Motion Sensing with the Pyroeletric Sensor

A large amount of time was spent, trying to provide an accurate and reliable way
to detect humans. 3 Attempts were made until | finally found a working algorithm
and sensor to provide such an accurate and reliable detection. The first and
second attempts used a different pyroeletric sensor but used the same detection
algorithm with a slight variation. The third attempt used the same sensor as the

second attempt but used a different detection algorithm.

Attempt # Sensor Used Algorithm Used
1 1 1&1b

2 2 1c

3 2 2

Sensor 1 - HVW Technologies PIR Sensor

4 N
PIR >

5V
JJ +3 e Passive Infrared Sensor

1 9 Pin on

Microcontroller

<Ini3ut | o Distance: 5m
}10}{ Ohm ¢ Pulses high on signal when motion is detected for

approximately 1 second

¢ Range: 60° Omnidirectional

- e $10.50 from hvwtech

¢ http://www.hvwtech.com/dnload/PIRManual10.pdf

The pir sensor will be mounted 8” above the ground on top of a servo on the serverBOT.
To provide a higher angle of detection along the horizon, the pir sensor will be mounted
at a 45 degree angle. This elevated angle will set the elevated detection angle from 0-30

degrees to 30-60 degrees from the horizon.

Horizon

Horizon

60 degrees 45 desree offset

A cut out aluminum can will be used to limit the active area of the pir sensor to
approximately 15 degrees. The device is shaped like a box and fits right over the pir
sensor assembly. In the center of this device is a rectangular cutout to limit the azimuth of

detection for the pir sensor.

Aluminum shield dimentions:
LxWxH =1.57x1"x1”

Aluminum shield with
I cutout hole to limit the

azimuth to < 15
degrees.

Sensor 2: Eltec 443-2 Pyroelectric Detector

e Analog Output

e More immune to IR noise

e Better Fresnel Lens

¢ Analog output gives more flexibility and

allows the user to set the thresholds of

detection properly

o Floats around 2.5V when there is no

detection and voltage moves up or down
depending on the direction of motion across

the dual elements
Fin Descrnpticn

e http://www.acroname.com/robotics/parts/R1- 1 W+
2 O
) 3 25WRef
442-3.html 4 Chrond foase)

The eltec 443-2 was mounted the wedge the same way the first sensor was

mounted except the fresnel lens provided with the eltec 443-2 was cone shaped.

Sensing Algorithm 1

The basic theory of human detection with a direction vector is to slowly sweeping
while pausing in between each increment to see if a human was sensed at that
directional vector. The design | created is a slight variation of this basic theory. In
my design | will sweep the pir sensor in a constant velocity twice, once in the
clockwise direction and once in the counter-clockwise direction. While generating
a sweep the uController will record the first detected value in each direction. By
using this method in combination with fuzzy logic, the uController can determine
which direction the human will be. This also creates a basic algorithm in which
there are multiple humans and determines which direction the serverBOT should
head. This will provide 8 possible scenarios. In the following chart, the 8 possible
scenarios are depicted with the black dot representing a person or a cluster of

people.

Using these 8 possible scenarios and the concept of fuzzy logic, the uController
will determine which direction to head towards. The range of detection for the pir
sensor is from $0E to $21 providing the following boundaries. Using the values
on the left of the table below to produce values for the clockwise and counter-
clockwise detection. It is placed into the table on the right to provide a fuzzy logic

response to determine the direction to head towards.

Left — $OE to [cw:ccw [Left [Middle [Right
$12
Middle - $15to [l eft IL ILm Im
$1B
Right - $1Cto IMiddle LM M [RM
$21

[Right M RM R

Sample Code

;¥ Subroutine - Motion_Sweep

;* Description: This subroutine is used to sweep the motion sensor CW then CCW

7 as the motion detector is being swept, only the first value obtained
in each direction of motion is recorded resulting in two values

’
*

¥ one stored in DET_CW, and DET_CCW
;¥ Uses: TEMP
;¥ Output: DET_CW, DET_CCW
Motion_SWEEP: sbr STATUS, $01 ; Setup STATUS to show CW Sweep
clr DET_CW ;
clr DET_CCW ;
rcall TIM2_PWM ; Set Timer2 to PWM Mode and PortD OC2 to output
Idi TEMP, $0E ; Set Servo to Left Most Position

mov MOT_LOC, TEMP
out OCR2, MOT_LOC

rcall Motion_Delay ; Wait until SERVO SWINGS to leftmost position
rcall INTO_EN ; Enable External Interrupt O

inc MOT_LOC ;
SWEEP_LP1: out OCR2, MOT_LOC ; Incremental Clockwise Servo Swing

rcall Motion_Delay

inc MOT_LOC

mov TEMP, MOT_LOC

cpi TEMP, $22 ; Check for Rightmost Position
brne SWEEP_LP1

cbr STATUS, $01 ; Setup STATUS to show CCW Sweep
SWEEP_LP2: out OCR2, MOT_LOC ;

rcall Motion_Delay

dec MOT_LOC

mov TEMP, MOT_LOC ;

cpi TEMP, $0E ; Check for Leftmost position
brne SWEEP_LP2

rcall INTO_DIS ; Disable External Interrupt 0

Idi TEMP, $18 ; Return to Neutral Position

out OCR2, TEMP

rcall Motion_Delay ; Wait unt|I servo swings to neutral position
ret

’* Subroutine - External Interrupt 0 Enable
> Descrlptlon Enables the External Interrupt 0 and sets it to trigger off of the

rising edge

INTO_EN: push TEMP

Idi TEMP, $03 ; Set INTO to trigger off of rising edge
out MCUCR, TEMP

Idi TEMP, $40 ; Enable External Interrupt O
out GIMSK, TEMP

pop TEMP

ret

;* Subroutine - External Interrupt O Disable
;* Description: Disables the External Interrupt 0

INTO_DIS:

Idi TEMP, $00 ; Disable External Interrupt O
out GIMSK, TEMP
ret

;¥ Interrupt - External Interrupt O Handler
> Descrlptlon When an external interrupt occurs on INTO, a motion is detected by

’
*
s

o

the sensor. The external Interrupt will check the current direction
and the direction vector to make sure it is the first value for that
direction and if so it records it else it exits

;¥ Uses: TEMP
EXT_INTO: push TEMP ;
; mov GENIOI, TEMP ; Debug test, output all values
; rcall HEX2ASCII ; detected and exit interrupt
; pop TEMP ;
; reti ;
sbrc STATUS, 0
rjmp EXINTO_CW
EXTINTO_CCW: st DET_CCW ; Check to see if First Value of CCW
brne EXINTO_EX ; If not exit
in TEMP, OCR2
mov DET_CCW, TEMP ; Else record first value on CCW
EXINTO_EX: pop TEMP ;
reti
EXINTO_CW: tst DET_CW ; Check to see if First value of CW
brne EXINTO_EX ; If not exit
in TEMP, OCR2
mov DET_CW, TEMP ; Else record first value on CW

fjmp EXINTO_EX

Sensing Algorithm 1b

Algorithm 1b is a variation in algorithm 1 in the sense that when a hit was
detected, the sweeping stopped and waited another 4 seconds in the same
position of the hit. If another hit was detected than it would count as a human if it
wasn’t detected within the timeout period, then the servo would continue to
sweep the motion sensor.

Sample Code

;¥ Interrupt - External Interrupt 0 Handler
* Descrlptlon When an external interrupt occurs on INTO, a motion is detected by
the sensor. The external Interrupt will check the current direction
and the direction vector to make sure it is the first value for that
direction and if so it records it else it exits

’
o

s
*

* Uses: TEMP
EXT_INTO: push TEMP ;
; mov GENIOI, TEMP ; Debug test, output all values
; rcall HEX2ASCII ; detected and exit interrupt
; pop TEMP ;
; reti ;
sbrc STATUS, 0 ; If status bit0 = 0 then execute CCW
rjmp EXINTO_CW ; else execute CW
EXTINTO_CCW: st DET_CCW ; Check to see if First Value of CCW
brne EXINTO_EX ; If not exit else record first value on CCW
rcall MOT_ErrAv ; Call Motin Detection Error Avoidance
tst GENIOI ; Check GENIOI
brne EXINTO_EX ; If GENIOI != 0 then bad value and exit
in TEMP, OCR2 ; record first value on CCW
mov DET_CCW, TEMP
EXINTO_EX: pop TEMP ;
reti
EXINTO_CW: tst DET_CW ; Check to see if First value of CW
brne EXINTO_EX ; If not exit else record first value on CW
rcall MOT_ErrAv ; Call Motion Detection Error Avoidance
tst GENIOI ; Check GENIOI
brne EXINTO_EX ; If GENIOI != 0 then bad value and exit
in TEMP, OCR2 ; record first value on CW
mov DET_CW, TEMP
rjmp EXINTO_EX
; Error Avoidance alrogithm
MOT_ErrAv: rcall INTO_DIS ; Disable EXT_INTO so it cannot be
; retriggered once global interrupts
; are re-enabled for nested interrupts
cbi DDRD, 2 ; Make sure PORTD bit 2 is set to input
EXINTO_CLR: sbic PIND, 2 ; Wait for EXT_INTO: falling edge

rimp EXINTO_CLR

cbr STATUS, $02
andi STATUS, $FD

; Clear Timeout bit in STATUS

sei ; enable global interrupts for TIMER2_INT

CALL_TIMER1 MOT_Timeout,$02 ; MACRO MOT_Timeout
EXINTO_WTH1: sbrc STATUS, 1 ; Check if Timer Timeout has occured
rjmp MOT_ErrAvEX2 ; If so Exit External Interrupt
sbis PIND, 2 ; Check for rising edge on ext_int0
rjmp EXINTO_WT1 ; Wait for Timeout condition or another
; trigger on PORTD bit 1
MOT_ErrAvEX: cli ; Disable Global interrutps so it cannot
; intefere with the rest of this interrupt
rcall INTO_EN ; Re-enable EXT_INTO
clr GENIOI
ret ; return from subroutine

MOT_ErrAvEX2: cli
rcall INTO_EN
ser GENIOI
ret
;End Error Avoidance Algorithm

Sensing Algorithm 1c

Sensing Algorithm 1c is a slight variation of Sensing algorithm 1. Since a analog
signal is now used to detect motion the code had to be modified to provide a
check on the analog port while swinging. The provides less code because it did
not need to use the external interrupts.

Sample Code

;* Subroutine - Motion_Sweep

> ;* Description: This subroutine is used to sweep the motion sensor CW then CCW

; as the motion detector is being swept, only the first value obtained
¥ in each direction of motion is recorded resulting in two values

> one stored in DET_CW, and DET_CCW

;¥ Uses: TEMP

;¥ Output: DET_CW, DET_CCW

iVIotion_SWEEP: rcall Init_ADC

sbr STATUS, $01 ; Setup STATUS to show CW Sweep

clr DET_CW ;

clr DET_CCW ;

rcall TIM2_PWM ; Set Timer2 to PWM Mode and PortD OC2 to output
Idi TEMP, $0E ; Set Servo to Left Most Position

mov MOT_LOC, TEMP
out OCR2, MOT_LOC

Idi TEMP2, $08 ;
rcall Motion_Delay ; Wait until SERVO SWINGS to leftmost position

inc MOT_LOC ;
SWEEP_LP1: out OCR2, MOT_LOC ; Incremental Clockwise Servo Swing

Idi TEMP2, $08
rcall Motion_Delay

|"ca|| Motion_Detect ; Check Motion_Detector

inc MOT_LOC ;
mov TEMP, MOT_LOC

SWEEP_LP2:

*
’

cpi TEMP, $21
brne SWEEP_LP1

Idi TEMP2, $0C

rcall Motion_Delay
dec MOT_LOC

cbr STATUS, $01

out OCR2, MOT_LOC

Idi TEMP2, $08
rcall Motion_Delay

rcall Motion_Detect
dec MOT_LOC

mov TEMP, MOT_LOC
cpi TEMP, $0E

brne SWEEP_LP2

ret

; Check for Rightmost Position

; Setup STATUS to show CCW Sweep

; Check Motion_Detector

Check for Leftmost position

;¥ Interrupt - External Interrupt 0 Handler
* Descrlptlon When an external interrupt occurs on INTO, a motion is detected by
the sensor. The external Interrupt will check the current direction
and the direction vector to make sure it is the first value for that
direction and if so it records it else it exits

s
o

s
*

= Uses: TEMP

iVIotion_Detect:

MOTDET_CCW:

CCW_REC:

MOTDET_EX:

CCW_ALT:

MOTDET_CW:

CW_REC:

CW_ALT:

push TEMP
sbrc STATUS, 0
rjmp MOTDET_CW

tst DET_CCW
brne MOTDET_EX

Idi GENIOI, $02
rcall ADC_OneRun
cpi GENIOI, $00
;brne MOTDET_EX
brne CCW_ALT

in TEMP, OCR2
mov DET_CCW, TEMP

pop TEMP
reti

cpi GENIOI, $01

brne MOTDET_EX
mov GENIOI, GENIOR
cpi GENIOI, $AF

brlo CCW_REC

fimp MOTDET_EX

tst DET_CW
brne MOTDET_EX

Idi GENIOI, $02
rcall ADC_OneRun
cpi GENIOI, $03
;brne MOTDET_EX
brne CW_ALT

in TEMP, OCR2
mov DET_CW, TEMP

rimp MOTDET_EX
cpi GENIOI, $02
brne MOTDET_EX

; If status bit0 = 0 then execute CCW
; else execute CW

; Check to see if First Value of CCW
; If not exit else record first value on CCW

; Call ADC OneRun with ADMUX set to port2

; $00
; If GENIOI != 0 then bad value and exit
; If GENIOI != 0 then bad value and exit

; record first value on CCW

; Secondary Threshold for CCW = $01 72
; if higher byte != $01 then exit

Check if lower byte < $72
* If not exit

; Check to see if First value of CW
; If not exit else record first value on CW

; Call ADC_OneRun with ADMUX set to port2
; $03

; If GENIOI = 0 then bad value and exit

; If GENIOI != 0 then bad value and exit

; record first value on CW

; Secondary Threshold for CCW = $02 80
; if higher byte != $01 then exit

mov GENIOI, GENIOR ;
cpi GENIOI, $80 ; Check if lower byte < $80

brlo MOTDET_EX ; If so exit
rjmp CW_REC ; else record value

Sensing Algorithm 2

Algorithm 2 uses status bits are used to indicate a motion detector hit and a
direction of motion detection. In one detection cycle, only one clockwise or
counter-clockwise sweep is made. The sweep that is made in that detection cycle
is determined by the status bit. While the servo is sweeping the motion detector,
the motion detector analog values are checked for a human (hit). If there is a hit,
then the detection cycle ends and the results are analyzed making a decision to
turn or not. If there are no hits detected when the servo reaches the end of the
motion sweep, the status bit is toggled so that the next motion sweep goes in the
other direction. Example: If the first sweep is CW, and no hits are found then the
next week will be a CCW sweep.

Since there is only one sweep, the range fro $0E-$21 on the single sweep is

compared to values to generate the 5 degrees of turning resolution.

Left - SOE-$14
e Middle Left - $15-$17
e Middle - $18-$1B
e Middle Right - $1C-$1E
e Right - $1F-$21
In order to provide a smarter sweeping and detection algorithm, if a hit was made

in the middle left or left direction, the status bit was changed so that the sweep

starts in the left. If a hit was detected on the middle right or right direction then
the sweep would start from the right.

Algorithm 2 also counted the number of No Detects, and when a certain number
of No Detect conditions was met, it would randomly turn serverBOT in any
direction.

Algorithm 2 is different from algorithm 1 because the motion detector is swept at
a faster speed, and swept while the serverBOT is in motion. Algorithm 2 also
produces 1 sweep per detection cycle. With algorithm 1, the behavior of
serverBOT would check the motion detector and then check the other analog
ports in sequential order. In algorithm 2, since the serverBOT is in motion while
detecting for a human hit, the other analog ports are checked at the same time
the motion detector is checked.

Sample Code

;¥ Subroutine - Motion_Sweep

* ;* Description: This subroutine is used to sweep the motion sensor CW then CCW

¥ as the motion detector is being swept, only the first value obtained
; in each direction of motion is recorded resulting in two values

¥ one stored in DET_CW, and DET_CCW

;¥ Uses: TEMP

;* Output: DET_CW, DET_CCW

’
o

Motion_SWEEP: ;DISP_STRING nxtline
cbr STATUS, $08 ; Clear Status bit 3
; When Status bit 3 is set then hit recorded
cbi PORTB, 3
sbi PORTC, 0
cbi PORTC, 0

clr MD_HIT

;mov GENIOI, MD_HIT
;rcall HEX2ASCII
;DISP_STRING nxtline

sbrc STATUS, 4 ; If Status bit4=1, Jump to CCW_SETUP
rjmp CCW_SETUP ;
CW_SETUP: Idi GENIOI, MDET_LM ; else CW_SETUP
sts MDET_ST, GENIOI ; Start at Leftmost
Idi GENIOI, MDET_RM ;
sts MDET_END, GENIOI ; End at Rlghtmost
SWEEP_ST: rcall TIM2_PWM ; Set Timer2 to PWM Mode and PortD OC2 to output

Ids MOT_LOC, MDET_ST ; Set Servo to Start Position
out OCR2, MOT_LOC ;

SWEEP_RST:

SWEEP_LP1:

SWEEP_EX:

CCW_CH:

CCW_SETUP:

*
’

Idi TEMP2, $08
rcall Motion_Delay

rcall CA_HH

Idi GENIOI, $02
rcall ADC_8bit
andi GENIOI, $F0
cpi GENIOI, $80
brne SWEEP_RST

sbrc STATUS, 4

dec MOT_LOC

sbrs STATUS, 4

inc MOT_LOC

out OCR2, MOT_LOC

Idi TEMP2, $03
rcall Motion_Delay
rcall CA_HH

fcall Motion_Detect
sbrc STATUS, 3
rjmp SWEEP_EX

sbrc STATUS, 4
dec MOT_LOC
sbrs STATUS, 4
inc MOT_LOC

Ids TEMP, MDET_END
cp TEMP, MOT_LOC
brne SWEEP_LP1

sbrc STATUS, 4
rjmp CCW_CH
sbr STATUS, $10
ret
cbr STATUS, $10
rjmp SWEEP_EX

Idi GENIOI, MDET_RM
sts MDET_ST, GENIOI
Idi GENIOI, MDET_LM
sts MDET_END, GENIOI
rjmp SWEEP_ST

; Wait until SERVO SWINGS to Start Position

; Collision Avoidance Human Hit Handler
; Wait for RESET value

If Status bit4=1,CCW
CCW = dec MOT_LOC
If Status bit4=0,CW
; CW =inc MOT_LOC
; Incremental Clockwise Servo Swing

; Delay

; Collision Avoidance Human Hit Handler

; Check Motion_Detector

; If Status bit3=1, HIT exit SWEEP

If Status bit4=1, CCW

CCW =dec MOT_LOC
If Status bit4=0, CW

CW =inc MOT_LOC

; TEMP = MDET_END
; Compare TEMP to MOT_LOC

If Status bit 4=1,CCW
CCW = Jump to CCW_CH
CW SET STATUS bit 4

; CCW = CLR STATUS bit 4
; exit

; CCW_SETUP
; Start at Rightmost

End at LéftMost
; Begin Sweep

;¥ Interrupt - External Interrupt 0 Handler
* Descnptlon When an external interrupt occurs on INTO, a motion is detected by
the sensor. The external Interrupt will check the current direction
and the direction vector to make sure it is the first value for that
direction and if so it records it else it exits

’
o

s
*

* Uses: TEMP

IVIotion_Detect:

MOTDET_CW:

MD_REC:

push TEMP

Idi GENIOI, $02
rcall ADC_8bit
;push GENIOI
;rcall HEX2ASCII
;pop GENIOI

sbrc STATUS, 4
rjmp MOTDET_CCW

cpi GENIOI, $92
brmi MOTDET_EX

sbr STATUS, $08

; If status b|t4 1, CCW
CCW = Execute CCW Detection

; $90 = Hit @ MDelay=$03
; If GENIOI-$A0 < 0, not a valid value

; set status bit3=1 for hit

MOTDET_EX:

MOTDET_CCW:

in TEMP, OCR2

mov MD_HIT, TEMP
sbi PORTB, 3
sbi PORTC, 0
cbi PORTC, 0

pop TEMP
ret

cpi GENIOI, $70
brpl MOTDET_EX
rjmp MD_REC

; record value into DET_CW

- If GENIOI-$6B > 0 not a valid value
; record hit value

