whether or not there is a ball in the scoop (see flextest2
in appendix). Eventually this program will jump to the find home program when there is
a ball in the scoop. If there is no ball in the scoop, the robot will search for balls. I did a
screen capture of the program running in the terminal to show what the values are when
the sensor is bent and unbent (see Figure 5 in appendix).

I have some experience with designing a break beam sensor because that is
basically what I designed for my senior design project. So I planned to use the laser diode
and the protection circuit for the laser diode from my senior design project and I decided

to use a CdS cell to detect the laser beam. However, I somehow I accidentally blew up

the laser diode so now I am using a laser pointer instead. The laser will shine directly at
the CdS cell, which will change in resistance as it goes from light to dark and vice versa.
In the dark the CdS cell has a resistance of around 3MQ and when the laser light is
shining on it, the resistance drops to around 300€2. I connected the CdS cell to one of the
CdS ports on the MRSXO01 board. They are laid out on the board in such a way that the
CdS cell is the top part of a voltage divider. The voltage that comes out is connected to
the analog to digital converter so I get a digital value that I can use a program to tell
whether the laser beam is broken or not. I am using this sensor to determine if there are
any balls left in the ball container. When there are no more balls my robot will go in
search of balls to take to the home base. I wrote a short program to determine what the
range of numbers is (see cdsl in appendix) and then I used these numbers to write
another program that will tell you whether or not there are any more balls in the container
(see cds2 in appendix). Eventually the program will jump to a find balls routine when
there are no more balls in the container. While there are still balls in the container, the
robot will dispense the balls. I did a screen capture of the program running in the terminal
to show what the values are when the beam is broken and unbroken (see Figure 6 in
appendix)

Here are some lessons I learned:

1) IR sensors can not handle 10Vdc.

2) Flex sensors are extremely temperature dependent.

3) Iam a horrible programmer.

4) Don’t put a semicolon after your while statement if you want it to perform the

functions you put in the curly brackets.

10

5) All IR sensors are not created equal.

Behaviors

The behaviors Fetch can perform are: obstacle avoidance, release of balls,
collection of balls and finding home.

Fetch uses three IR sensors to avoid obstacles. When an obstacle is detected he
backs up a little and turns in a random direction for a random amount of time.

The ball release is sound activated. While Fetch is wandering around avoiding
obstacles, he is listening for a loud sound. When a loud sound is detected, the door in the
ball container releases one ball then continues wandering until another sound is detected.
When there are no more balls in the container the break beam sensor detects this and the
robot goes into find ball mode.

Fetch uses all four IR sensors to locate the balls. When a ball enters the scoop
area and touches one of the flex sensors, the gate closes and the robot then searches for
home base.

Home base is a bright table lamp. Fetch searches for home using three CdS cells.
When he gets within a certain distance to home, he leaves his collected ball and goes off
in search of another ball. When he has found all of the balls (a predetermined number), he
waits at home until he is refilled and reset.

I used eight LEDs for feedback to show what function the robot is performing at a
certain time. I connected these LEDs to the IR emitter output port on the expansion
board. Here is what I used each LED for:

1) Obstacle Avoidance

11

2) Microphone hears a noise

3) Searching for balls

4) Searching for home

5) Found home

6) Leaving ball at home

7) There are more balls to find

8) All balls have been found
Conclusion

I feel that this robot is still a work in progress. I need to learn more about

programming because my code could be much better. If I had more time I would learn

how to properly program in C. To the students of the future, I recommend you not try to

make your robot do too many behaviors. I think I got carried away with all I hoped it

would do. It does every behavior, but it doesn’t do any behavior great.

12

Figure 2

C22k

e

TR

Theg -

13

Figure 3

Basic flex sensor circuit

vln
FSR
H‘I '_P vcut
HE
voltage impeda
divider buffer

V.t =W H2
nce au n -H—n-1+ ,

I found this circuit at http://devices.sapp.org/component/flex.

Figure 4

o SV

FIex_Sensorﬁg 10k-45k

R2 690

R1

10k

Rf

—C Vout_to A/D_port

100k

14

Flextestl

#include <tkbase.h>

#include <stdio.h>

#define IRE OUT *(unsigned char *)(0xffb9)
#define IRE_ ALL ON O0xff

void main(void)
{
init_clocktk();
init_analog();
IRE OUT =1IRE_ALL ON;
wait(300);

while(1)
{
read IR();
printf("the value = %d\n\n",IRDT[1]);
wait(300);
}
h

Flestest2

#include <tkbase.h>

#include <stdio.h>

#define IRE OUT *(unsigned char *)(0xffb9)
#define IRE_ ALL ON O0xff

void main(void)
{
init_clocktk();
init_analog();
IRE OUT =IRE_ALL ON;
wait(300);

while(1)
{
read IR();
if IRDT[1] > 75)
{ printf("the unbent value = %d\n\n",IRDT[1]);
wait(300);
}
if IRDT[1] < 75)
{ printf("the bent value = %d\n\n",IRDT[1]);
wait(300);
}

cds1

#include <tkbase.h>
#include <stdio.h>
#define thresh 100

void main(void)

{
init_analog();
init_clocktk();
wait(300);
while (1)

{

read CDS();

printf("value 1 = %d\n\n", CDS[4]);

wait(300);

j

h

cds2
#include <tkbase.h>
#include <stdio.h>

#define hforw 50
#define hrev -50

void find_balls(void);

void main(void)
{
init_analog();
init_clocktk();
init_motortk();
wait(300);
while (1)
{
read CDS();
if (CDS[4] < 100)
{ printf("there is a ball, value = %d\n\n",CDS[4]);
wait(300);
}
if (CDS[4] > 100)

16

printf("there are no balls,value = %d\n\n", CDS[4]);

wait (300);
find_balls();
h

H

void find_balls(void)

{

motortk(RIGHT MOTOR, hforw);
motortk(LEFT _MOTOR, hforw);

}

17

%Eile Edit Search Compile Project Target Options Tools Window Help _|5’|1|

DEdel e Q] [£]E]

the unbent value = 74

the unbent value = %6

the unbent value = 29 —J

the unhent value = 23

the unbent value = 29

the unbent value = 25

the unbent value = 188

the unbent value = 92

the bent value = 55

the bent value = 55

the bent value = 61

the bent value = 53

the bent value = 53

the bent value = 55

the unbent value = 83

the unbent value = 78

the unbent value = 25 -

e of
Browse I Bootzstrap D ownload | B ootstrap Options Comm Options I
=N ™ ™.

Capture On I

18

Figure 6
% ICC11 for Windows - [Terminal] BEE

QEEiIe Edt Search Compile Project Target DOptions Tools ‘Window Help

Sdls| #ez] Q] (&=

=18 x]

there
there
there
there
there
there
there
there
there
there
there
there
there
there
there
there
there

there
L]

Browse I

are no bhalls,value
are no bhalls,value
are no halls,value
is a hall, value =

iz a hall, value =

iz a bhall, value =

is a hall, value =

iz a hall, value =

are no halls,value

are no balls.value

are no balls,value

are no balls.value

are no balls.value

are no balls,value

is a hall, value =

is a hall, value =
iz a hall, value =
is a hall, value =

Boowhapgpwnbadl

= 154 ‘:J
= 1392
= 136
33
11
8
?
59
=174
=141
= 184
= 187
= 185
=138

i

Bootstrap Options Comm Options

Line: 1 Col: 0

19

Sources for Parts

Servos

WWW.Servocity.com

Futaba standard servos $10.95 each, FREE shipping, received them in two days.

IR Sensors

www.acroname.com

Sharp GP2D12 $13.50 each, $6.95 shipping UPS ground, received then in 3 — 4 days.

Laser Pointer
Office Depot

Laser pointer key chain $7.99

Flex Sensors

WWW.jJameco.com

Images Company flex sensor $10.95 each, $4.25 USPS Priority Shipping, received them

in 2 days

Condenser Microphone

Radio Shack

PC-board condenser microphone element $1.99

20

Final Complete Code

#include <tkbase.h>
#include <stdio.h>

#define forw 100

#define rev -100

#define hforw 75

#define hrev -75

#define sforw 35

#define srev -35

#define thresh 70

#define IR_THRESHOLD 90
#define BUMPER FUZZY ZERO 12
#define IRE_ OUT *(unsigned char *)(0xftb9)
#define IRE_ALL OFF 0x00
#define IRE_ ALL ON O0xff
#define LED1 0x01

#define LED2 0x02

#define LED3 0x04

#define LED4 0x08

#define LEDS5 0x10

#define LED6 0x20

#define LED7 0x40

#define LEDS8 0x80

#define mic_thresh 100
#define offset 25

void avoid(void);

void mic(void);

void breakbeam(void);
void findballs(void);
void turn(void);

void findhome(void);
void counter(void);
void go(void);

unsigned int bl, IR _delta[NIRDT], IR _Threshold[NIRDT], closel, openl, close, open,

stop;;
inta,b,c,1,j, k, m,n, p,w, X, y, z;
int fb, rspeed, Ispeed, delta_rspeed, delta Ispeed;
int averagel, bentl, unbentl, average2, bent2, unbent2;

void main(void)

{

init_analog();

21

init_motortk();
init_servos();
init_clocktk();
init_serial();

b=1;

1=1;

c=0;

p=0;

y=0;

w=1;

x=1;

z=1;

open = -500;
close = 750;
closel =-500;
openl = 500;
stop = 0;

IRE OUT =1RE_ALL ON;
wait(300);

bl = battery level();
printf("battery: %d\n\n", bl);
read IR();

j=IRDT[9];
m = IRDT[S];

for(k =0; k < 19; k++)
{

¢ =IRDT[9];

=it

wait(100);
}
averagel =j/20;
unbent] = averagel;
bentl = unbentl - offset;

for(n=0;n < 19; nt++)
{
p =IRDT][8];
m=m+p;
wait(100);
¥
average2 = m/20;
unbent2 = average?2;
bent2 = unbent2 - offset;
IRE OUT =1RE_ALL OFF;

22

while(rear bumper()<BUMPER FUZZY ZERO);
{
motortk(RIGHT MOTOR, forw);
motortk(LEFT MOTOR, forw);

}

while(b)
{
avoid();
mic();
breakbeam();
}
b

void avoid()
{
IRE OUT = LEDI;
read IR();
printf("right = %d\n\n",IRDT[11]);
printf("middle = %d\n\n",IRDT[12]);
printf("left = %d\n\n", IRDT[13]);
motortk(RIGHT MOTOR, forw);
motortk(LEFT MOTOR, forw);
if((IRDT[11] >IR_THRESHOLD) && (IRDT[11] <200)) || (IRDT[13] >
IR THRESHOLD) && (IRDT[13] <200)) && (IRDT[12] <IR_THRESHOLD))
{ motortk(RIGHT MOTOR, hrev);
motortk(LEFT_MOTOR, hrev);
wait(500);
turn();
/Af(IRDT[11] > IRDT[13])
{
printf("right = %d\n\n",IRDT[11]);
printf("middle = %d\n\n",IRDT[12]);
motortk(RIGHT MOTOR, hrev);
motortk(LEFT _MOTOR, hforw);
wait (500);
turn();
3/
/Af(IRDT[13] > IRDT[11])
{
printf("left = %d\n\n",IRDT[13]);
printf("middle = %d\n\n",IRDT[12]);
motortk(RIGHT MOTOR, hforw);
motortk(LEFT _MOTOR, hrev);
wait (500);

turn();
3/
!
if((fbo=front _bumper())>BUMPER FUZZY ZERO)
{
printf("fb was pressed\n");
motortk(LEFT _MOTOR, hforw);
motortk(RIGHT MOTOR, hforw);
wait(350);
turn();
}
if(rear bumper()>BUMPER FUZZY ZERO)
{
printf("rb was pressed\n");
motortk(LEFT _MOTOR, hrev);
motortk(RIGHT MOTOR, hrev);
wait(350);
turn();
}
else
{
motortk(LEFT _MOTOR, forw);
motortk(RIGHT MOTOR, forw);
}
motortk(LEFT _MOTOR, forw);
motortk(RIGHT MOTOR, forw);

void mic()
{
read IR();
/¥If(IRDT[5] < mic_thresh)
{
printf("the value = %d\n\n",IRDT[5]);
wait(300);
y ¥/

if(IRDT[5] > mic_thresh)
{
/*printf("release ball, value = %d\n\n", IRDT[5]);
wait(200);*/
IRE OUT = LED2;
/*motortk(RIGHT MOTOR, 0);
motortk(LEFT _MOTOR, 0);

24

wait(1000);*/
servo(0, open);

/* printf("door open\n");*/
wait(250);
servo(0, stop);
wait(200);
servo(0, close);

/* printf("door close\n");*/
wait(800);
servo(0, stop);
wait(800);
b=1;

}

!

void breakbeam()
{
read CDS();
/*if (CDS[4] < 100)
{ printf("there is a ball, value = %d\n\n",CDS[4]);
wait(300);
§*
if (CDS[4] > 100)
{ printf("there are no balls,value = %d\n\n", CDS[4]);
wait (300);
w=1;
findballs();
}
}

void turn()

{
int a;
unsigned rand;

rand = TCNT;

if (rand & 0x0001)

{
motortk(RIGHT MOTOR, forw);
motortk(LEFT MOTOR, rev);

}

else

{
motortk(RIGHT MOTOR, rev);
motortk(LEFT _MOTOR, forw);

}

a=(rand % 1024) + 35;
wait(a);

}

void findballs()
{

b=0;

while(w)

{ motortk(RIGHT MOTOR, hforw);
motortk(LEFT _MOTOR, hforw);
IRE OUT =IRE_ALL OFF;

IRE OUT = LED3;
read IR();

if(IRDT[11] >90)
{
motortk(RIGHT MOTOR, sforw);
motortk(LEFT MOTOR, srev);
wait(700);
motortk(RIGHT MOTOR, hforw);
motortk(LEFT _MOTOR, hforw);
}
if(IRDT[13] >90)
{
motortk(RIGHT MOTOR, srev);
motortk(LEFT MOTOR, sforw);
wait(700);
motortk(RIGHT MOTOR, hforw);
motortk(LEFT _MOTOR, hforw);
}
while(IRDT[12] > 90 || IRDT[2] > 90)
{
read IR();
motortk(RIGHT MOTOR, hforw);
motortk(LEFT _MOTOR, hforw);

printf("bent = %d\n\n", bent1);
wait(300);

printf("value = %d\n\n", IRDT[8]);
wait(300);

printf("value = %d\n\n", IRDT[9]);
wait(300);

if (IRDT[9] < bent1 || IRDT[8] < bent2)

printf("found it");
servo(l, closel);

wait(300);
servo(l, stop);
w=0;
z=1;
findhome();
}
b
}
b
void findhome()
{
w=0;
while (z > 0)
{

IRE OUT =IRE ALL OFF;
IRE OUT = LED4;

read CDS();

CDS[0] = CDSJ[0]/1.5;
CDS[1]=CDSJ[1]/2;

CDS[3] = CDSJ[3]/2;

if(CDS[0] < thresh)
{

if(CDS[3] > thresh)

{

/*printf("right sees\n");*/
motortk(RIGHT MOTOR, hforw);
motortk(LEFT MOTOR, hrev);
wait(500);

/* printf("go straight\n");*/
motortk(RIGHT MOTOR, rev);
motortk(LEFT MOTOR, rev);
wait(800);

}

if(CDS[1] > thresh)

{

/* printf("middle sees, no left\n");*/
go();

}

b

27

if(CDS[3] < thresh)
{

1f(CDS[0] > thresh)

{

/* printf("left sees\n");*/
motortk(RIGHT MOTOR, hrev);
motortk(LEFT MOTOR, hforw);
wait(500);

/*printf("go straight\n");*/
motortk(RIGHT MOTOR, rev);
motortk(LEFT MOTOR, rev);
wait(800);

j

if(CDSJ[1] > thresh)

{

/* printf("middle sees, no right\n");*/
£0();

}

b

if((CDSJ0] < thresh) && (CDS[1] < thresh) && (CDS[3] < thresh))

{

/* printf("doesn't see\n");*/
motortk(RIGHT MOTOR, hrev);
motortk(LEFT _MOTOR, hrev);
wait(800);

/*printf("slow search\n");*/
motortk(RIGHT MOTOR, sforw);
motortk(LEFT _MOTOR, srev);
wait(1500);

}

}
}
void go()
{
IRE OUT =1IRE_ALL ON;
while(x)
{

read CDS();

/* printf("going\n");*/
motortk(RIGHT MOTOR, hrev);
motortk(LEFT_MOTOR, hrev);

if(CDS[1] > 175);
{IRE_OUT = LEDS;
/* printf("stopped\n");*/

motortk(RIGHT MOTOR, 0);
motortk(LEFT _MOTOR, 0);
wait(1000);
IRE OUT = LED®6;
motortk(RIGHT MOTOR, hrev);
motortk(LEFT MOTOR, hforw);
wait(4000);
motortk(RIGHT MOTOR, 0);
motortk(LEFT_MOTOR, 0);
servo(1, openl);
wait(250);
servo(l, stop);
motortk(RIGHT MOTOR, hrev);
motortk(LEFT MOTOR, hrev);
wait(5000);
motortk(RIGHT MOTOR, hforw);
motortk(LEFT _MOTOR, hrev);
wait(2000);
x=0;
z=0;
y=y+l;
counter();
}
}
}

void counter()

{

if (y ==3)
{
IRE OUT = LEDSg;
motortk(RIGHT MOTOR, 0);
motortk(LEFT MOTOR, 0);
while(1)
{
}
}
if(y <3)
{
w=1;
IRE OUT = LED7;
x=1;
findballs();
h

ServaCity .com

S136G Compact Retract
5148 Precision Standard
53001 Precizion B-Bearing
53002 Mini Metal Gear
53003 Stancard

53004 Standard B-Bearing
33101 Micra Precizion
53102 dicra Metal Gear
S3103 Super Micro

53302 1/4 Scale

59001 Coreless B-Bearing
S 01 Coreless hMator
=89102 Coreless Wing Maount
£9202 Coreless B-Bearing
59204 Coreless Hi-Torgue
59303 Coreless M-Gear
S8304 Coreless Hi-Torgue
589402 Coreless B-Gear
589404 Coreless M-Gear
58602 Coreless M-Gear
59150 Digital Lowe Profile
59151 Digital EX-Torgue
59250 Digital All-Purpose
59251 Digital EX-Speed
59253 Digital Hi-Speed
59252 Digital Hi-Torgue
59450 Digital HD-Torgue

SRvoClTY

ServolCity. com Products Futaba Servos! ;23003 Standard :

$10.95

Torque:
4.8VDC: 35 Soz-in. (2 96 kg-cm)

6.0VDC: 44 doz-in. (3.2 kg-cm)

Speed (@ 60 Degrees:

48VDC: 0.25 seconds

6.0VDC: 0.23 seconds

Bearing Type:

Mone (Case serves as bearing)

Case Size:

158" 078" 142" (404 = 19 8 x 36 mm)
Weight: 1200z (36.8 2)

Wire Length: 12" (Including phig)

Futaba

“J* Connector

Red (+)

Black [-)

White (Signal)

Jamecoc Part number 150551

Flex Sensor

| 4142 " - —]
s ————————————-1NC,

Mominal Resistanes
Flex O Degrees: 10 K

Flex 50 Diagracs
30-40K

Proportional increasa in resistance as sensor is bent or flexed. Maximum resistance 30K - 40K chims.

Applications:

Wirita] Reality Data Gloves
Robotic Samsor

Rio-Meinc Sensor

Physics & Enginaaring Sensor

Momiral Resistance 100000 ahms { 10K)
Range 10K to 40K olms
FLXA01 510,00

Images Company

39 Benaca Loop

Staten Island NY 10314
[T1HY GES-ER05 Vioice
(T18) 9E2-6145 Fax

GP2D12/GP2D1s

GP2D12/GP2D15

General Purpose Type Distance
Measuring Sensors

M Faaturas W Outline Dimansions (Uit : o
1. I.-.:-.w iﬂl]ll\:‘."l.:\.: on .lhc -.'ulxrul.'r-:lh:-.'l?'-'-.‘ obijacts, rellectivity =] Fa
2, Ling-up of distince output/distance judgement type
Ilrﬁum-..'.: l.'l.l.||'l|||. Lype fanalog vollags) : GPZOA2 — IE-T— Light detector side
Debacting distanca ; 10 1o &0cm e < Lens caee
Dristance judgement type : GPZONS] TN 2 P_ﬁ [
e - T 1% hde | | | —
Julgement distance : 24em ' L --FT
. - . o
{Adjustable within the range ol 10 o §ocm) — E}: i 2=
3. External control cirewit is unnacessary F!S.J'E-lm 3.9 hole . N
4. Liovw cosl n -) /'I
Light ermitter zidel| 10,1 Conrector 4 3
1475 Malebr . i]
W Applications NE
TH 415 163 SIEFH
L. Tvs r
.
2. Persomal computers —@— =4
)]
3. Cars -—/ i
4. Copiars Terminal correctian
i . + The direreions maksd * ar= i Wy
W Absolute Maximum Ratings descrbed the dimensions of & GHD
(TE=257C. WVer=5W1 lers center pasition. 2 W
- - - + Unspechied tolerance : 40.3mm
Paramatar symhol Rating Unit
supply voliage Ve —0.3 10 +7 v
Cmtpul terminal voltape Vo o [-03mVecHl3] W
Ciperafing lamparature Tops =110 Lo 460 [
Slorage lemperatu e Tuy —400 o 4T [S
Hofm I e absencsof confmaion by d fosion shesls, SHARF takes iy for oy dafacls hal 1 SHARF
e i 7 SO WS boots. GH. CIFTON SFIAFE, o 10 O 1 At A SO o) Sh s Eors A o ShAHF Bt
Inkemat Intamsl address for Elecionic Componants Group hiipohwwe. sharp. oo placg ¢

32

GP2D12/GP201s

W Recommended Operating Conditions

Parameter

Symbal

Rating

LInil

Ciperating supply vollage Wer

4.5 I +5.5

v

M Electro-optical Characteristics

[Ta=257C, Vor=3V]

Paramaten Symbol Conditions MIHN. TVT. MAX. Uil
Diskince messuring mnee a " 1o = &0 ci
GP2012 Vo 1=80cm ! s 04 nas v
Output lermimal vokag: aP201s ‘-:-u Cmtput vollage at High : Wig —0.3 - - "-:
Vi Ontpul vellage at Low - — .6 Y
Gilferenca of oot vliage [GP2012 | Ave [output change at 1=80cm o liem " 175 2.0 2.25 v
Dibm: chabriti doopt. | @p20D18 Vo e 21 24 77 cm
Averlge Dissipation current Iec 1=scm - 33 50 ms
Wt L : Dintmcs ta raflactive chjoct
flactiva chject : Whits paper [Mada by Keshik Co. Ll groy cand B-27 - white fuce, wHective ratic ; 995
ships the devica afiarthe following adjutnent : Chitput svichisg distance L=24en+Tom mut be memmsd by the s or
phial swmmor pyatem
#4 Dutpust awitehirgs has o hystorcaia wickh. Tha distancs specified by Yo should be tha ona with which the aatput L ewitches b e oatput H
Fig.1 Intarnal Block Diagram Fig.2 Intarnal Block Diagram
GP2D12 o GP2D1S
Gll_\lﬂ_'l:' Vs ,5.,5"' G;J\E' Ve _;":-'v'
= s
(L]] = ,
--=3 = T
! ;E«I:‘:-'I.ang | | velage ﬂ: ?E::x:iuq | | veltage =
jart '! H o requlalor =T S reguiator | §1zna
Ccilalion Twv. Ciscilation T,
cirouit Aralog oupul circui Digital cutpul
H LED drive H LED drive
n : =
\-E_ circu . EE_ circul
LED = - LED
Cistances measunng I1C Dstancs measunng |C

Fig.3 Timing Chart

Foner suppy) |
3B Ame+8. Gme
I:-i:l.:u-oF : — — .
m;:g Firs measanmrent e et | lll" L L | :
Vi (Cutput) Urstable culput First cutpul :I: Second culpul ﬂlll th Ol.lp.lll
Goms" " iGP201 T

7 e Sms” TGP0 5

33

SHARP GP2DM12IGPEZON S

Fig.4 Distance Characteristics

GP201S
1 1 1 1 1
N .
— 1 1 1
Cutput H [Dtection] l .
= Hystersis widih oo
= 1 1 1
= o
1 1 1
L+ H I (Hon detection)
Clulput L 1 [1
0 & 1D 15 20 [e5 a0 & 40 46 &0 G5 B0 €5 70 76 GO
Output swatching point distarce
L=2443am
Distarce to reflective object L {cm)
Fig.5 Analog Qutput Voltage vs. Surfacs Fig.& Analog Output Voltage vs.Distance to
luminance of Reflective Object Raflective Object ~
GP2012 GFzD12
2R Il | _ & Crafi | Refectiviby
=10cm I Whils oos
o L — i Gy 152
O N - e’
. gy cosdm P27 mn ight 2 a0
[irefscies ratio N&./ﬁ.._u-‘n“: u =
_5. i iranes & ‘\
-.T_- 15 | rraiar : 16 \
B L =2
% 12 L=30cm ..-""J %T 1.2 \\
. '|' —rT 2 Gy
2 osf— — Eooe [iy
2 ; —— < -
04 i 04 o
LS00 While
1
W0 A0 Gl 3000 L0000 1Ze0 140 o W 20 30 & s & 70 &0
Surhice ilhemimnes of reflective object (k) Distanee o reflective objeci L (cm)
Fig.7 Analog Qutput Voltage vs. Ambiant Fig.8 Analog Output Voltage vs.Dataction
Temperature N Distancea ~
GPI012 GP2012
| | Roalak Ca, LWy oo
2 : I.! N 2 |;|; :.'h
- 24 L b _. 24 -
Y =
-: = L=10cm I|r Skl [
2 el L=15cm e T 1 -
5 e S ol T
Z L=2m] | | | s 1|HI
g 2 L= I-m"_;- m 3 .2 f—p L=2oam A
g Le=300m T e o) [
I e i SO IS Ly N
El : 1 ———1 2 T L=E0cm
e e e 4 YT I
. o b
I 7 '. il g
L= L=70om | Le=80cm . - B
3010 O IO 20 W0 40 %O &0 70 B0 S0 =% 4 1 -7 10 1 2 2 4 5

Ambient empertune T, ("C) Drelection digionce X (om)

Application Circuits
. ___|

NOTICE

&The circuit application examples in this publication are provided to explain representative application s of
SHARP devices and are not intended 1o puarantes amy circuit design or license any intellectual properiy
rghts. SHARP takes no responsibility for any problems related 1o any intelleciual propery rght of a
third pariy resuliing from the use of SHARP's devices,

@ ontac SHARP in order to obtain the latest device specification sheets before using any SHARP d evice,
SHARF reserves the right to make changes in the specifications, characteristics, data, materials,
structure, and other contents described herein at any time without notice in order o improve design or
reliakiliiy. Manufacturing locations are also subjed io change without notice,

@0 bzerve the fallowing points when using any devices in this publication, SHARP takes no responsibiliy
for damage caused by improper use of the devices which does not meet the conditions and absoluie
maximum raiings o be used specified in the relevant specification sheet nor meet the following
conditions:

(i) The devices in this publication are designed for use in peneral electronic equipment desions such as

— Personal computers

— Office automation equipment

—Telecommunication equipment [terminal

— Test and measurement squipment

— Indusirial cantral

— Audio visual exuipment

— Consumer electronics

(iiiMeasures such as failsafe function and redundant design should be taken to ensure reliability and
safety when SHARP devices are used for or in connection with equipment that requires higher
reliakility such as:

—Trangpartation control and safety equipment (ue., aircraft, trains, auiomobiles, et

—Traffic signals

— Gas leakage sensor breakers

— Alarm equipment

— Various safely devices, efe.

({iidSHARP devices shall not be used for or in connection with equipment that requires an exiremely
higch level of reliability and safety such as:

— Space applications

—Telecommunication equipment [trunk lines]

— Nuclear power contral equipment

— Mexdical and other life support equipment (e, saubal,

@ ontact a SHARP representaive in advance when intending to use SHARP devices for any "specific!
applications other than those recommend e by SHARP or when it is unclear which category mentioned
above controls the intend ed use,

@i the SHARP devices listed in this publication fall within the scope of strategic products deseribed in the
Foreign Exchange and Foreien Trde Contral Law of Japan, it is necessary o obtain approval o export
sich SHARP devices.

&7 his publication is the proprietary product of SHARP and is copyrighted, with all rights reserved. Under
the copyright laws, no part of this publication may be reproduced or transmitted in any formm or by any
means, eleciranic or mechanical, for any purpose, in whole or in part, without the express written
permission of SHARP. Express written permission is also required before any use of this publication
may be made by a third party.

@ ontact and consult with a SHARP representative if there are any questions about the contents of this
publication.

115

35

