

University of Florida
Department of Electrical and Computer Engineering

EEL5666
Intelligent Machines Design Laboratory

Magnetic Mine Hunter (MMH)
Final Report

Name: Lee Cofer
Date: 1/22/02

TAs: Aamir Qaiyumi
Uriel Rodriguez

Instructor: A.A. Arroyo

 2

Table of Contents

1.) Abstract . p. 3

2.) Executive Summary . p. 4

3.) Introduction . p. 5

4.) Integrated System . p. 6

5.) Mobile Platform . p. 8

6.) Actuation . p. 9

7.) Sensors . p. 11

8.) Behaviors. . p. 15

9.) Experimental Layout and Results p. 16

10.) Conclusion. . p. 21

11.) Documentation . p. 22

12.) Vendors . p. 23

13.) Appendices: Final Code & Test Code. p. 24

 3

Abstract

 Magnetic Mine Hunter (MMH) is an autonomous tracked vehicle that randomly
moves around on the floor within an area outlined by black tape. While wondering
around it is searching for magnets on the floor that represent mines. When a magnet is
encountered MMH will mark the magnet by dropping a metal nut at the location of the
magnet. While searching for the magnets MMH will avoid running into objects.

 4

Executive Summary

Magnetic Mine Hunter (MMH) is an autonomous robot that simulates mine

hunting. A black line is used to outline the area designated as the minefield to be

searched. MMH randomly searches the minefield for magnets on the ground, which

represent the mines. When a magnet is found MMH stops and marks the location by

dropping a metal BB in close proximity to the magnet. MMH then continuous searching

the field. While searching MMH avoids obstacles by going around the obstacles that lye

in MMH’s path. As a backup to the obstacle avoidance MMH is equipped with front and

rear bumpers so that when an obstacle is hit MMH will stop, back away, then change its

path.

When MMH is first placed within the mine field with the power turned on MMH

waits to start its search process until the front bumper is pressed. Once the bumper has

been pressed MMH will remain still while the light sensitive CdS cells used to detect the

border are calibrated. When the calibration is complete MMH starts moving forward

while reading the sensors to detect the magnets, the border, and obstacles. If a border is

detected by the CdS cells MMH will backup and randomly pick a new path to continue

on. When an obstacle is detected using IR emitters and IR detectors, MMH will steer to

the right or the left of the obstacle. And when the Hall Effect sensors on the underside of

MMH detect a magnet, MMH will stop and mark the magnets location with a BB.

MMH will continuously search a minefield until it is turned off. If given

sufficient time the entirety of the field will be searched and all of the mines will be

detected. The amount of time that it would take to search an entire field is unpredictable

since MMH searches randomly.

 5

Introduction

 Soldiers in the United States Armed Forces have to be cautious of mines in hostile

territories. Mines can be found buried underground and in surf zones off of coastal lands.

Mines are an extreme hazard to soldiers and the vehicles used to insert soldiers to the

battlefield. Searching for mines is a very dangerous job, but it is necessary for the safety

of our troops. In the past, detecting mines was very dangerous because soldiers would

have to be sent out to find the mines. This hazard is no longer necessary with the

technology we have today. Soldiers can now be replaced with machines that can find the

mines so that a life is not being risked. Magnetic Mine Hunter (MMH) is an early stage

of an autonomous agent that could one day be used to save the lives of our troops. MMH

is designed to randomly search a designated area for magnets that represent mines.

While searching for mines MMH will avoid obstacles that obstruct its path. When a mine

is found MMH will mark the mine by dropping a metal BB near the location of the mine.

In this paper I will propose how MMH was built, how works, and the sensors that are

used to achieve the desired behaviors.

 6

Integrated System

 A diagram of the Integrated system can be seen in Figure 1. The brain of MMH is

the MRC11 microprocessor board and the MRSX01 sensor expansion board, which are

both made by Mekatronix. A picture of the boards can be seen in Figure 2. These two

boards combined control all of the components of MMH. The components include two

DC motors (hacked servos), one standard servo, three IR sensors, four bumper switches,

two CdS cells, and seven Hall Effect sensors.

Fig. 1 Complete System

 The two DC motors are used for movement of the robot so that MMH can move

forward, reverse, turn left, and turn right. The motors are hacked Futaba S3003 servos.

Hacked means that all of the electronics were removed from the servo and only the

motor, gears, and the housing of the servo are left. These motors are controlled using the

motor driver IC on the MRSX01 expansion board. A standard Futaba S3003 servo is

used to control the door of the mechanism that drops the BBs onto the magnets. Three

Sharp Can IR detectors and four IR LED emitters are used for the obstacle avoidance.

There are two bumper switches on the front and back of the robot used to detect when the

obstacle avoidance fails and MMH runs into an obstacle. Two CdS cells and two green

LEDs are used for border detection. The CdS cells allow MMH to detect the amount of

Micro
Processor

Board

Expansion
Board

L. Motor

R. Motor

Servo

Batteries

IR
Detectors

Hall Effect
Sensors Bumper

Switches
CdS
Cells

 7

light that is being reflected off the floor. So when MMH drives over the black border less

light is reflected than when on the lighter search area thus letting MMH detect that it is

driving out of the search area. Seven Hall Effect sensors on the bottom of MMH are used

to detect the magnetic field produced by the magnets. So the Hall Effect sensors make it

possible to perform magnet/mine detection.

Fig. 2 MRC11 (left) and MRSX01 (right)

 8

Mobile Platform

 The mobile platform for MMH shown in Figure 3 is constructed out of 1/8”

plywood. The design was cut out on the IMDL T-tech manchine. The overall

dimensions of the platform are 10” long by 6” wide by 5” tall. The platform is a tank

style that houses all of the electronics. The tank style was chosen for its durability and

because most of the electronics are enclosed from outside elements. The platform

consists of two compartments. The top compartment is a rectangular box that is

approximately 8” x 6” x 3”. The top compartment houses the processor and expansion

boards, two of the IR emitters, two of the IR detectors, on/off switch, run/load switch,

reset button, charge jack, and the three feedback LEDs. The bottom compartment is 10”

x 3” x 2”. The bottom compartment houses the other IR detector, two IR emitters, seven

Hall Effect sensors, four bump switches, two CdS cells and LEDs, the battery pack, and

the drive motors. The top cover of the platform is removable so that the systems on the

inside are accessible. Mounted on the top cover is the BB dropper mechanism so that the

BBs can be dropped off the back of the platform then directed towards the location of the

detected mine. The main function of the platform is to have an enclosure in which to

mount and protect the electronics.

Fig. 3 Platform

 9

Actuation

 MMH requires two DC motors for mobility and a servo to control the BB

dropping mechanism that is used to mark the magnets by dropping a BB on them. The

purpose, theory, and application of the motors and servos are as follows:

1.) Drive Motors

Purpose:
The two drive motors will be used to control the movement of the

vehicle.

Theory:

The drive motors require H-bridges to control the direction of the

motors so that a mechanical means of switching the direction of the current

to the motors is not required. The motors also need gears so that the speed

of the motors can be slowed down and produce more torque. So the power

from the motors is sent to the gears and from the gears to wheels that move

the vehicle.

Application:

The drive motors are hacked servos from [2], which means the

electronics of the servo were removed leaving the motor and gears inside the

servo casing. The servos were also modified so that they can rotate 360°.

The hacked servos are mounted on the bottom back of the vehicle. Two

wheels are attached to the servos and two free turning wheels are attached to

the front of the vehicle. Tank style tracks are attached between the front and

rear wheels on each side. The tracks are individua lly controlled so the

vehicle can move forward, backwards, and turn in place.

2.) BB Dropper Control Servo

Purpose:
The servo controls the door of the BB dropper mechanism that allows

a single BB to drop on the magnets/mines to mark them.

 10

Door
Linkage

Top of Platform

Funnel

Servo
Door Mount

Funnel Mount

Theory:

A servo is a circuit and motor that is designed to be precisely

controlled over an angle range that is usually around 90 degrees. The

precise control is required in this application since the door on the BB

dropper mechanism must only be opened far enough and for proper amount

of time so that only a single BB is dropped.

Application: BB Dropper Mechanism

The device used to mark the magnets by dropping BBs consists of

tubular funnel, a door to keep the BBs from all falling out, a mount to hold

up the funnel and door, and a servo and linkage to control the door. In order

to slow down the rate that the BBs fall out of the funnel the funnel is

mounted at an angle of approximately 30 degrees above level. The door

was mounted in front of the funnel so that when it is pulled back no BBs can

escape and when pushed forward the BBs have enough room to flow out of

the funnel. The servo was placed behind the funnel with a servo horn

mounted on top in order to have a connection for the linkage. The linkage is

a small metal rod that connects the servo to the door. When the servo turns

counter clockwise the door opens and when it turns clockwise the door will

shut. The construction of the BB dropping mechanism can be seen in Fig. 4

as it would be mounted on top of the MMH platform.

Fig. 4 BB Dropper Mechanism

 11

Sensors

MMH uses several types of sensors in order to complete the behaviors and tasks

that are demanded from it. The sensor suite for MMH includes IR sensors for obstacle

avoidance, bumper switches for object detection, Cadmium Sulfide Cells for detecting

the perimeter of the search area, and Hall-Effect sensors for detecting the magnets that

represent mines. The purpose, theory, and application of these sensors can be found

below:

1.) Bump Switches

Purpose:
The bump switches are used to detect when MMH runs into an

obstacle. The bump switches are used as backup for the obstacle avoidance

system.

Theory:

The bump switches act like a normal switch in that when not triggered

it is in the open position and when triggered it creates a short circuit.

Pressing the lever on the front of the housing triggers the switch. The

switches are used when the obstacle avoidance sensors fail to detect an

obstacle in the vehicles path. When the vehicle runs into an obstacle the

switches will be triggered letting the software now that it can no longer

continue on its current path.

Application:

Two bump switches are placed on the front of the vehicle and two on

the rear. A cross member attaches the two switches together so that the

entire front and rear of the vehicle will be covered by the bump switches.

When the vehicle runs into an obstacle these switches will be activated

letting the hardware and software know that MMH can no longer continue

on its present path. MMH will then back up and randomly choose a new

path.

 12

2.) IR Emitters and Detectors

Purpose:

The IR emitter and detector pairs are part of the obstacle avoidance

sensor suite.

Theory:

The IR emitter transmits IR away from the vehicle at a frequency of

40kHz. The signal must be 40kHz because that is the only frequency that

the IR detectors being used can detect. If the IR hits an object it will bounce

back to the vehicle and the IR detector will detect the IR. The closer an

obstacle is to the vehicle the stronger the IR signal will be when it returns to

the vehicle, thus the output of the detectors will be higher. The code for the

IR detectors will be written such that when the output of the detector

reaches a set threshold the path of the vehicle will be adjusted appropriately.

Application:

The IR detectors being used have a digital output, but for obstacle

avoidance an analog output is needed. An analog hack from [1] must be

performed on the detectors so that they will output an analog signal. When

the sensors have been hacked the emitter/detector pairs will be placed on the

vehicle so that they are facing away from the vehicle parallel to the ground.

The three detectors are all facing forward. Two of the IR emitters are

pointed forward and the other two are directed in a cross view so that the

entire area in front of the vehicle is covered by IR.

3.) Cadmium Sulfide Cells

Purpose:

The Cadmium Sulfide Cells are used to detect the black tape on the

floor that outlines the designated area to be searched.

Theory:

Cadmium Sulfide Cells are light sensitive sensors that act as variable

sensors. When the cells detect light the resistance of the sensor decreases.

 13

If the CdS cell is used as one of the resistors of a voltage divider circuit the

output of the voltage divider can be measured to determine the amount of

light that is being reflected onto the cell. See figure 5 for the voltage divider

circuit. Since darker colors reflect less light than lighter colors the cells can

distinguish between contrasting colors

.

Fig. 5 CdS Cell Voltage Divider

Application:
In order for the CdS cells to detect light from a specific location the

sensor was enclosed in a heat shrink tube with the back end closed off,

which was discovered from Aamir Qaiyumi. The front of the tube was left

open so that light can be picked up from the direction the tube is pointed in.

The Cadmium Sulfide Cells are mounted inside the front left and right of the

platform and sticking out of the bottom. The cells will be directed towards

the floor so that the sensors can detect when they are above the black tape.

Two green LEDs are also mounted beside the CdS cells directed towards the

floor for illumination. The LEDs illuminate the floor underneath the CdS

cells so tha t the sensors work independently from exterior lighting.

When MMH is first turned on the CdS cells are calibrated to the

amount of light reflected from the floor. The calibration allows MMH to be

used on different color surfaces as long as the color of the surface is lighter

than the black tape used to designate the perimeter of the search area. When

MMH drives over the tape the MMH will back up then randomly choose a

new path so that the designated area is not left.

 14

4.) Hall-Effect Sensors

Purpose:

The Hall-Effect sensors are used to detect the magnets on the floor that

represent mines.

Theory:

Hall-Effect sensors are analog sensors used to detect magnetic fields.

When a magnetic field is placed close to the sensor the output represents the

strength of the field.

Application:

Seven Hall-Effect sensors are mounted on the front bottom of the

vehicle. The faces of the sensors are parallel with the floor so that when the

vehicle drives over a magnet the sensor can detect it.

Vendor:
 Digi-Key
 Part #: DN6848

 15

Behaviors

Obstacle Avoidance:
 MMH implements obstacle avoidance using IR emitters and detectors. When an

obstacle is in front of MMH IR is reflected off the object back to the IR detectors. If the

strength of the IR is larger than a set threshold value MMH will turn to avoid the

obstacle. If the right or center IR detector receives the highest value above the threshold

value MMH will turn to the left. If the left IR detector receives the highest value MMH

will turn to the right. If the obstacle avoidance system fails and the bump switches are

triggered MMH will stop, back up, and then randomly choose a new path.

Mine Detection and Marking:
 When the Hall Effect sensors detect a mine MMH will immediately stop, drop a

single BB from the BB Dropper mechanism onto or near the mine. MMH will then start

moving forward for 300ms with the Hall Effect sensors off. After the 300ms the Hall

Effect sensors are out of range from the mine so that the sensors can be turned back on

without detecting the same mine.

 One lesson learned when working on the mine detection is when testing Reed

Switches for use as the sensor to detect the magnetic field of the magnet. It was

discovered that the Reed Switches used required very strong magnets to trigger them than

the magnets I decided to use. Also the Reed Switches use metal reeds, which cause the

magnets to attach themselves to the sensor.

 Another lesson learned was that the BBs when dropped from the BB dropper

mechanism they would often bounce off away from the magnet. In order to get the BBs

to attach themselves to the magnet, a tube was added to the BB dropper that directed the

BBs to the magnets.

Border Detection:
 MMH performs border detection using two CdS cells and two green LEDs. When

MMH is first turned on the CdS cells are calibrated then mine searching begins. When

MMH drives over the border of the search area MMH will stop, back up, and then

randomly choose a new path.

 16

Experimental Layout and Results

Experiment 1: Hall Effect Sensor Sensitivity

 This experiment was designed to test the sensitivity of the Hall Effect sensors.

The Hall Effect sensor used is a Panasonic DN6848, relative data can be found in

Appendix B. This sensor was chosen because it is one of the only unipolar Hall Effect

sensors found in a three prong package. The three prong package was desired so that it

could be easily connected to the IRDT ports on the MRSX01 expansion board. In order

to test the sensitivity of the sensor a round magnet with a diameter of ¾” was placed flat

on a table with the south pole of the magnet facing up. It is essential for the south pole of

the magnet to face the sensor since the sensor is unipolar and can only detect the south

pole. Code was written to continuously display the output of the sensor on a computer

screen. The code used can be found in Appendix A. The sensor was then placed 1”

above the center of the magnet and the output was recorded. The sensor was then

lowered towards the magnet at 1/16” intervals, until the sensor was sitting directly on top

of the magnet. The magnet was then brought back up to 1” above the magnet, but this

time it was offset from the center of the magnet by 1/16”. With the 1/16” offset the

sensor was again lowered towards the magnet at 1/16” intervals. The procedure of

lowering the sensor towards the magnet was then repeated with the sensor offset from the

center of the magnet at intervals of 1/16”, until the magnet was offset by ½”.

Table 1 below contains the results of Experiment 1 and Chart 3 follows with a

graph of Distance above Magnet vs. Analog Output of the Hall Effect sensor. The table

shows that the sensor detects the magnet as long as it is within 5/16” from the center of

the magnet. Since the magnet has a diameter of approximately ¾” this means that the

sensor must be directly over the magnet to detect it. So these results show that the Hall

Effect sensor will detect a magnet as long as it is above the magnet and it is no more than

3/8” from the magnet.

 17

Hall Effect Sensor Sensitivity
 Offset from Center of Magnet (inches)

 0 1/16 1/8 3/16 1/4 5/16 3/8 7/16 1/2
0 1 1 1 1 1 1 38 44 50

 1/16 1 1 1 1 1 1 34 40 47
 1/8 1 1 1 1 1 1 1 37 48

 3/16 1 1 1 1 1 1 1 46 49
 1/4 1 1 1 1 1 1 35 47 50

 5/16 1 1 1 1 1 1 42 48 49
 3/8 1 1 1 1 1 36 44 50 51

 7/16 1 37 45 46 44 38 44 49 52
 1/2 45 45 44 42 48 43 47 50 54

D
is

ta
nc

e
fr

om
 T

op
 o

f
M

ag
ne

t

(in

ch
es

)

1 53 46 47 54 50 51 52 51 53
 * Results are from the HC11's A/D converter.

 ** 1 = magnet detected; greater than 1 = magnet not detected

Table 1

0

10

20

30

40

50

60

0
 1

/1
6

 1
/8

 3
/1

6
 1

/4

 5
/1

6
 3

/8

 7
/1

6
 1

/2
 1

Distance from Top of Magnet
(inches)

S
en

so
r

R
ea

d
in

g
 (A

n
al

o
g

)

0" Offset

1/16" Offset

1/8" Offset

3/16" Offset

1/4" Offset

5/16" Offset

3/8" Offset

7/16" Offset

1/2" Offset

Chart 1

 18

Experiment 2: BB Dropper

 This experiment was designed to find the range of movement needed for the door

and how long the door needs to be opened in order for the BB Dropper mechanism to

only drop one BB at a time. The movement of the door is controlled by a servo through a

linkage arm. Test code (see Appendix A) was written so that the servo’s position could

be controlled. It was found that servo had a range of movement of approximately 180

degrees that is mapped to the integer position values between 500 and 4000. Once the

mechanism was built the first task was to find the door to be open and closed. When the

door is shut it needs to be flush with the opening at the front of the funnel so that no BBs

can fall out. The position of the servo was adjusted until the door became flush with the

funnel’s opening. This closed position was found at the servo position value of 2200.

The open position needed to leave enough room for the BB to fall out of the funnel. The

space between the funnel and the door needs to be slightly larger than the size of the BB,

so that the BB does not get caught between the funnel and the door. The amount of extra

space required was found to be approximately 1/16”. This space was obtained at the

servo position value of 2800.

 Now that the proper open and closed positions of the door have been found, the

amount of time that the door needs to remain open to drop only one BB must be

discovered. This experiment was performed by opening the door for a certain amount of

time and counting the number of BBs that fell out of the funnel. The door was left open

for 10 different lengths of time, which ranged from 60ms to 150ms at 10ms intervals. The

test was performed three times for each of the 10 lengths of time tested to ensure more

reliable results. This experiment was performed twice once with the funnel full of BBs

 19

and a second time with only 10 BBs in the funnel. The reason for performing this

experiment with a full funnel and an almost empty funnel was to ensure that the amount

of time selected would perform well in both circumstances.

 Table 2 below contains the results of Experiment 2. When performing the tests

sometimes a BB would get caught between the door and the funnel. In these instances

the trapped BB would be counted as half of a BB, thus accounting for the fraction of a

BB falling as seen in the table. As highlighted in the table, the only time that one BB

dropped out of the funnel for each of the trials performed for the full funnel and almost

empty funnel was at 80ms. So as the mechanism is set up now, an 80ms time lapse

between opening the door and closing it gives the best chance of only one BB falling

from the funnel.

Full Funnel 10 BBs in Funnel
Time Open Trial 1 Trial 2 Trial 3 Ave. Time Open Trial 1 Trial 2 Trial 3 Ave.

(msec) (BBs) (BBs) (BBs) (BBs) (msec) (BBs) (BBs) (BBs) (BBs)
60 0 0 0 0.00 60 0 0 0 0.00
70 1 1 0 0.67 70 1 0 0 0.33
80 1 1 1 1.00 80 1 1 1 1.00
90 1 1.5 1 1.17 90 1 1 1 1.00
100 1 0.5 1 0.83 100 1 1 1 1.00
110 1 2 1 1.33 110 1 1 1 1.00
120 1 1 2 1.33 120 1 1 2 1.33
130 1.5 1.5 1.5 1.50 130 1 1 1 1.00
140 1.5 2 2 1.83 140 1 2 2 1.67
150 2 2.5 3 2.50 150 2 2 2 2.00

Table 2

 20

Experiment 3: IR Threshold
 This experiment was necessary to find the threshold value for the IR detectors.

The code irtest.c found in appendix A was used to display the values taken from the IR

detectors. This experiment was performed with the IR detectors and IR emitters mounted

in the platform. The readings from the IR detectors were read when different sizes of

obstacles were placed at several positions in front of the platform. It was determined that

the threshold value for the IR detectors should be 100. 100 is the value read when

obstacles were approximately 1.5ft in front of the platform.

Experiment 4: CdS Cell Threshold
 This experiment was necessary to find the threshold value for the CdS cells. The

code Cdstest.c found in appendix A was used to display the values taken from the CdS

cells. This experiment was performed with the CdS cells and green LEDs mounted in the

platform. The readings from the CdS cells were read when pieces of paper of several

colors were placed under the CdS cells. It was determined that the threshold value for the

CdS cells should be 70% of the value found when MMH is on the area to be searched.

 21

Conclusion

 MMH is now a fully autonomous magnetic mine hunter, which randomly searches

for mines and marks them in a designated area while avoiding obstacles. The one

improvement that I would like to make in the current design of MMH is the mine

marking device. The BBs do not always attach themselves to the magnet. If I had more

time I would redisign the BB dropper so that the BB would be dropped directly on top of

the magnet.

The limitation of MMH as a mine hunter is that it only simulates mine hunting of

magnets on a flat surface. Future work to be done is to redesign the platform so that the

rugged terrain of the outside can be searched. Sonar also needs to be added to the sensor

suite since IR does not work well in sunlight. Also more sensors are needed to detect real

mines. Some possibilities could be a metal detector and a sensor that can smell

explosives.

 22

Documentation

Thanks to
IMDL class: Instruction from Dr. Arroyo, Aamir Qaiyumi, Uriel Rodriguez, and Dr.
Schwartz.

[1] Keith L. Doty, Electrical Engineering Department, Univ. of Florida, Gainesville, FL,

Sharp IR Sensor Hack for Analog Distance Measurement, 1996.

[2] Keith L. Doty, Electrical Engineering Department, Univ. of Florida, Gainesville, FL,

MS SERVO HACK.

[3] Keith L. Doty, Electrical Engineering Department, Univ. of Florida, Gainesville, FL,

MRC11 Assembly Manual; Mekatronix 1999.

[4] Keith L. Doty, Electrical Engineering Department, Univ. of Florida, Gainesville, FL,

MRSX01 Assembly Manual; Mekatronix 1999.

 23

Vendors

Digi-key
701 Brooks Avenue South
P.O. Box 677
Thief River Falls, MN 56701-0677
1-800-344-4539
www.digikey.com

Mekatronix
316 NW 17 Street Suite A
Gainesville, FL 32603
352-376-7373
www.mekatronix.com

Radio Shack
3315 SW Archer Road
Gainesville, FL 32608
352-375-2426

Mondo-tronics, Inc.
4286 Redwood Hwy PMB-N
San Rafael, CA 94903
415-491-4600
www.RobotStore.com

 24

Appendices

Final Code:
 /***
 * Title integra9.c *
 * Programmer Lee Cofer *
 * Date 4/18/2002 *
 * Version 9 *
 * *
 * Description *
 * This program performs obstacle avoidance, magnet detection, *
 * magnet marking, and border avoidance. *
 **/
 /*************************** Includes ********************************/
 #include <tkbase.h>
 #include <servotk.h>
 #include <hc11.h>
 #include <mil.h>
 #include <vectors.h>
 /************************ End of Includes ****************************/

 /*************************** Constants ********************************/
 #define CDSL CDS[0]
 #define CDSR CDS[5]
 #define IRE_OUT *(unsigned char *)(0xffb9) /* Address of Digital_Out */
 #define IRE_ON 0x1f /* IR emitters on */
 #define IRE_OFF 0x00 /* IR emitters off */
 #define LED_AVOID 0x3f /* Avoid LED on */
 #define LED_MINE_DET 0x5f /* Mine detection LED on */
 #define LED_BORDER 0x9f /* Border LED on */
 #define SERVO1 0
 #define IRR analog(2)
 #define IRL analog(4)
 #define IRC analog(5)
 #define IR_THRESHOLD 100
 #define CDS_THRESHOLD 95
 #define FORWARD 100
 #define REVERSE -100
 #define HFORW 80
 #define HREV -80
 #define STOP 0
 #define RIGHT_MOTOR 1
 #define LEFT_MOTOR 0
 #define BUMPER_FUZZY_ZERO 12 /* Noise immunity for bumper readings */
 #define HALL1 analog(6)
 #define HALL2 analog(7)
 #define HALL3 IRDT[8]
 #define HALL4 IRDT[9]
 #define HALL5 IRDT[10]
 #define HALL6 IRDT[11]
 #define HALL7 IRDT[12]

 /************************ End of Constants ****************************/
 /*************************** Prototypes *********************************/
 void turn(void);
 void avoid(void);
 void mineDetect(void);
 void change_speed(void);
 void check_cds(void);
 void borderDetect(void);
 void init_CDS(void);

 25

 void front_bump(void);
 void back_bump(void);
 /************************ End of Prototypes *****************************/
 /***************************** Globals **********************************/
 int irdr,irdl,irdc,rspeed,Rspeed= 0, lspeed,Lspeed = 0, test1 = 0 ;
 int hall1, hall2, hall3, hall4, hall5, hall6, hall7,
 hall8, hall9, hall10, hall11, hall12;
 int open=2600, close=2200, BBtime = 80;
 int CDSR_THRESHOLD,CDSL_THRESHOLD;
 /************************** End of Globals ******************************/

 void main(void)
 /****************************** Main ***********************************/
 {
 init_analog();
 init_motortk();
 init_clocktk();
 init_serial();
 init_servos();

 /*Start MMH when front bumper is pressed*/
 while(front_bumper()<BUMPER_FUZZY_ZERO);
 IRE_OUT = IRE_ON; /* Turn on the IR emitters */
 wait(1000); /* Allow IR det & CDS cells to reach final values */

 init_CDS(); /* Find CDS threshold */

 lspeed = rspeed = FORWARD; /*Initial movement of TALRIK is forward*/
 change_speed();

 while(1)
 {
 avoid();
 mineDetect();
 borderDetect();

 }
 }
 /**************************** End of Main ******************************/

void avoid()
{/**
 * Function: Will avoid obstacles *
 * time *
 * Returns: None *
 * *
 * Inputs *
 * Parameters: None *
 * Globals: None *
 * Registers: None *
 * Outputs *
 * Parameters: None *
 * Globals: None *
 * Registers: None *
 * Functions called: turn *
 * Notes: *
 **/

 /* The following block will read the IR detectors and decide
 whether TALRIK needs to turn to avoid any obstacles */
 irdr = IRR;
 irdl = IRL-5;

 26

 irdc = IRC-13;

 if((irdr > IR_THRESHOLD)||(irdl > IR_THRESHOLD)||
 (irdc > IR_THRESHOLD))
 {
 IRE_OUT = LED_AVOID;
 if(irdc < irdl || irdc < irdr)
 {
 if(irdr > irdl)
 /* Start turning when something in front and keep turning
 until nothing is in front */
 {
 lspeed = HREV;
 rspeed = HFORW;
 }
 else
 {
 lspeed = HFORW;
 rspeed = HREV;
 }
 }
 else
 { lspeed = HFORW;
 rspeed = HREV;
 }

 change_speed();

 while((irdr > IR_THRESHOLD) || (irdl > IR_THRESHOLD)||
 (irdc > IR_THRESHOLD))
 { irdr = IRR;
 irdl = IRL-5;
 irdc = IRC-13;

 if(front_bumper()>BUMPER_FUZZY_ZERO) // Check bumper
 {
 front_bump();
 break;
 }
 borderDetect();
 }
 wait(400);

 IRE_OUT = IRE_ON;
 }
 lspeed = rspeed = FORWARD;
 change_speed();

 /* If the bumper is pressed, TALRIK will back up, and turn. */
 front_bump();
}

void turn()
/**
 * Function: Will turn in a random direction for a random amount of *
 * time *
 * Returns: None *
 * *
 * Inputs *
 * Parameters: None *
 * Globals: None *

 27

 * Registers: TCNT *
 * Outputs *
 * Parameters: None *
 * Globals: None *
 * Registers: None *
 * Functions called: None *
 * Notes: *
 **/
{
 int i;
 unsigned rand;

 rand = TCNT;

 if (rand & 0x0001)
 {
 lspeed = HREV;
 rspeed = HFORW;
 change_speed();
 }
 else
 {
 lspeed = HFORW;
 rspeed = HREV;
 change_speed();
 }

 i=((rand % 1024) + 35) * 2;
 wait(i);

}

void mineDetect()
{/**
 * Function: Will detect magnets and drop a BB on it *
 * time *
 * Returns: None *
 * *
 * Inputs *
 * Parameters: None *
 * Globals: None *
 * Registers: None *
 * Outputs *
 * Parameters: None *
 * Globals: None *
 * Registers: None *
 * Functions called: read_IR *
 * Notes: *
 **/
 read_IR();
 hall1=HALL1;
 hall2=HALL2;
 hall3=HALL3;
 hall4=HALL4;
 hall5=HALL5;
 hall6=HALL6;
 hall7=HALL7;

 if(hall1 < 10 || hall2 < 10 || hall3 < 10 || hall4 < 10
 || hall5 < 10 || hall6 < 10 || hall7 < 10)
 {

 28

 IRE_OUT = LED_MINE_DET; // Turn on LED for mine detection
 lspeed = rspeed = STOP;
 change_speed();
 servo(SERVO1,open);
 wait(BBtime);
 servo(SERVO1,close);
 wait(2200);
 lspeed = rspeed = FORWARD;
 change_speed();
 wait(300);
 IRE_OUT = IRE_ON;
 }
}

void change_speed()
{/**
 * Function: Will slowly change the speed of both motors. *
 * time *
 * Returns: None *
 * *
 * Inputs *
 * Parameters: None *
 * Globals: None *
 * Registers: None *
 * Outputs *
 * Parameters: None *
 * Globals: None *
 * Registers: None *
 * Functions called: *
 * Notes: *
 **/
 while (lspeed != Lspeed || rspeed != Rspeed)
 {
 if (Lspeed > lspeed) --Lspeed;
 else if (Lspeed < ls peed) ++Lspeed;
 if (Rspeed > rspeed) --Rspeed;
 else if (Rspeed < rspeed) ++Rspeed;
 motortk(LEFT_MOTOR,Lspeed);
 motortk(RIGHT_MOTOR,Rspeed);
 wait(1);
 }

}

void borderDetect()
{/**
 * Function: Will check if robot is on border of search area and will *
 * turn in random direction if so. *
 * Returns: None *
 * *
 * Inputs *
 * Parameters: None *
 * Globals: None *
 * Registers: None *
 * Outputs *
 * Parameters: None *
 * Globals: None *
 * Registers: None *
 * Functions called: turn *
 * Notes: *

 29

 **/
 int i;
 IRE_OUT = LED_BORDER;
 read_CDS(); /* Read all 6 CDS photoresistor voltage dividers */
 if(CDSR < CDSR_THRESHOLD || CDSL < CDSL_THRESHOLD)
 { motortk(LEFT_MOTOR, STOP);
 motortk(RIGHT_MOTOR, STOP);
 wait(100);
 lspeed = rspeed = HREV;
 change_speed();
 wait(1000);
 turn();
 wait(2000);
 lspeed = rspeed = FORWARD;
 change_speed();
 }
 IRE_OUT = IRE_ON;
}

void init_CDS()
{/**
 * Function: Will configure the threshold value of the CDS cells *
 * *
 * Returns: None *
 * *
 * Inputs *
 * Parameters: None *
 * Globals: None *
 * Registers: None *
 * Outputs *
 * Parameters: None *
 * Globals: None *
 * Registers: None *
 * Functions called: *
 * Notes: *
 **/
 int i;
 for(i=0; i<30; i++)
 { read_CDS();
 wait(150);
 }
 read_CDS(); /* Read all 6 CDS photoresistor voltage dividers */

 CDSR_THRESHOLD = CDSR * 0.70 ;
 CDSL_THRESHOLD = CDSL * 0.70 ;
}

void front_bump()
{/**
 * Function: This checks the front bumper. If the bumper is pressed, *
 * MMH will back up, and turn. *
 * *
 * Returns: None *
 * *
 * Inputs *
 * Parameters: None *
 * Globals: None *
 * Registers: None *
 * Outputs *
 * Parameters: None *

 30

 * Globals: None *
 * Registers: None *
 * Functions called: change_speed *
 * Notes: *
 **/
 if(front_bumper()>BUMPER_FUZZY_ZERO)
 {
 motortk(LEFT_MOTOR, STOP);
 motortk(RIGHT_MOTOR, STOP);
 wait(300);
 lspeed = rspeed = HREV;
 change_speed();
 wait(1000);
 turn();
 }
}

void back_bump()
{/**
 * Function: This checks the back bumper. If the bumper is pressed, *
 * MMH will go forward, and turn. *
 * *
 * Returns: None *
 * *
 * Inputs *
 * Parameters: None *
 * Globals: None *
 * Registers: None *
 * Outputs *
 * Parameters: None *
 * Globals: None *
 * Registers: None *
 * Functions called: change_speed *
 * Notes: *
 **/
 if(rear_bumper()>BUMPER_FUZZY_ZERO)
 {
 motortk(LEFT_MOTOR, STOP);
 motortk(RIGHT_MOTOR, STOP);
 wait(300);
 lspeed = rspeed = HFORW;
 change_speed();
 wait(700);
 turn();
 }
}

IR Test Code:
 /**
 * Title irtest2.c *
 * Programmer Lee Cofer *
 * Date 2/17/2002 *
 * Version 2 *
 * *
 * Description *
 * This program tests the two IR detectors *
 **/
 /*************************** Includes ********************************/
 #include <analog.h>

 31

 #include <clocktk.h>
 #include <isrtk.h>
 #include <serialtk.h>
 #include <stdio.h>

 #include <hc11.h>
 #include <mil.h>
 #include <vectors.h>
 /************************ End of Includes ****************************/

 /*************************** Constants ********************************/
 #define IRR analog(2)
 #define IRL analog(4)
 #define IRC analog(5)
 /************************ End of Constants ****************************/
 void main(void)
 /****************************** Main ***********************************/
 {
 int irdr,irdl,irdc;
 init_analog();
 init_clocktk();
 init_serial();
 *(unsigned char *) 0x7000=0x07; // Turn on the IR emitters
 while(1)
 {
 irdr = IRR;
 irdl = IRL-5;
 irdc = IRC-13;

 printf("R: {%d}",irdr);
 printf(" C: {%d}",irdc);
 printf(" L: {%d} \n",irdl);

 wait(300);
 }
 }
 /**************************** End of Main ******************************/

CdS Cell Test Code:
 /**
 * Title cdstest1.c *
 * Programmer Lee Cofer *
 * Date 4/12/2002 *
 * Version 1 *
 * *
 * Description *
 * This program tests the two CdS Cells used on MMH. *
 **/
 /*************************** Includes ********************************/
 #include <tkbase.h>
 #include <servotk.h>
 #include <hc11.h>
 #include <mil.h>
 #include <vectors.h>
 /************************ End of Includes ****************************/

 /*************************** Constants ********************************/
 #define CDSL CDS[0]
 #define CDSR CDS[5]
 #define IRE_OUT *(unsigned char *)(0xffb9)

 32

 #define LED_BORDER 0x9f /* Border LED on */
 #define IRE_ON 0x1f /* IR emitters on */
 #define IRE_OFF 0x00 /* IR emitters off */
 /************************ End of Constants ****************************/
 void main(void)
 /****************************** Main ***********************************/
 {
 int cdsr,cdsl;
 init_analog();
 init_clocktk();
 init_serial();

 IRE_OUT = IRE_ON;

 while(1)
 {
 IRE_OUT = LED_BORDER;
 read_CDS(); /* Read all 6 CDS photoresistor voltage dividers */
 cdsr = CDSR;
 cdsl = CDSL;

 printf("{%d %d }\n",cdsr,cdsl);

 wait(150);
 }
 }
 /**************************** End of Main ******************************/

Hall Effect Sensor Test Code:
 /**
 * Title halltst3.c *
 * Programmer Lee Cofer *
 * Date 4/8/2002 *
 * Version 3 *
 * *
 * Description *
 * This program tests the Hall Effect sensors used on MMH. *
 **/
 /*************************** Includes ********************************/
 #include <tkbase.h>
 #include <hc11.h>
 #include <mil.h>
 #include <vectors.h>
 /************************ End of Includes ****************************/
 /*************************** Constants ********************************/
 #define HALL1 analog(6)
 #define HALL2 analog(7)
 #define HALL3 IRDT[8]
 #define HALL4 IRDT[9]
 #define HALL5 IRDT[10]
 #define HALL6 IRDT[11]
 #define HALL7 IRDT[12]
 /************************ End of Constants ****************************/
 /*************************** Prototypes *********************************/
 void mineDetect(void);
 /************************ End of Prototypes *****************************/
 /***************************** Globals **********************************/
 int hall1, hall2, hall3, hall4, hall5, hall6, hall7;

 33

 /************************** End of Globals ******************************/

 void main(void)
 /****************************** Main ***********************************/
 {
 init_analog();
 init_clocktk();
 init_serial();

 while(1)
 {
 mineDetect();
 }
 }
 /**************************** End of Main ******************************/

void mineDetect()
{/**
 * Function: Will detect magnets and print out sensor results *
 * time *
 * Returns: None *
 * *
 * Inputs *
 * Parameters: None *
 * Globals: None *
 * Registers: None *
 * Outputs *
 * Parameters: None *
 * Globals: None *
 * Registers: None *
 * Functions called: None *
 * Notes: *
 **/

 read_IR();
 hall1=HALL1;
 hall2=HALL2;
 hall3=HALL3;
 hall4=HALL4;
 hall5=HALL5;
 hall6=HALL6;
 hall7=HALL7;

 printf("%d %d %d %d %d %d %d \n", hall1,hall2,
 hall3, hall4, hall5, hall6, hall7);
 wait(40);
}

Servo Test Code:
 /**
 * Title servotst.c *
 * Programmer Lee Cofer *
 * Date 3/16/2002 *
 * Version 1 *
 * *
 * Description *
 * This program tests the servo that controls the door of the BB *
 * Dropping Mechanism of my special sensor suite. *
 * *

 34

 **/
 /*************************** Includes ********************************/
 #include <analog.h>
 #include <clocktk.h>
 #include <isrtk.h>
 #include <serialtk.h>
 #include <stdio.h>
 #include <servotk.h>
 #include <hc11.h>
 #include <mil.h>
 #include <vectors.h>
 /************************ End of Includes ****************************/
 /*************************** Constants ********************************/
 #define SERVO1 0
 #define HALL1 analog(4)
 /************************ End of Constants ****************************/

 void main(void)
 /****************************** Main ***********************************/
 {
 int open=2600, close=2200, hall1,time;
 init_analog();
 init_clocktk();
 init_serial();
 init_servos();
 while(1)
 { printf("Enter time: ");
 time = read_int();
 servo(SERVO1,open);
 wait(time);
 servo(SERVO1,close);
 }
 }
 /**************************** End of Main ******************************/

