

Final Report
EEL5666 4/23/02

Justin Rice

 2

Table of Contents

Abstract 3
Executive Summary 4
Introduction 5
Integrated System 6
Mobile Platform 7
Actuation 8
Sensors 9
Behaviors 14
Experimental Layout and Result 16
Conclusion 19
Documentation 21
Appendices
 A) 555 Timer Circuit Diagram 22
 B) Sharp Contacts 23
 C) PIC 16F877 Overview 24
 D) Leader Code 25
 E) Follower Code 31

 3

Abstract

 My goal for this project was to build a pair of autonomous mobile robots capable
of working together. In order to work together they need to be capable of locating and
following the other robot, and have some sort of communication system. To demonstrate
their capabilities, the Lemmings play a game of follow the leader. One robot will follow
the other until the leader is trapped in a corner or hit by something. They will then switch
roles, turn around, and continue moving. Since I had to build two robots, the Lemmings
were both built using the same simple design and are modeled after the TJ.

 4

Executive Summary

 The Lemmings are a pair of autonomous robots controlled by a PIC

microprocessor. I designed the board using a proto-board from Jameco and a PIC16F877.

The PIC16F877 is made by Microchip and can be purchased from Jameco for $10. This

PIC has 8K of internal flash ROM, 8 A/D input ports and runs at 8 MHz. All of the

software is written using PIC BASIC PRO.

Actuation is provided by two Futaba S3003 servos per robot. The object

avoidance and the following behaviors rely on three 38 kHz Sharp cans on each robot. A

separate LM555 timer is used to generate the 38 kHz modulation. A simple

communications system is implemented using a microphone and a LM386 audio

amplifier. A bank of three LED’s and a magnetic speaker provides feedback.

The Lemmings have identical hardware configurations. The only difference in the

software is that one Lemming starts out as a leader, and the other Lemming is a follower.

When the leader is hit by something or becomes trapped in a corner it beeps its speaker

briefly and then turns around. The follower Lemming will hear the beep on its

microphone circuit and also turn around. At this point the robots will both switch modes;

the leader will become the follower and the follower becomes the leader and takes off in

a new direction.

 5

Introduction

 My main goal in this course was to build a pair of autonomous robots that are

capable of working together. Most (cheap) robots are only capable of one or two simple

behaviors, and I wanted to create two robots that can coordinate their activities. I took

EEL4744 last semester, so I was feeling confident about my abilities and decided to use a

different chip (the PIC16F877) to control my robots. This decision worked out in the end,

but slowed down the start of my project.

 The Lemmings employ a combination of analog IR and sound to coordinate their

movements and to communicate. I originally intended to use a Sharp GP2W0004YP

IrDA transceiver for digital communications between the robots, but was unable to get

the device working. The microphone/speaker system is a fallback idea to provide simple

communications. The Lemmings are able to move about a room while staying fairly close

to one another and the microphone allows them to avoid becoming trapped in corners.

 6

Integrated System

 The Lemmings are based on the PIC16F877 microcontroller running on a

prototyping board built by me. The PIC acts as the brains and control the robots based on

inputs from the various sensors. The PIC contains 356 bytes of RAM and 8K of flash

ROM. Two PWM pins allow for easy output waveform generation and built in A/D pins

allow for sensor input. Bump sensors determine when an obstacle is hit, and IR is used to

avoid objects at a distance. The same IR sensors are also used for following the leader

using different software controls. The robots are also able to send simple messages using

the sound from a magnetic speaker.

 The Lemmings have two basic modes of operation: leader and follower. One

robot will start out in each mode. The leader robot will wander around avoiding obstacles

and broadcasting its location using IR. The follower robot will try to pick up the IR signal

from the lead robot. When the signal is detected it will begin to follow the leader. The

Lemmings then move around the room until the leader becomes trapped in a corner or

runs into something that it could not detect. The robots then trade jobs after the leader has

broadcast an alert using its speaker. The Lemmings then begin to advance in the opposite

direction of the obstacle that confused them.

 7

Mobile Platform

 The hardware design for each Lemming is identical to allow them to easily

change roles. The platform design is based on the TJ; basically a small circle of wood

powered by two centrally mounted servos. The platform was designed in AutoCAD and

cut out by the T-Tech machine. My circuit board is mounted on the top of the robots, and

the sensors are located around the edge of the top surface. The battery pack is located at

the rear; underneath the circuit board and directly above the ground to give the robot

good balance. The rear of the robot drags on the ground, weighed down by the batteries.

The central location of the servos allows the Lemmings to turn in place. Sharp turns are

often required by the follower robot to keep pace with the leader. Some of the wiring can

be hidden from sight by running it through an access hole cut in the center of the top

circle of the robot. The proto board is placed directly above this hole. One problem with

my design is that since many of my headers are located near the edges of my board there

are some wires that cannot be hidden.

The Lemmings: Figure 1

 8

Actuation

 The only actuation required by the Lemmings is simple movement. This can be

accomplished simply and fairly cheaply using two wheels driven by hacked servos. I used

Futaba S3003 servos bought from www.servocity.com for $10 apiece. They provide

44.4oz- in of torque at 6 V. I soldered a wire to the fourth battery in my eight-pack and

ran it to the servo power supply. This created an unregulated 5 V supply. I used the

standard hack to cut away the potentiometer limits and make the servos freely rotate.

The PIC has two built in PWM pins, but I just used the PULSOUT command to

generate the servo control signals. The PIC BASIC language has a PWM command, but

nothing else can be done while this PWM is generated. I set my servos up using the

PULSOUT command because that was the best way I saw to handle it at the time. To

create the delay between pulse updates, I have a loop that checks my bump sensors and

microphone readings for 20ms. Every 20 ms the motor values get updated. This is faster

than is usually recommended, so I implemented the smoothing algorithm shown in class.

old_value = ((19*old_value)+desired)/20

I would have preferred to use a constant value much greater than 19, but the division

command on the PIC can only handle integers. For constants greater than 20, the results

of the division were often truncated and the motors would never reach the desired speeds.

Later I discovered that you could directly modify the settings on one of the

internal timer registers and have a PWM output that is generated in the background. This

would have been a cleaner solution.

 9

Sensors

 The sensors used by the Lemmings gives them basic obstacle detection and

avoidance skills. The sensors also allow the Lemmings to follow each other and send

simple messages.

Bump Sensors:

These are standard bump sensors on a voltage divider network used to determine

when the robot has hit an object. There are three sensors at the front of each Lemming

and one at the rear. A somewhat flexible ring of wood around the robot allows a bump to

be registered even when the collision does not occur directly on a switch. The bump

signal is read into analog pin A3.

Bump Sensor Data:

Bump Sensor Resistor Value Reading

Left 47 kΩ 44

Center 20 kΩ 78

Right 10 kΩ 128

Rear 100 kΩ 22

IR Sensors:

 The IR sensors are used for two purposes: obstacle avoidance and following.

Three hacked Sharp GP1U581Y IR detectors working at 38 kHz are used. The hack for

the 38 kHz detectors is the same at the 40 kHz hack available on the IMDL web site. I

was able to order these detectors from www.goldmine-elec.com for $1.50 each even

though they have not been made in a few years. Figure 2 shows the response of the Sharp

cans to obstacles placed a certain distance away.

 10

Figure 2

Obstacle avoidance requires that the sensors be located at the front of the robots

and point in the direction of motion. However, since the second robot must be able to find

the lead Lemming, a larger range of coverage is necessary. The center Sharp can looks

directly forward. The left and right cans point about 60 degrees away from the center.

The sides facing the center are slightly collimated to create more exclusive zones of

detection. Figure 3 shows the final layout of the IR detectors.

Figure 3

 I used analog ports A0, A1, and A2 for the left, center, and right IR devices.

Sharp Can Performance

0

20

40

60

80

100

120

140

0 20 40 60 80

Distance (cm)

A
n

al
o

g
 R

ea
d

in
g

Reading

 11

Each detector has an IR LED mounted underneath it t be used for object detection. These

LED’s are modulated using the output of a LM555 timer to 38 kHz (see Appendix A).

The reset pin of the timer is tied to pin B3. When the Lemming is in follower mode, it

shuts off the IR so that interfering signals are not generated. A separate IR LED is

mounted facing the rear of the Lemming. It is modulated in software using a PWM pin.

 This setup would allow the object avoidance and the following systems to be

easily moved to different frequencies of IR if new detectors were incorporated. Putting

these systems on different frequencies would give the Lemmings better performance, but

time and money were limiting factors.

IrDA Communications:

 My original goal was to implement a digital IR communication system that would

not interfere with any of the other IR systems. The Sharp GP2W0004YP is potentially an

excellent device for this purpose. It receives a serial input and outputs the data at speeds

from 2.4 kb/s to 115.2 kb/s, modulated at 1.5 Mhz. I briefly had a pair of these devices

working, and the performance was great. I was able to transmit data at a range of up to

1.5 meters within a 60-degree cone. There seemed to be no interference caused by

fluorescent or incandescent lights. Unfortunately I connected my computer serial link to

the same headers at one point and blew my IrDA chip. I spent a great deal of time

working with this device, but I was unable to make the system work again.

 I was able to get five free sample units by calling the Clearwater Sharp

distributor. Marcus Amicci (AmicciM@sharpsec.com) noticed my order, and realized

that the units are very tiny and require surface mounting. He realized that this would be a

problem for me, so he sent me an additional five units that were pre-mounted on

 12

development boards. All I needed to do was solder on some male headers instead of

dealing with surface mount, so I really appreciated the extra effort from Marcus.

 I contacted Sharp to see if an employee there could help me with my problems.

Everyone I talked to was eager to help, and I quickly found someone who understood the

device to help me. I spent a lot of time talking to Robert Stuart (Stuart@sharpsec.com),

but I seemed to be doing everything correctly. Robert was able to send me a lot of

information and help me better understand how the device operates, but we were unable

to determine what I was doing wrong. Even though I was unable to get my chips

working, I did notice several problems with their technical documentation that Robert

was able to correct for future users.

Sound Detection:

 Since I was unable to use the IrDA chips for communications, I needed a quick

fix that would allow a simple form of messages. The main problem was that when the

lead robot encounters an obstacle, sometimes it needs to turn around or stop. The

follower Lemming would just keep on going and ram into the leader. I needed a way to

alert the follower that the leader was stuck. I decided that a system of speakers and

microphones would be suitable. All of the parts are easily available at Radioshack, which

was a big plus given the small amount of time I had remaining after failing to get IrDA to

work.

In order to develop a usable signal from the microphone output, it is necessary to

use an amplifier. The book “Mobile Robots: Inspiration to Implementation” by Joseph

Jones provides a simple amplifier circuit for a microphone using a LM386 audio op-amp

(Figure 4). The output of the LM386 amplifier is read on analog pin A4. Using this

 13

circuit, the speakers I am using generate a digital value of 240 at a distance of about ½ of

a foot.

Figure 4

 14

Behaviors

 There are three behaviors programmed into each Lemming. The most basic is

simple object avoidance. Lemmings are also able to follow a Lemming in lead mode. The

last behavior is switching, where the Lemmings change modes based on sensory input.

Leading :

 The lead Lemming will wander around a room at random while avoiding

obstacles. If the leader gets hit by anything on any bumper, the switch mode will be

triggered. The switch mode is also triggered if the leader gets stuck in a corner that

causes all of the IR sensors to have very high readings. A red LED is lit while the robot is

in leader mode.

Following :

 The follower robot will first attempt to find the IR signal coming from the leader

robot. A yellow LED is lit when the Lemming is in follow mode. The Lemming spins in

a circle scanning the immediate area waiting for a leader to pass by. When some IR

signal is detected from the leader, a green LED lights up and the follower Lemming

begins to chase after the leader. The green LED remains lit as long as the lead Lemming

can be detected. The follower also polls the microphone reading in between servo control

pulses. If it detects a loud noise and it has the leader in sight, then it assumes that the

leader is in trouble and enters the switching mode.

Switching:

 15

 The switching mode can be reached from either the lead mode or the follow

mode. In either case the robot immediately sends out a beep alert on its speaker and

makes a 180-degree turn in place. After another slight pause, the lead Lemming becomes

a follower and the follower becomes a leader.

 The purpose of this changeover is to allow the Lemmings to escape from certain

environments that may otherwise cause problems. The Lemmings are not incredibly

bright, and they may hit something that is too low to the ground to be seen with IR. They

may also run into a corner and start panicking if all of the IR eyes see the same wall. In

these cases, the following Lemming would normally just plow into the leader and keep

pushing until something gave. This would probably be the servos used to power each

Lemming since they are not very tolerant of high loads. The switching causes the

Lemmings to head off in a new direction and avoid the source of the problem.

 16

Experimental Layout and Results

 I encountered two major problems during a test run was that the values I

calculated for running my servos did not quite work as intended. The width of the pulse is

supposed to be 1 ms for full reverse and 2 ms for full forward. With the pulsout command

in PIC BASIC the following format is used:

 PULSOUT pin,period

I am using pins B0 and B1 for my servo control. The period is in 5 us increments

for a 8 MHz PIC. This means that to get a 1 ms pulse to pin B0 I would use the

command: PULSOUT Portb.0, 200

1 ms = 200 * 5us 2 ms = 400 * 5us

In theory 200 would be full reverse and 400 would be full forward. All of my

servos seem to be calibrated at the same positions, but none of them react as expected to

these inputs. I created a small test program that would hold the right servo at a constant

value, but vary the left servo based on the bumper you press. I also held the left servo

constant and varied the right one based on bumper inputs.

Using this test program I was able to estimate approximate values for 100%

forwards and backwards and for 50% forwards and backwards for the left and right

servos.

Left Servo Right Servo Result
150 450 Full Reverse
200 450 Full Reverse
225 450 50% back on left wheel
250 450 Nearly 0% on left wheel
275 450 Slightly forward on left wheel
150 375 100% back on right wheel
150 350 100% back on right wheel
150 325 100% back on right wheel
150 300 100% back on right wheel

 17

150 275 100% back on right wheel
150 270 90% back on right wheel
150 265 80% back on right wheel
150 260 50% back on right wheel
150 255 Slightly back on right wheel
150 250 0% on right wheel

 From this data I was able to determine the values to use on each servo to

move forwards, backwards, turn in place left, turn in place right, and to curve left and

right.

Another major problem that I needed to solve was that the microphones are much

too sensitive to noise using the default circuit. The 10 uF capacitor from pin 1 to pin 8 of

the op-amp increases the gain to 200. This is far too much since the noise generated by

the servos is often enough to swing the analog reading to full rail at 5 V.

A R/C circuit between pins 1 and 8 controls the gain on a LM386 op-amp. A

resistor placed in series with the capacitor reduces the gain. The minimum gain can be

reached with a large resistor or simply by leaving pins 1 and 8 open. This gain is 20, and

is not enough amplification to make the speaker signal detectable. The speaker was

placed about 2.5 feet from the microphone and the peak voltages were recorded for

several resistors.

Resisor Output
no resistor 4.4 V
100 Ω 4.0 V
220 Ω 3.4 V
270 Ω 3.1 V
no R/C circuit 2.6 V

 18

The 270 Ω resistor decreases the gain enough to make the background noise

negligible compared to the speaker signal, but still allow the speaker to generate a

distinguishable signal. The modified speaker circuit can be seen in Figure 5.

Figure 5

 19

Conclusion

 This project has been a great learning experience. I was mostly able to succeed in

my goal of building two small robots that can work and play with each other. I was very

disappointed that I was unable to make my IrDA communications device work for my

project. It would have opened up a lo t of new possibilities in the coordination of the

Lemmings. The microphone back up plan is adequate for the simple uses I have

implemented, but it is far less than what I was hoping to do. I have certainly gained

valuable experience in dealing with hardware, software, and deadlines. I was hoping to

avoid this part, but I also experienced failure. I was able to somewhat compensate for it,

but it was still a dissapointment.

 I am quite happy with the following and avoidance systems. The PIC processor

proved to be a good choice. I had a slow start with it, but once I familiarized myself with

the basic operation I was very happy with it. To me, its biggest selling points are the built

in memory and I/O pins, and the Flash ROM. The ability to download a program once

and have it run at any time is a very nice feature.

 If I were to start from scratch I would keep the PIC processor and the board I

designed, and very little else. I would completely scrap my platform. Now that I have

some experience in building small robots I would attempt a unique design tailored to my

needs. The TJ body shape served its purpose of simple and easy, but now I know that

creating your own platform is not very difficult. The IR avoidance and following systems

would have worked best if they were running on different frequencies. This would have

eliminated the interference problems. I would take another shot at using the Sharp IrDA

 20

chip because it has so much potential and I was able to get it working (briefly). With

more time I think that I would be able to incorporate it into my current robots.

 21

Documentation

Basic microphone circuit taken from:
 “Mobile Robots: Inspiration to Implementation” by Joseph L Jones, Anita M.

Flynn, and Bruce A Seiger

 22

Appendices

A) 555 timer circuit diagram

The output is taken at pin 3.

 23

B) Sharp Contacts

Everyone I talked to at Sharp was very friendly and very willing to help.

Marcus Amicci: AmicciM@sharpsec.com

Marcus was able to have the GP2W0004YP development boards shipped to me.
They were sent next day FedEx and actually came before the samples I ordered from
the Sharp distributor in Clearwater which were ordered at least a week earlier. Marcus
also put me in touch with Robert Stuart.

Robert Stuart: Stuart@sharpsec.com

 Robert Stuart works on the opto-electronics at Sharp. He was very knowledgeable
and helpful while I was trying to get the IrDA devices working. He also worked on
the GP1 Sharp cans and was quite amused at the hack we go through to get the
distance measurement for our robots.

 24

C) PIC 16F877 Overview

40 pin DIP
External clocks between 4 MHz and 20 MHz supported.
28 I/O pins
 2 PWM
 built in serial Tx and Rx
 8 A/D inputs
8 K of flash memory
368 bytes of RAM

Basic Board Setup Costs
 PIC - $10
 Crystal Oscillator - $2 (at most)
 PICProto64 - $17
 2 resistors, 2 caps, 5V regulator – basically free

 Total Cost per board = $29 + shipping (everything can be found at Jameco)

 Since I had an external programmer for the PIC I invested in a $10 ZIF socket for
each board. That is the socket type with the little lever so the chip can easily be
removed.

The PICProto64 board is a 3”x4” prototyping board. There is room at the top for
the PIC and the various components needed to provide power. The rest of the board is
plated holes. I soldered groups of male headers and wire wrapped out the connections
for all of my sensors. There are two ground bus lines, one on either side, and a power
bus along the top. These boards are more expensive than something from Radioshack,
but they were quite nice. If I use a PIC again, I will probably just make my own board
from an empty Radioshack one, but this was definitely a worthwhile investment for
my first time.

 25

D) Leader Code

' Justin Rice
' Lemming Leader Program

'***
' Serial Output Definitions
'***

' define crystal speed at 8 MHz
DEFINE OSC 8

' define the serial pin to PortC bit 7
DEFINE DEBUG_REG PORTC
DEFINE DEBUG_BIT 6

' Define baud rate for serial debug
DEFINE DEBUG_BAUD 9600

' Define serial debug mode for inverted
DEFINE DEBUG_MODE 1

'***
' A/D System Definitions

' A/D Clock Selection
' 00 = FOSC/2
' 01 = FOSC/8
' 10 = FOSC/32
' 11 = FRC (clock derived from the internal A/D module RC oscillator)

' A/D Channel Selection
' 000 = channel 0, (RA0/AN0)
' 001 = channel 1, (RA1/AN1)
' 010 = channel 2, (RA2/AN2)
' 011 = channel 3, (RA3/AN3)
' 100 = channel 4, (RA5/AN4)
' 101 = channel 5, (RE0/AN5)
' 110 = channel 6, (RE1/AN6)
' 111 = channel 7, (RE2/AN7)
'***

' define number of bits in result
DEFINE ADC_BITS 8

' set clock source
DEFINE ADC_CLOCK 0

' sampling time in microseconds
DEFINE ADC_SAMPLEUS 1

' Set PORTA.0 - 4 as inputs
TRISA = %00001111

' Set PORTA to analog
ADCON1 = 2

'***
' Digital Port Definitions
'***
' Set PortB outputs
'Left Servo
TRISB.0=0
'Right Servo
TRISB.1=0
'Microphone
TRISB.2=0
'555 timer reset
TRISB.3=0

 26

'Follower LED
TRISB.4=0
'Leader LED
TRISB.5=0
'Contact LED
TRISB.6=0

'***
' Constants
'***
FORWR100 CON 200
FORWL100 CON 285
BACKR100 CON 285
BACKL100 CON 200

FORWR50 CON 225
FORWL50 CON 260
BACKR50 CON 260
BACKL50 CON 225

'***
' Main Program
'***
IR_Left VAR BYTE
IR_Right VAR BYTE
IR_Center VAR BYTE
IR_Zones VAR BYTE
bump VAR BYTE
mic VAR BYTE
found VAR BIT
rv VAR WORD
lv VAR WORD
rand VAR WORD

oldr VAR WORD
oldl VAR WORD

mic=0

oldr = FORWR100
oldl = FORWL100

' looping variables
i VAR BYTE
j VAR BYTE

' 38 kHz for IR facing rear that robot 2 will follow
 TRISC.2 = 0 ' CCP1 (PortC.2 = Output)
 PR2 = 52 ' Set PWM Period for approximately 38KHz
 CCPR1L = 26 ' Set PWM Duty-Cycle to 50%
 CCP1CON = %00001100 ' Select PWM Mode
 T2CON = %00000100 ' Timer2 = ON + 1:1 prescale

' Turn on IR LED's
 High PORTB.3
 Pause 20

 'Reboot test
 High PORTB.4
 High PORTB.5
 High PORTB.6

' Delay before starting servos
 Pause 1000

 ' Turn on leader LED, turn off follower
 High PORTB.5
 Low PORTB.4
 Low PORTB.6

 27

lead:

 ' Read in the left, right, and center IR values
 ' ADCIN channel, destination
 ADCIN 0,IR_Left
 ADCIN 2,IR_Right
 ADCIN 1,IR_Center

 ' Determine Reaction

 lv=FORWL100
 rv=FORWR100

 IF (IR_Center < 105) Then
 ' Curve to the left
 IF (IR_Right > 105) Then
 lv = BACKL50
 rv = FORWR100
 EndIF

 ' Curve to the right
 IF (IR_Left > 105) Then
 lv = FORWL100
 rv = BACKR50
 EndIF
 EndIF

 IF (IR_Center > 105) Then
 IF (IR_Center > 120) Then
 IF (IR_Left > IR_Right) Then
 ' Hard Right Turn
 lv = FORWL100
 rv = BACKR100
 Else
 ' Hard Left Turn
 lv = BACKL100
 rv = FORWR100
 EndIF
 Else
 IF ((IR_Left > 120) AND (IR_Right > 120)) Then
 ' Back Up
 High PORTB.2
 Pause 800
 Low PORTB.2
 Pause 200
 GoSub turn180

 ' Turn on IR LED's
 High PORTB.3
 Pause 20

 ' Turn on leader LED, turn off follower
 High PORTB.5
 Low PORTB.4

 Else
 IF (IR_Right > 105) Then
 ' Hard Left Turn
 lv = BACKL100
 rv = FORWR100
 Else
 IF (IR_Left > 105) Then
 ' Hard Right Turn
 lv = FORWL100
 rv = BACKR100
 EndIF
 EndIF
 EndIF
 EndIF
 EndIF

 28

 ' Motor Control

 oldr=((19*oldr)+rv)/20
 oldl=((19*oldl)+lv)/20

 PulsOut PORTB.0, oldl
 PulsOut PORTB.1, oldr

 i=0
ldelay:

 i=i+1
 ADCIN 3,bump

 IF (bump > 17) Then
 High PORTB.2
 Pause 800
 Low PORTB.2
 GoSub turn180

 ' Turn on IR LED's
 High PORTB.3
 Pause 20

 ' Turn on leader LED, turn off follower
 High PORTB.5
 Low PORTB.4

 EndIF

 IF (i<50) Then
 GoTo ldelay
 EndIF

 GoTo lead ' Repeat forever
End

turn180:

' Turn off IR LED's
 Low PORTB.3
' Turn on follower LED, turn off leader
 Low PORTB.5
 High PORTB.4

For i=1 to 50
 PulsOut PORTB.0, FORWL100
 PulsOut PORTB.1, BACKR100
 Pause 20
Next i

i=0

Pause 500

oldl = FORWL100
oldr = BACKR100
j=0

follow:

 found=0
 IR_Zones=0

 ' Read in the left, right, and center IR values
 ' ADCIN channel, destination
 ADCIN 0,IR_Left

 29

 ADCIN 2,IR_Right
 ADCIN 1,IR_Center

 ' Determine Reaction

 lv=FORWL100
 rv=BACKR100

 IF (IR_Left > 90) Then
 IR_Zones = IR_Zones | %10000000
 EndIF

 IF (IR_Center > 90) Then
 IR_Zones = IR_Zones | %01000000
 EndIF

 IF (IR_Right > 90) Then
 IR_Zones = IR_Zones | %00100000
 EndIF

 IF ((IR_Left > 90) AND (IR_Center > 90) AND (IR_Right > 90)) Then
 IF (IR_Left >= IR_Right) Then
 ' Soft Left
 IR_Zones=%11000000
 EndIF
 IF (IR_Right >= IR_Left) Then
 ' Soft Right
 IR_Zones=%01100000
 EndIF
 EndIF

 ' Hard Left
 IF (IR_Zones=%10000000) Then
 lv=BACKL100
 rv=FORWR100
 EndIF

 ' Soft Left
 IF (IR_Zones=%11000000) Then
 lv=FORWL50
 rv=FORWR100
 EndIF

 ' Go straight
 IF (IR_Zones=%01000000) Then
 lv=FORWL100
 rv=FORWR100
 EndIF

 ' Soft Right
 IF (IR_Zones=%01100000) Then
 lv=FORWL100
 rv=FORWR50
 EndIF

 ' Hard Right
 IF (IR_Zones=%00100000) Then
 lv=FORWL100
 rv=BACKR100
 EndIF

 ' Motor Control
 oldr=((19*oldr)+rv)/20
 oldl=((19*oldl)+lv)/20

 PulsOut PORTB.0, oldl
 PulsOut PORTB.1, oldr

 IF ((IR_Left > 90) OR (IR_Center > 90) AND (IR_Right > 90)) Then
 found=1
 ' Light up contact LED

 30

 High PORTB.6
 Else
 ' Turn off contact LED
 Low PORTB.6
 EndIF

fdelay:

 i=i+1
 ADCIN 3,bump

 IF (bump < 49) AND (bump > 39) Then
 ' Go back left
 For i=1 to 50
 PulsOut PORTB.0, BACKL50
 PulsOut PORTB.1, BACKR100
 Pause 20
 Next i
 EndIF

 IF (bump < 133) AND (bump > 123) Then
 ' Go back right
 For i=1 to 50
 PulsOut PORTB.0, BACKL100
 PulsOut PORTB.1, BACKR50
 Pause 20
 Next i
 EndIF

 IF (bump < 85) AND (bump > 75) Then
 ' Go back
 For i=1 to 50
 PulsOut PORTB.0, BACKL50
 PulsOut PORTB.1, BACKR100
 Pause 20
 Next i
 EndIF

 IF (bump < 27) AND (bump > 17) Then
 ' Go forward
 For i=1 to 50
 PulsOut PORTB.0, FORWL100
 PulsOut PORTB.1, FORWR100
 Pause 20
 Next i
 EndIF

 ' Read microphone value
 mic=0
 ADCIN 4,mic

 IF ((mic>210) AND (found=1)) Then
 Pause 500

 ' Turn off contact LED
 Low PORTB.6
 found=0

 Return
 EndIF

 IF (i<20) Then
 GoTo fdelay
 EndIF

 GoTo follow ' Repeat while following

Return

 31

E) Follower Code

' Justin Rice
' Lemming Follower Program

'***
' Serial Output Definitions
'***

' define crystal speed at 8 MHz
DEFINE OSC 8

' define the serial pin to PortC bit 7
DEFINE DEBUG_REG PORTC
DEFINE DEBUG_BIT 6

' Define baud rate for serial debug
DEFINE DEBUG_BAUD 9600

' Define serial debug mode for inverted
DEFINE DEBUG_MODE 1

'***
' A/D System Definitions

' A/D Clock Selection
' 00 = FOSC/2
' 01 = FOSC/8
' 10 = FOSC/32
' 11 = FRC (clock derived from the internal A/D module RC oscillator)

' A/D Channel Selection
' 000 = channel 0, (RA0/AN0)
' 001 = channel 1, (RA1/AN1)
' 010 = channel 2, (RA2/AN2)
' 011 = channel 3, (RA3/AN3)
' 100 = channel 4, (RA5/AN4)
' 101 = channel 5, (RE0/AN5)
' 110 = channel 6, (RE1/AN6)
' 111 = channel 7, (RE2/AN7)
'***

' define number of bits in result
DEFINE ADC_BITS 8

' set clock source
DEFINE ADC_CLOCK 0

' sampling time in microseconds
DEFINE ADC_SAMPLEUS 1

' Set PORTA.0,1,2 as inputs, PORTA.3-7 as outputs
TRISA = %00001111

' Set PORTA to analog
ADCON1 = 2

'***
' Digital Port Definitions
'***
' Set PortB outputs
'Left Servo
TRISB.0=0
'Right Servo
TRISB.1=0
'Microphone
TRISB.2=0
'555 timer reset
TRISB.3=0

 32

'Follower LED
TRISB.4=0
'Leader LED
TRISB.5=0
'Contact LED
TRISB.6=0

'***
' Constants
'***
FORWR100 CON 200
FORWL100 CON 285
BACKR100 CON 285
BACKL100 CON 200

FORWR50 CON 225
FORWL50 CON 260
BACKR50 CON 260
BACKL50 CON 225

'***
' Main Program
'***
IR_Left VAR BYTE
IR_Right VAR BYTE
IR_Center VAR BYTE
IR_Zones VAR BYTE
bump VAR BYTE
mic VAR BYTE
found VAR BIT
rv VAR WORD
lv VAR WORD
rand VAR WORD

oldr VAR WORD
oldl VAR WORD

mic=0

oldr = BACKR100
oldl = FORWL100

' looping variables
i VAR BYTE
j VAR BYTE

' 38 kHz for IR facing rear that robot 2 will follow
TRISC.2 = 0 ' CCP1 (PortC.2 = Output)
PR2 = 52 ' Set PWM Period for approximately 38KHz
CCPR1L = 26 ' Set PWM Duty-Cycle to 50%
CCP1CON = %00001100 ' Select PWM Mode
' Turn on bit 2 to turn on IR
T2CON = %00000100 ' Timer2 = ON + 1:1 prescale

' Turn off IR LED's
 Low PORTB.3
 Pause 20

'Reboot test
 High PORTB.4
 High PORTB.5
 High PORTB.6

' Delay before starting servos
 Pause 1000

' Turn on follower LED, turn off leader
 Low PORTB.5
 High PORTB.4

follow:

 33

 i=0
 j=0

 found=0
 IR_Zones = 0

 ' Read in the left, right, and center IR values
 ' ADCIN channel, destination
 ADCIN 0,IR_Left
 ADCIN 2,IR_Right
 ADCIN 1,IR_Center

 ' Determine Reaction

 lv=FORWL100
 rv=BACKR100

 IF (IR_Left > 90) Then
 IR_Zones = IR_Zones | %10000000
 EndIF

 IF (IR_Center > 90) Then
 IR_Zones = IR_Zones | %01000000
 EndIF

 IF (IR_Right > 90) Then
 IR_Zones = IR_Zones | %00100000
 EndIF

 IF ((IR_Left > 90) AND (IR_Center > 90) AND (IR_Right > 90)) Then
 IF (IR_Left >= IR_Right) Then
 ' Soft Left
 IR_Zones=%11000000
 EndIF
 IF (IR_Right >= IR_Left) Then
 ' Soft Right
 IR_Zones=%01100000
 EndIF
 EndIF

 ' Hard Left
 IF (IR_Zones=%10000000) Then
 lv=BACKL100
 rv=FORWR100
 EndIF

 ' Soft Left
 IF (IR_Zones=%11000000) Then
 lv=FORWL50
 rv=FORWR100
 EndIF

 ' Go straight
 IF (IR_Zones=%01000000) Then
 lv=FORWL100
 rv=FORWR100
 EndIF

 ' Soft Right
 IF (IR_Zones=%01100000) Then
 lv=FORWL100
 rv=FORWR50
 EndIF

 ' Hard Right
 IF (IR_Zones=%00100000) Then
 lv=FORWL100
 rv=BACKR100
 EndIF

 34

 ' Motor Control
 oldr=((19*oldr)+rv)/20
 oldl=((19*oldl)+lv)/20

 PulsOut PORTB.0, oldl
 PulsOut PORTB.1, oldr

 IF ((IR_Left > 90) OR (IR_Center > 90) OR (IR_Right > 90)) Then
 found=1
 ' Light up contact LED
 High PORTB.6
 Else
 ' Turn off contact LED
 Low PORTB.6
 EndIF

fdelay:

 i=i+1
 ADCIN 3,bump

 IF (bump < 49) AND (bump > 39) Then
 GoSub backleft
 EndIF

 IF (bump < 133) AND (bump > 123) Then
 GoSub backright
 EndIF

 IF (bump < 85) AND (bump > 75) Then
 GoSub back
 EndIF

 IF (bump < 27) AND (bump > 17) Then
 GoSub backbump
 EndIF

 ' Read microphone value
 ADCIN 4,mic

 IF ((mic>175) AND (found=1)) Then
 Pause 300

 ' Turn off contact LED
 found=0
 Low PORTB.6

 GoSub turn180
 ' Turn off IR LED's
 Low PORTB.3
 Pause 20

 ' Turn on follower LED, turn off leader
 Low PORTB.5
 High PORTB.4
 EndIF

 IF (i<20) Then
 GoTo fdelay
 EndIF

 GoTo follow ' Repeat forever

End

backleft:
For i=1 to 50
 PulsOut PORTB.0, FORWL50
 PulsOut PORTB.1, BACKR100

 35

 Pause 20
Next i
Return

back:
For i=1 to 50
 PulsOut PORTB.0, BACKL50
 PulsOut PORTB.1, BACKR100
 Pause 20
Next i
Return

backright:
For i=1 to 50
 PulsOut PORTB.0, BACKL100
 PulsOut PORTB.1, FORWR50
 Pause 20
Next i
Return

backbump:
For i=1 to 50
 PulsOut PORTB.0, FORWL100
 PulsOut PORTB.1, FORWR100
 Pause 20
Next i
Return

turn180:
For i=1 to 50
 PulsOut PORTB.0, FORWL100
 PulsOut PORTB.1, BACKR100
 Pause 20
Next i

' Turn on IR LED's
 High PORTB.3
 Pause 20
' Turn on leader LED, turn off follower
 High PORTB.5
 Low PORTB.4

lead:

 ' Read in the left, right, and center IR values
 ' ADCIN channel, destination
 ADCIN 0,IR_Left
 ADCIN 2,IR_Right
 ADCIN 1,IR_Center

 ' Determine Reaction
 lv=FORWL100
 rv=FORWR100

 IF (IR_Center < 105) Then
 ' Curve to the left
 IF (IR_Right > 110) Then
 lv = BACKL50
 rv = FORWR100
 EndIF

 ' Curve to the right
 IF (IR_Left > 110) Then
 lv = FORWL100
 rv = BACKR50
 EndIF
 EndIF

 IF (IR_Center > 105) Then

 36

 IF (IR_Center > 120) Then
 IF (IR_Left > IR_Right) Then
 ' Hard Right Turn
 lv = FORWL100
 rv = BACKR100
 Else
 ' Hard Left Turn
 lv = BACKL100
 rv = FORWR100
 EndIF
 Else
 IF ((IR_Left > 120) AND (IR_Right > 120)) Then
 High PORTB.2
 Pause 800
 Low PORTB.2
 Pause 200
 Return
 Else
 IF (IR_Right > 105) Then
 ' Hard Left Turn
 lv = BACKL100
 rv = FORWR100
 Else
 IF (IR_Left > 105) Then
 ' Hard Right Turn
 lv = FORWL100
 rv = BACKR100
 EndIF
 EndIF
 EndIF
 EndIF
 EndIF

 ' Motor Control
 oldr=((19*oldr)+rv)/20
 oldl=((19*oldl)+lv)/20

 PulsOut PORTB.0, oldl
 PulsOut PORTB.1, oldr

 i=0
ldelay:

 i=i+1
 ADCIN 3,bump

 IF (bump > 17) Then
 High PORTB.2
 Pause 800
 Low PORTB.2
 Return
 EndIF

 IF (i<50) Then
 GoTo ldelay
 EndIF

GoTo lead ' Repeat forever

Return

