University of Florida

Department of Electrical And Computer Engineering

EEL 5666C
Intelligent Machine Design Labratory

Slappy
(The Mappy Bot)

Final Report
L ouis Brandy
Tuesday, April 23, 2002

Table of Contents

Abstract . 03
Executive Summary ...l 04
| ntroduction ... 05
| ntegrated System 07
Mobile Platform — 09
Actuation L., 12
SenNsors e, 13
Behaviors . 20
Conclusion e, 33
Docunenation .. 34
Appendi x | Ll 35

End 53

Abstract

Slappy is an autonomous mobile robot that will roam around a maze, mapping as he
goes. He will align and correct himself on the walls of the maze to keep his position
within the maze where he expects it. He will produce his map at the user’s request.

Executive Summary

Slappy (named by my little cousin) will wander a maze attempting to map out the
maze as he goes. He does this using 5 infrared sensors with split duties between wall-
detection and error correction. He also uses a shaft-encoder to measure distances

traveled (and angles turned).

Slappy moves using two modified servos to act as gearhead motors. These motors,
along with all electronics are controlled by an HC11 on the Axiom EVBU board

which is nounted to his moving platform.

The maze must be set up of walls corresponding to agrid. This means al walls are
orthogonal and of a specific distance. With these constraints, Slappy is able to
navigate the maze, without touching awall, and produce a map of the areas he

traveled.

Drift errors are corrected as he moves by using the walls of a maze to orientate
himself. He corrects both linear and rotationa errors by using the walls as reference

points.

| ntroduction

Slappy isacircular robot of about 1 foot across that stands about afoot high. He
wanders around a maze, negotiating it and mapping it to memory to be shown on a

terminal later. He should aso do all of this without touching any walls.

The maze that Slappy maps has certain restrictions. Most importantly, the maze is laid
upon a grid with the walls taking up an entire segment. There are no partial walls, nor
anything that is not orthogonal. The actual maze was constructed of 2x6s of wood that
were cut to size, with the 6-inch faces being the actual walls that Slappy deals with. The
minimum wall length is 16.5 inches (three 2x6 widths — 2x6s aren’t actually 2x6, but
instead 1.5 inches by 5.5 inches. 5.5 x 3 = 16.5). Therefore the entire maze can be

decomposed into a grid of square cells with each side as 16.5 inches.

Slappy’ s software was written entirely in HC11 Assembly language and therefore many
routines that would otherwise be simple turn out to be rather difficult or long. Assembly,
however, provided extremely good control over certain aspects of the system (like when

interrupts occurred). It was also an excellent learning experience.

He uses a shaft-encoder to do ninety percent of the work. His forward movements are
always a specific distance determined by a certain number of clicks of the encoder.
Likewise, both his left and right turn are tuned to a specific value of clicks. However, he

will never be able to turn exactly 90-percent, nor will he be able to move exactly one cell

forward. Every time he moves, or turns, these small errors will add up until Slappy is
nowhere near the center of a cell, or worse, cause him to run into awall. Solving these

incremental errors is the heart of the problem.

After creating a program for Slappy to navigate the maze without any error correction, he
was observed to see the most common types of mistakes he makes and thus different
schemes were created to correct each of them. In the end, three different schemes are

used at different times to help Slappy keep his bearings.

|ntegrated System

Slappy’ s software is written entirely in assembly language for the HC11. It, in totd, is
about 1100 lines of assembly that is broken down into sensor routines, movement
routines, error-correction routines, and the main program which uses the routines to solve

the problem.

The software was written in a modular style. For instance, a routine to sample an
indicated sensor (passed to the function in aregister) was written and tested thoroughly
using a set of test programs. Then, aroutine to turn both motors on so the robot was
moved forward, left, and right was written and tested thoroughly. The final step wasto
combine all these into one program that was able to call these functions individually and
use them to solve the problem. Slappy’s routines are rather robust and form, in their own

right, a“higher-level” language to use to solve this problem.

As stated before, the code is broken down as follows:

Main Code

| |
Ve N\
[Error Correction J Sensor [M ovement J

In the following sections, each of these individual sections will be outlined in detail, and

the final algorithm is described in the behaviors section.

M obile Platform

Slappy’s platform is only 4 wooden pieces that fit easily onto two sheets of the wood
provided as part of the class. The main platform component is an 8 inch circular disk

consisting of holes for the board mount and the servo mounts.

Board
Hount=

Jecwvo
Mount=

Diagram of main
prlatform

The board is mounted vertically, with two steel L-brackets serving as the support
mechanism. Four of them are used, in total, two on each side. Thereis a screw going
through the board, to an |-bracket on both sides of the board, and each bracket is screwed

into the main platform.

Controller bhoard

Diagram: EBoard
Mount

Circular Platform

The servos are mounted on the underside of the board using three more pieces of wood
for support. The dlotsin the circular board for the servo mounts are the exact width of
the board, so a smaller board with tabs the right size can be pushed into place and secured

with wood glue. A quick diagram of the remaining piecesis shown below:

Diagram of the serwvo mount peices

The two top pieces are inserted vertically into the circular body piece. The bottom piece
using the same tab concept, bridges the two on the bottom, paralel to the circular board.

It is diagramed below:

10

S3ide View

Serwvo

Eottom View

11

Actuation

The only actuation on the robot consists of two hacked servo motors. The potentiometer
was removed and replaced by two equal resistors so that the servo always thinksit is at
the same position. The gears were also altered so that there was no mechanical stopping
mechanism. This turned the servos into gearhead motors that, with different pulse-widths,

can control both speed and direction.

The software to control these two motors took quite a while, though it was quite smple.
Two output compare routines were used to create pulse-widths with atotal period of
32ms. In order to keep them from running over each other, one was set to go off at
0x0000 and the other at 0x8000. On these interrupts, it would set the mask for the next
interrupt at its current counter, plus the specified pulse-width. In thisway, the two
memory locations that hold the current pulse-width can be altered at any time from the

program and the motors will be updated accordingly.

The actual routines to go forward, and turn consist solely of updating the pulse-widths
variables in memory with specified constarts, and returning to the caller. Tuning those
values is what took up the brunt of the time spent. The experiment consisted of setting
them manually, running the robot down the hall, and making adjustments. Once decent
values for going straight and turning in place were determined, the routines were

finished.

12

Sensors

Shaft Encoder

The design of a shaft-encoder was vital to the proper working of the robot, so alittle
more work was put into making a shaft-encoder and proving it worked correctly.

The part chosen for the encoder was the Hamatsu P5587 photoreflector. The device
consists of an IR emitter and a phototransistor pair. It isa5-pin device with the follow

layout:

T T

X Ry

D—
PULSE IMPUT } H @ |
AN ﬁ?

L g
a
= wm

=

5

o0
5

Using a pull-up resistor, the device will be at 5-voltsif black paper isin front of it, and
0V if white paper isin front of it. Using this sSimple property, a shaft encoder can be
constructed. The following is the actual design implemented on the circuit board that

was tested:

13

- Ground
J'IZI.1|.;F
L«HS"."

H—a Sukpuk

o
wﬁ'llinrl_

8

The 330 ohm resistor smply regulates the current that flows through the diode. The 3.3k
resistor is simply a pull-up resistor and it’s value has very little effect on performance of

the digital output.

The second part of the encoder is the encoder disk. These are circles divided in equal
dlices of aternating black and white. Mounting these disks to the wheel, with the
photoreflector fixed in place and facing the wheel creates the encoder. Below is a

reproduction of one:

14

The actual encoder disks were made in auto-cad. Three resolutions were made for

experimenting: a 16 section (above), a 32 section, and a 64 section.

Testing

The first test done on the shaft-encoder was to hook it up to an oscilloscope and see what
kind of signa it gave. The signal appeared quite crisp, but it was near impossible to tell
what types of noise or bounces were occurring at the extremely slow frequency. This, at

the very least, verified the encoder was at least wired correctly.

Again, there is no easy way to test the frequency of the signal and compare that with the
angular speed of the wheel. The best way to measure if the shaft-encoder is doing it's job
is to actualy write the software to make the robot move a certain amount of ticks and
measure the distance traveled. Over the course of 20 triads, the distance the robot
traveled after two wheel-rotations was measured. The distance was chosen after a bit of
trial and error. Having the distance too long would lead to errors due to motors not being
the same speed, and having the distance too short amplifies the mple measurement
errors. These numbers were compiled and the mean, the standard deviation, and the

range were calculated. Thistest was done for the 16, 32, and 64 sectioned disks.

What follows is the tabulated data of the three tests done (All numbers in inches):

16 section 32 section 64 section
26.1875 26.25 26.375
26.375 26.25 26.375
26.375 26.25 26.4375
26.5 26.375 26.4375

15

26.5 26.4375 26.4375
26.5 26.4375 26.4375
26.5 26.4375 26.4375
26.5 26.5 26.5
26.5 26.5 26.5
26.5 26.5 26.5
26.5625 26.5 26.5
26.5625 26.5 26.5
26.5625 26.5 26.5
26.5625 26.5 26.5625
26.5625 26.5625 26.5625
26.625 26.5625 26.5625
26.6875 26.5625 26.625
26.75 26.5625 26.625
26.8125 26.625 26.625
26.875 26.6875 26.75

What follows is some secondary calculations about the datasets:

16 section 32 section 64 section
Mean: 26.55 26.475 26.5125
Std.Dev 0.153897 0.118932 0.094242
Range 0.6875 0.4375 0.375
Theoretical 0.834461 0.41723 0.208615

Much as expected, as the resolution increases, the standard deviation and total range go

down. The theoretical values are obtained by dividing the circumference by the number

16

of sections. In theory, the encoder knows nothing about anything smaller then this
number and it’s provided as an ideal number for comparison. Two other sources of error
keep the estimated numbers from being much closer to the actual values observed. First,
there is measurement error because this is a difficult measurement to do to a high degree
of precision. Secondly, the starting and stopping of the robot is very suddenly and jerk

and often causes dight shifts and overshoots.

The final robot used the 32 section version because the 64 version proved to be too error-

prone in various noisy conditions and especially on reflective floors (ie, tile).

| nfrared Sensors

The robot consisted of 5 infrared sensors, situated as follows:

17

The two rear sensors are, in theory, orthogonal with the maze walls at al times.
Therefore, these two sensors and the fore sensor make up the wall-finding group. These
three sensors are used to tell if awall isin ether of the three main directions. The side
pointing front two sensors are used in error correction routines to detect when the robot is

not facing orthogonally and heading towards awall.

A routine was written to sample a specified (by passing it through a register) analog port.
This routine includes the wait times to allow for a stable output of the LED (not very
long), and then a stable analog value (much longer). Waiting for an analog output value
takes quite a bit of time and consequently determines the overall sampling rate of the
robot. Since no other system of the robot waits nearly as long, this one value, effectively,
determines the speed at which the robot makes decision. It isreferred to as

SAMPLETIME in the attached code.

At this point, afew of the problems with my sensors should be discussed. The distances
involved in these infrared sensors are essentially from zero range to about two cells
worth, or about 3 feet. The most important readings are point-blank walls abutting the
robot, walls about one half cell away (a nearby wall), awall about 1.5 cells away (awall
one cell over), and an infinite reading. Three of the sensors performed extremely well
within these ranges, but the other two were not very good. In one case, very close

readings were very easy to confuse with infinity. In the other case, it was very difficult to

18

tell the difference between a wall nearby, and awall one cell over (asthe “peak” of the

analog output existed between the two).

After quite a bit of fiddling with the robot, it was decided that the best sensor should be
used in the front, and the other two good ones should be the front-side sensors that are
used to correct errors. The back sensors only job was to have athreshold and say ‘Yesa
wall ishere’ or ‘No, awall isnot here’. Since these back sensors were rather poor, they
were limited to solely thisrole. Asis seen later, had these back sensors been better at
these ranges, they could also be used for some error-correction routines that would

grestly add to the stability of the robot in a maze.

19

Behaviors

The robot has a host of behaviors that will be described here, as well as a main program
which transfers from behavior to bebavior based on certain stimuli. All of these
behaviors are programmed for the HC11 in straight Assembly code using the old DOS
tool Edit. The board used is from Axiom (www.axman.com). It isthe Axiom EVBU

board for the HC11, revision D.

Map Negotiating

This was the first behavior to get working, and essentially set the basis for what else was
required. It was assumed that if the robot was able to navigate the maze, randomly,
without hitting a wall, thenmapping each cell around it was atrivial next step.
Therefore, the brunt of design was centered around successfully map negotiating. The

first agorithm went like this:

Sample Front
Is there a Wall? (Front Reading > Front Threshold)
Go Forward
else
Sample Right
Isthere aWall?
Turn Right
ese
Turn Left

This basic map-negotiation routine was the basis of the final main program, and it's
influence is still extremely prevalent. All of the routines stated above will be described

below, in their inner workings, and this will be returned to in a moment

20

Wall-Detection

All wall-detection is done in avery smple way. Each of the there wall-finding sensors
(fore, left rear, right rear) has a threshold value. These, along with many other constants,

are at the beginning of the ASM file and can be changed quickly for various conditions.

Slappy assumes awall is present in that direction if and only if the sensor reading from

the appropriate analog port is above the threshold.

Go Forward/Turn Left/Turn Right

All three of these routines incorporate the motor driver routines and the shaft encoder.
The go-forward routine is a close relative of the following:

Clear PulseCount

Set Motor to Forward

Is Pulses equal to FORWARD_PULSE _CONSTANT, yet?

Set Motor to STOP

The routine to turn right and left is essentially identical except the motor is set to turnin
those directions. All three have their own constant that, again, is tuned through large
amounts of trial-and error. The left and right routines were tuned by having the robot
perform 8 turns, and then go forward. In thisway, any small error was easily recognized

and the number of pulses adjusted. Going forward was tuned later, when error-correction

was the concern.

21

Map Negotiating, Revisited
Now that al of the pieces of the following have been described, it can be shown how this

formed the basis of the eventual solution.

Sample Front
Is there a Wall? (Front Reading > Front Threshold)
Go Forward
else
Sample Right
Isthere aWall?
Turn Right
ese
Turn Left

At this point, after hours and hours of tuning three IR thresholds, one IR timing delay,
four motor speed values (2 forward, 2 reverse), and three numbers of pulse-lengths for
movement, Slappy was ready to be run in an actual maze. The first time Slappy ran, with
the above decision scheme, he actually negotiated the maze fairly well, and the finely
tuned values served him well through the first 5 or 6 cells. At this point, the small errors,
mostly linear in nature caught up with him and he made the first, of many, collisions with

awall.

Error

There are three kinds of error that Slappy incurs over time. The most obvious two are
linear errors and rotational errors. Rotational error occurs, over time, as Slappy’s
attempts at 90-degree turns have small errors that collect until he is off the 0-90-180-270

axis. Thelinear error is split into two kinds, one is situated in the forward-rear direction,

22

as opposed to side-to-side errors. The reason this differentiation is made is because
Slappy can easily correct front-linear errors since he can move in that direction. It's

much harder for him to correct side-linear errors.

Rotational

Error f
| Fore Error

Side]E]‘_'ZI‘_'D]‘_'

Diagram of the robot in a cell, with the types of error
labeled. The robot faces in the direction of the arrow

Fore-Linear Correction

Again, thiswas afairly straightforward and powerful technique to correct error.
Essentially, two more routines for the motor were written with two new, slower speeds —
one for forward, one for backward. Using these very slow movements, Slappy could
scoot up, or back off of awall until his FORE sensor read a certain value, another
constant, called STDDIST. This value was chosen very carefully for later reasons

discussed.

It should be noted that since Slappy’ s wall-detecting sensors are in the rear of the

platform, Slappy is much better to be closer to afore wall, to maximize the amount of

23

wall in the view of these sensors. This also meant his FWDPUL SE should be increased a
little as to allow Slappy to use those sensors to detect things, and consequently back off
the wall after the detection took place. In the end, Slappy works a bit better with afew
more pulses then is required to go 16.5 inches. The obvious flaw to this design, isthat in
along straightaway, Slappy will be creating large amounts of forward error and when he

finally reaches awall, he may be too far forward to stop in time.

To correct this lesser issue, Slappy’ s GoForward routine was changed to contain an
emergency stop value. If, when going forward, Slappy’ s Fore Sensor hits an emergency
threshold, that means he needs to stop immediately, and return out of the subroutine.
Going full speed, and stopping at this threshold will stop Slappy about an inch from the
wall he was about to hit. Slappy assumes, aways, that although he has not moved an
entire set of pulses forward, he did move one cell forward. This assumption is based on
the fact that he tends to create forward error (ie, moving too far) as opposed to rear error
(not moving far enough). After an emergency stop, Slappy will do afore-error correction

to back off thiswall to his STDDIST.

Rotational-Correction

The rotational correction algorithm used is quite smple in theory, and quite impressive in
practice. Two new behaviors were created to do this: AlignL and AlignR. These two
turned in the specified direction until the Fore Sensor decreased at al. By doing AlignR
and then AlignL, you could, in theory, end up near orthogonal with any wall in front of

you.

24

This pair of behaviors, in conjunction, work fairly well but often the FORE sensor takes a
quick dip that it shouldn’'t and this results in a false stopping. To correct this, in the
actual implementation, the right and left alignment is repeated 3 times each, in an

aternating fashion In thisway, he does afairly good job of fixing his rotational errors.

The STDDIST that Slappy corrects himself to is governed by this routine. Remember,
STDDIST isthe distance that Slappy moves to when there isawall in front of him that is
supposed to represent the center of that cell. As a separate consideration, the most
sensitive distance region on the fore sensor should be used for the Align routines.
Therefore, STDDIST doesn’t quite work out to the center of a square. It is, instead, near

the center, where the FORE sensor is the most sensitive.

It may seem like a coincidence that the distance from the center of asquareto awall in
front is very near the most sensitive region of a particular IR sensor. The IR sensor to be
used in the front was chosen for its sengitivity in that range, and positioned on the robot

accordingly to maximize this effect.

Sde-Linear-Correction

At this point, there were two main ways of correcting error that, together, did a pretty
decent job of keeping Slappy from hitting walls. At this point, it would be wise to
discuss alittle bit of the relationship between the errors. Linear-Forward error is easily

correctable and corrected the most accurately. Once the robot turns, his Linear-Side error

25

becomes his Linear-Forward error, which is corrected the next time he hits awall.
Therefore, given no rotational error, over time he will correct al of his linear errors

extremely well.

Rotational Error, however, complicates these things. Rotational error creates side-error
over time, as the robot moves forward. With Slappys decent rotational error correction,
major side-error isn't really a concern. He can have moderate side-error that will be
corrected as long as there is awall to turn him soon. Without awall to turn him, and

move his side error into the correctable forward region, he will eventualy fail.

What all this means, is that our two schemes are ineffective in cases where Slappy does
not turn for long periods of time — say three squares. In this case, Slappy’s success rate
goes down considerably. Therefore, athird scheme must be developed to correct side-

errors when in long corridors.

The technique used is ssimply to poll the front-right and front-left sensors using a
threshold while moving forward. When the threshold kicks in, the opposite whesel is
dowed down. For instance, if the front-right sensor is over the threshold, he must turn
left, and thus Slow down his left motor. The question is, how much should it be Slowed

down?

Several techniques were tried:

1) Slow down the motor by a constant amount

26

2) Slow down the motor equal to the difference in threshold

3) Slow down the motor twice the difference

By ‘dowing down’ the motor, | mean subtracting (or adding, in the case of the servo

going in reverse) a number from the pulse-width used.

Slowing down the motor by a constant amount caused a serious overcorrection problem if
that constant was too high, and a serious under-correction problem when it was too low.
Numbers in the middlie ground tended to overcorrect small errors, and under-correct big

ones. This scheme was clearly ineffective.

The second and third were identical in implementation other then a SHIFT-LEFT in the
multiplied version. Again, | ran into similar control issues as before. The un-multiplied
one ran into under-correction problems with large errors, and the multiplied one ran into

overcorrection problems with smaller errors.

Since most of the errors he encountered were small, the un-multiplied version seemed to

be the logica choice. To aid in his under-correction problem, the threshold was lowered

abit from desired.

However, this system is not perfect. The errors that can cause him problems are

discussed in the conclusion.

27

Final Negotiating Routine
Below is a pseudo-code representation of what the final main routine looks like, and how
it puts together the error correction and movement routines together to form the main

brains of the robot.

Wall in Front?

No -> Go Forward while correcting side errors
Go Back to Top

Yes->

Correct Linear Distance in Front of us

Orient to wall in front (AlignL/AlignR x3)

Re-Correct Linear (new orientation, new reading of fore)

wal to the Right?
Yes-> Turn Left
Go Back to Top
No -> Turn Right

Go Back to Top

Mapping
The mapping aspect was a close conceptual extension of the previous decision making
algorithm, but the implementation was quite tricky. He has three sensors that aready tell

him if awall isin a specific spot. This means he already knows, for certain, of the three

28

walls around him. Do not make mistake of thinking he also knows the fourth, the wall
behind him, because he came from that direction. That is only true after a forward

motion, and not after aturn.

At the very beginning of the decision routine, he jumps to a mapping routine whichtakes
the three binary values of the three walls around him and has the job of writing those

three bits to the correct place in memory.

Each cell is given it's own place in memory, with the lesser 4 bits denoting the walls as

shown:

4
For the rest of thistext, 1 will be referred to as North, 2 and East, etc. While these terms
are technically incorrect, they make it a bit easier to both explain and understand.

Whatever direction the robot is started in is his North. The most significant bit is used to

set whether a cell has been visited at al or not. The other three bits are unused.

The robot must also keep track of his direction, as he turns. Knowing his fore-sensor
reads awall is not of any value if he doesn’'t know if that represents a North or East. To
do this, he has a direction variable that is updated with every turn and is defaulted to 1

(North).

29

At this point in the design phasg, it is wise to note that a pair of lower four-bit circular
rotations was created, for left and right. It will be used extensively as we will see. It

zeros the top four bits, and rotates the bottom four in the specified direction.

If the data is passed in a poor or arbitrary format, then the amount of bit manipulation
required is a bit staggering to update the three corresponding wall bitsin memory. To
correct this problem, the data format was carefully chosen. First, the sensors are read and
abit-field is created with the following format 0000 POSF. P stands for Port (left), and S
for starboard (right). It isformatted so oddly asto correspond to the bit assignments of
North, South, East, and West. When the robot is facing North, then this bit-field is
correct and ready to be ORed with memory. However, when he is not facing north, the
lower four bits needs to be rotated as many times as the direction indicates before it is

ORed with the current cell in memory.

The scheme of storage and rotation was designed after a painstaking thought process as to
doing thisin an efficient way. The final solution is far more elegant then using a random
assignment system would have been. It'saso alot easier to code and thus less prone to

error.

Map Output
The map, in memory, was now complete. However, there needed to be a way to output it
to the terminal. The simplest way to do this was to create a display program at another

address, far from the original code and run that when you wish to display the map.

30

The program to output the map in memory is essentially two for-loops to traverse each
memory location, and then three sequential for-loops nested inside to run through an

entire line on the screen and print the top, middle, and bottom of each cell respectively.

The actual code for the map display is extremely long and a bit convoluted, but if the

basic premise is understood, it tends to modularize into repeated segments pretty easily.

Deficiencies

Using the three correction algorithms described and the decision making process above,
Slappy is fairly successful in negotiating and mapping a maze. Slappy has a few pitfalls.
As described, two of the hacked IR sensors were poor. If five good IR sensors were
available, the error-correction routines could be a lot better (ie, the AlignR and AlignL
could be applied after turning, instead of before) and Slappy’s error-correction ability

could be vastly improved.

The truth is, there are times when Slappy will still hit awall. Since Slappy is proneto
severerotational or side-error while moving forward, these are essentially the main
causes of his collision with walls. His correction algorithm, asis, doesn’t have enough
control to really swerve him out of the way of these collisions. These types of error
amost always result from a poor turn, since no rotational error is corrected after the turn,
only before. This means that if the shaft-encoder malfunctions he can turn too far or too

short, and the results are often catastrophic.

31

For this reason, Slappy works best on very short carpet or a mat ofr some sort with
minimal reflectivity. Sunlight onto tile-floor will really harm his ability to use the shaft-

encoder and often cause unpredictable errors in his motions.

Furthermore, Slappy absolutely requires obstacles to aleviate his errors. Without the
feedback of obstacles, Slappy has no way of correcting his errors and will find himself in
acompletely different location than he thinks, over time. Inorder to improve this, the
dead-reckoning aspect of Slappy would have to be improved. Thiswould require a more
precise shaft-encoder, and much more finely tuned motor speeds for his movement. The

better the dead-reckoning of the robot, the less obstacles he requires to fix his position.

32

Conclusion

Overdl, I’d have to rate Slappy’s final performanceto be a great success. Heworksin a
large variety of mazes and works with pretty good results. He has accomplished al of
the initial goals I’d set out for, and although his success rate isn't perfect — there are
severa plausible solutions I've come up with. | think that, much like several other

things, | ran out of time, more then | ran out of ideas, to solve his problems.

If Slappy had 5 good IR sensors, and a dlight rewrite in his error-correction scheme, his
ability to negotiate a maze in a stable fashion for long periods of time would greatly
improve. Unfortunately, the downside of the current system is it has no way of detecting
amagjor error and likely the results would leave large unexplored areas corrupted with bad
data. Given enough time, Slappy would recover from most errors, and remap the entire
thing correctly — just with extra unvisited squares corrupted by old data. Perhaps with a
method of detecting major errors (bump switch?) and a new routine, those obsolete areas

of the maps could be erased as a finishing routine.

Also, given more time with Slappy, after | got two better sensors, | would add in some
computer science to his decision making to make him decide to go to new and exciting
places rather then wandering around in his current arbitrary fashion. He lacks any

explorative ingtinct that could make his feats al the more impressive.

33

Documentation
Credits

In case you were wondering, my robot is officially entitled “ Slappy the Mappy bot”. It
was given by my little cousin (who is 8) who began laughing hysterically at her own joke
when she said it, that none of us have had the courage to change it.

I"d like to thank Dr. Arroyo, Dr. Schwartz, Aamir, Tae, and Urid for all their help in the
lab, and in the administrative details that has given me this experience.

The following websites are excellent reads and extremely informative on how to do
certain things.

(Shaft Encoder)
http://www.gorobotics.net/servoencoder.shtml
Also avery good site for al things robotics! Lots of great ideas.

(A similar project)

http://web.sbu.edu/cs/roboticsl ab/mapperl/index.html

This site details an extremely similar project done at St. Bonaventure University. | found
this late in the semester when | was getting a bit depressed that this might not even be
possible withthe hardware | had. Our sensor setups worked out to be somewhat similar,
though our error correction routines came out pretty different. They mainly provided
psychological support for me, that | could get this working.

PartsList

Infrared Sensors — Sharp GPIUX sensors. These are essentially your basic IR cans. At
some point during the semester, www.radioshack.com stopped carrying them. They were
my supplier.

Shaft Encoder — Hamatsu P5587 photoreflector
WWW.acroname.com

Servos — Standard S3003 servos — hacked
WWW.SErvocity.com

HC11 Board — Axiom EVBU-D board
WWW.axman.com

Appendix

Final Code

TCTL1 EQU $1020
TMBK1 EQU $1022
TVMBK2 EQU $1024
TFLGL EQU $1023
TFLG&2 EQU $1025
PACTL EQU $1026
PACNT EQU $1027
TOC2 EQU $1018
TOC3 EQU $101A
PORTA EQU $1000
BAUD EQU $102B
SCCR1 EQU $102C
SCCR2 EQU $102D
OPTION EQU $1039
ADCTL EQU $1030
ADDATA EQU $1031
PORTD EQU $1008
DDRD EQU $1009
SPCR EQU $1028

PE1 EQU %9©0000001
FORE EQU %9©0000010
RFORE EQU %9©0000011
PE4 EQU 990000100
LREAR EQU %9©0000101
RREAR EQU %9©0000110
LFORE EQU %90000111
* kkkkk k% ASCII Constants *kkhkkkhkkkhkkkkkkk K
SPACE EQU $20

DASH EQU $2D
USCORE EQU $5F

Pl PE EQU $7¢C

AST EQU $2A

**** Number of pul ses of encoder disk until stop

FWDPULSES EQU 42 * 42 (other nunbers for testing)
LEFTPULSES EQU 18 * 17
Rl GHTPULSES EQU 20 * 20
**** | R Threshol ds
LREART EQU $60 * Wall here?
RREART EQU $5D * Wl l here?
FORET EQU $59 * Wall here?
*

STDDI ST EQU $6C St andard di stance (FORE READI NG

LFORET EQU $71 *
RFORET EQU $73 *
EMVERG EQU $72 *
**** | R Del ay
SAVPLETI ME EQU $3F
FORW EQU $0AFO *
STOPR EQU $0A40
STOPL EQU $09C0
BACK EQU $0910
SL2 EQU $0A10 *
SL1 EQU $0998 *
SR2 EQU $0A70 *
SR1 EQU $09F8 *
SLOW1 EQU $09F0 *
SLOW2 EQU $0A10 *
SLOMB1 EQU $0998 *
SLONB2 EQU $0A6A *
***Stop: RIGHT Mt or oc2
***Stop: LEFT Motor CC.
ORG $00D9
JwP OC3_I SR
JwP 0oC2_I SR
ORG $00CD
JMP PAO | SR
ORG $0100
PWL FDB $07D0
PW2 FDB $OFAO0
PCOUNT RMB 1
ORG $3000
MAP RVB 256
XX RVB 1
YY RVB 1
DI R RVB 1
ORG $4000
JSR SHOWVAP
I NFI Nd BRA I NFI N4
ORG $4100
JSR CLRMVAP
JwP I NFI N4
ORG $2000
LDS #$1FF
LDAA #$10
JSR I NI T_SCI
JSR I NI T_MOTOR

6A
73
Fore readi ng neaning to STOP

St andard novenment (and stop)

Ri ght Motor (SLOWto LEFT)
Left Motor (SLOW TO LEFT)
Ri ght Motor (SLOW TO RI GHT)
Left Motor (SLOW TO RI GHT)
L
R
L ** Sl owr/ B PWs
R
.asm: OC3 : 0A40 : BACK
asm OoC2 : 09C0 : FORW
; Current Pul se Wdth:
; Current Pul se Wdth:

oc2 (Left)
oc3 (Right)

36

JSR
JSR
JSR

LDAA
STAA
STAA
LDAA
STAA

JSR
CLI

HERE
JSR
PSHA
SUBA
BNE
JSR
JSR
JSR
JSR
JwP

NOTS PULA
PSHA
CMVPA
BNE
JSR
JSR
JSR
JSR
JSR
JSR
JSR
JSR
JSR
JSR

*khkkkhkkkkkkkk

** Re-deci de
*kkkkkkkkkkk*k
JSR
JSR
BRA

NOTL PULA
PSHA
CVPA
BNE
JSR
JSR
JSR
JSR
JSR
JSR

to

| NI T_SHAFT
| NI T_SENSOR
NI T_AD

#4

XX * Start position set to 4,4
YY

#1

DI R * Direction set to NORTH

STOP

DECI DE

#1

NOTS * | f we go straight

VWAI T

UPDATEXY

GOFCOR

MAPI T * After all going forwards *
BOT

#2

NOTL * | f we turn |eft
LI NDI ST
WAI T
ALl GNR
ALl GNL
ALl GNR
ALl GNL
ALl GNL
ALI G\R
LI NDI ST
WAI T

ensure accuracy?

UPDATEL
TURNL
BOT

#3

NOTR * |f we turn right
LI NDI ST

WAI T

ALl GNR

ALI GNL

ALI GNR

ALI GNL

37

JSR
JSR
JSR
JSR
JSR
JSR
BRA

NOTR JSR
JSR
JSR
JSR
JSR
JSR
JSR
JSR
JSR
JSR
JSR

BOT JwP

ALI GNL
ALI GNR
LI NDI ST
WAI T
UPDATER
TURNR
BOT

LI NDI ST
VWAI T
ALI GNL
ALI G\R
ALI GNL
ALl GNL
ALI G\R
LI NDI ST
VI T
UPDATER
TURNR * | f we are at

HERE

R I O I I R R R I R I R

* kk kK NAPPI NG RQJTI NES khkkkkhkkkkhhkkkhkkkk*k

R I S R I O R R O R I S

*kkkkkkkx

**x*x | ower 4 bit circular shift routines

**** Using register A

*kkkkkkkx

CLRVAP LDX
LDAA
LDAB

CLRVAPZ STAA
I NCB
I NX
CMPB
BNE

RTS
ROTTMP RMB

ROTAL LSLA
STAA
ANDA
BEQ
LDAA

ANDA

RTS
ROTAL2 LDAA

RTS

ROTAR STAA

#MAP
#$FF
#3$00

0, X

#0
CLRVAP2

ROTTMP
#%6©0010000
ROTAL2
ROTTMP
#%690000001
#9411101111

ROTTMP

ROTTMP

a deadend

38

ANDA #%60000001

BEQ ROTAR2
LDAA #99©0010000
ORA ROTTMP
LSRA
RTS

ROTAR2 LDAA ROTTMP
LSRA
RTS

*kkkkkkk

**Thi s subroutine exan nes the area around
** around it, and updates the map

*kkkkkkk*k

MAPI T LDAB #$0

LDAA #FORE

JSR SAMPLE
JSR Qut A
SUBA #FORET
BLO MAP3

ORAB #%690001000

MAP3 LDAA #LREAR

JSR SAMPLE
JSR Qut A
SUBA #LREART
BLO MAPS

ORAB #%90000001

MAPS LDAA #RREAR

JSR SAMPLE

JSR Qut A

SUBA #RREART

BLO MAP7

ORAB #990000100
MAP7 TBA

JSR Qut A

JSR UPDATEMAP

RTS

*hkkkkkkkkx

*x*x UPDATEMAP: G ven the wall locations in the form

i 0000 FROL -- In register B

* ok It should update the 3 bits effected

* ok in the mp at X, Y, taking into account
*xk direction

x#% *%xx TH S |'S ONLY RUN AFTER A GOFORWARD
xx% *%x BECAUSE | T ASSUMED THAT BEHIND IS A 0

*khkkkkhkkkkkx

39

UPDATEMAP LDAA DIR

UPDVAP3 LSRA

BCS UPDVAP2

PSHA

TBA

JSR ROTAR

TAB

PULA

BRA UPDMAP3
UPDVAP2 JSR LDXAD

STAB 0, X

RTS

* Kk %k %

* Turning routines for updating direction

* Kk k%

UPDATEL LDAA DI R
CMVPA #%60000001

BEQ UPLONE
LSRA
BRA UPLOUT

UPLONE LDAA #%690001000
UPLOUT STAA DI R
RTS

UPDATER LDAA DI R
CMVPA #%60001000

BEQ UPRONE
LSLA
BRA UPROUT

UPRONE LDAA #%90000001
UPROUT STAA DI R
RTS

LR R I I R O

** Used when goi ng FORW **
EE R I R I I S R I I I S I
UPDATEXY LDAA DIR

CMPA #%9©0000001

BNE uPD2
I NC YY
BRA uBOT

uPD2 LDAA DI R
CMVPA #%60000010

BNE UPD3
I NC XX
BRA uBOoT

UPD3 LDAA DI R
CVPA #%690000100

BNE uPD4
DEC YY
BRA uBOT

uPD4 LDAA DI R

40

CMVPA #%60001000
BNE uBaOT
DEC XX

uBOT RTS

R I O I I R R R I R I R

* kk kK \/\AIT RQJTI NES khkkkkhkhkkkhkhkhkkkhhkkkhkkk*k

R I S R I O R R O R S

WAl T PSHA
PSHB
LDAB

WAI T2 LDAA

WAI T3 DECA
BNE
DECB
BNE
PULB
PULA
RTS

#SFF
#SFF

WAI T3

WAI T2

R I R R R R R R R I R

* k k k% ERRm CmREC‘rIG\I khkkkkhkkkkhkhkkkhkhkkk*k

R I O I I R R R I R I R

* % L| near Correctlon R S S
R I S R I O R R O R I S

LI NDI ST LDAA #FORE
JSR SAMPLE
SUBA #STDDI ST
BLO LI NLOW
BEQ L1 NDONE

** Too Cl ose **

LI NHI JSR SLOVNB
LDAA #FORE
JSR SAMPLE
SUBA #STDDI ST
BEQ L1 NDONE
BLO L1 NDONE
BRA LI NH

** Too Far **

LI NLOW JSR SLOWF
LDAA #FORE
JSR SAMPLE
SUBA #STDDI ST
BLO LI NLOW
BRA L1 NDONE

LI NDONE JSR STOP
RTS

LR R R EEREEEREEEEREEEREEEEREREEREEERE SRR EERE SRR

* Kk ok k% ALIG\IR

khkkkhkhrkkdhkrhkhkrkhhxkkkkkx

khkkkdkhkkhhkhkhkdrdrhdkrrdrrhdkhrrdhrhdhddkdxkdxx

41

FREQ
VALR

ALI GNR

AL2

*** (yeater

*** Equal To

ALEQ

*** |Less Than

ALLO

RVB 1
R\VB 1
LDAA #30
STAA FREQ
STAA VALR
LDAA #FORE
JSR SAMPLE
STAA VALR
JSR SLOVR
LDAA #FORE
JSR SAMPLE
SUBA VALR
BEQ ALEQ
BLO ALLO
Than **
ADDA VALR
STAA VALR
LDAA #3$00
STAA FREQ
BRA AL2
* %
LDAA FREQ
I NCA
STAA FREQ
BRA AL2
* %
JSR STOP
RTS

IR S S S I kR

***********Al | gnL*************

LR R R R R I R R

VALL

ALI GNL

AL2

*** (yeater

R\VB 1

LDAA #3%0
STAA FREQ
STAA VALL
LDAA #FORE
JSR SAMPLE
STAA VALL
JSR SLOW.
LDAA #FORE
JSR SAMPLE
SUBA VALL
BEQ ALEQ
BLO ALLO

Than **

ADDA VALL

42

STAA VALL
LDAA #$00
STAA FREQ

BRA AL2
*** Equal To **
ALEQ LDAA FREQ

| NCA

STAA FREQ

BRA AL2
*** | ess Than *x
ALLO JSR STOP

RTS

R I O I I R R R I R I R
* kk kK DECI SIO\I NAKI NG khkkkkhkhkkkhkhkhkkkhhkkkk*x
SRR S S I R R S S I S I

* %k k k k%

*kkkkx Return:

k**kk*k* (0 -> Dead- End
*xxxxx 1 _> Go Forward
*kxkxkx D -> Turn Left
*k*kx%k 3 -> Turn Right

R I O I I R R R I R I R

DECI DE LDAA #FORE

JSR SAMPLE
SUBA #FORET
BLO DEC2
BRA DEC3
DEC2 LDAA #1
RTS
DEC3 LDAA #LREAR
JSR SAMPLE
SUBA #LREART
BLO DECA
BRA DEC5
DEC4 LDAA #2
RTS
DEC5 LDAA #RREAR
JSR SAMPLE
SUBA #RREART
BLO DEC6
BRA DEC7
DEC6 LDAA #3
RTS

DEC7 LDAA #0
RTS

R I S R I O R R O R I S

* %k k k% IVD-I-OQ SUBR&JTI NES khkkhkhkkkkhkkkhkkkk

LR R R R R R EEREEEEREEEREEEEREEEREEEREEEREEERE SRR

GOF PSHA

43

PSHB
LDAA #$0
STAA PCOUNT

LDD #FORW

STD PW
LDD #BACK
STD PW2

GOF2 LDAA PCOUNT
CVPA #FWDPUL SES

BEQ GOF3
BRA GOF2
GOF3 JSR STOP
PULB
PULA
RTS
EIE R R I I R I IR R IR IR I I I I R I I R I Ik I I I I
d ok ok ok ok ok ok kkkkkkkkkkkkkkkhkkkkxkxxx
TEMP RMVB 2
GOFCOR PSHA
PSHB
LDAA #$0

STAA PCOUNT

LDD #FORW

STD PWL
LDD #BACK
STD PW2
GOFC2 LDAA #LFORE
JSR SAMPLE
SUBA #LFORET
BLO GOFC5
TAB
LDAA #$0
* LSLD
ADDD PW2
ADDD #10
STD PW2
BRA GOFC7
GOFC5 LDAA #RFORE
JSR SAMPLE
SUBA #RFORET
BLO GOFC6
TAB
LDAA #$0
* LSLD
STD TEMP
LDD PWL
SUBD TEMP
SUBD #10

STD PWL

GOFCo6

GOFC7

GOFC4

GOFC3

kkkkkkkkx

* ok kkkkkk

SLOWF

SLONB

TURNL

BRA GOFC7

LDD #FORW
STD PWL
LDD #BACK
STD PW2
LDAA #FORE
JSR SAMPLE
SUBA #EMERG
BLO GOFC4
JSR STOP
BRA GOFC3

LDAA PCOUNT
CVPA #FWDPUL SES

BEQ GOFC3
BLO GOFC2
BRA GOFC3
JSR STOP
PULB

PULA

RTS

*khkkkkkkkk

* %k %k k k k kx kx %

PSHA

PSHB

LDD #SLOWF1
STD PWL

LDD #SLOWF2
STD PW2
PULB

PULA

RTS

PSHA

PSHB

LDD #SLOWB1
STD PWL
LDD #SLOWB2
STD PW2
PULB

PULA

RTS

PSHA

PSHB

LDAA #$0
STAA PCOUNT
LDD #BACK
STD PW

STD PW

45

TURNL2

TURNL3

TURNR

TURNR2

TURNR3

SLOWL

SLOVR

STOP

LDAA
CMVPA
BEQ
BRA
JSR

PULB
PULA
RTS

PSHA
PSHB
LDAA
STAA

LDD
STD
STD

LDAA
CMVPA
BEQ
BRA
JSR

PULB
PULA
RTS

PSHA
PSHB
LDD
STD
LDD
STD
PULB
PULA
RTS

PSHA

PSHB
LDD
STD
LDD
STD
PULB
PULA
RTS

PSHA
PSHB
LDD
STD

PCOUNT
#LEFTPULSES
TURNL3
TURNL2

STOP

#$0
PCOUNT

#FORW
PWL
PW2

PCOUNT

#RI GHTPULSES
TURNR3
TURNR2

STOP

#SL1
PWL
#SL2
PW2

#SR1
PWL
#SR2
PW2

#STOPL
PWL

46

LDD
STD
PULB
PULA
RTS

OC2_1 SR LDAA
STAA

LDAA
ANDA
BNE

LDAA
STAA
LDD
STD
JwP

LASTH LDAA

ANDA
STAA

LDD
STD
OC2_OUT RTI

OC3_| SR LDAA
STAA

LDAA
ANDA
BNE

LDAA
STAA
LDD
STD
JWP
LASTHI 2 LDAA

ANDA
STAA

LDD
ADDD
STD

OC3_OUT RTI

#STOPR
PW2

#%6©1000000
TFLGL

TCTL1
#%6©1000000
LASTHI

TCTL1
#%11000000
TCTL1

#$0000
TOC2
0C2_OouT

TCTL1 ;
#%410000000
#940111111
TCTL1

PW2
TOC2

#%9©0100000
TFLGL

TCTL1
#%60010000
LASTHI 2

TCTL1
#%9©0110000
TCTL1

#$8000
TOC3
oc3_ouT

TCTL1
#99©0100000
#9411101111
TCTL1

PWL
#$8000
TOC3

or

TCTL in version 2

47

khkkhkhhkdhhkdrhdhkdrdhkrhdrrdhkrrdrddhhxkddxxx

*xxxkx SHAFT ENCODER CONTROL ******

EE R I R R R R R R R

PAO_| SR LDAA
STAA

LDAA
I NCA
STAA

LDAA
ANDA
BEQ

*Put 0 in here
LDAA
ANDA
STAA
BRA

PAOL

*Put 1 in here
LDAA
ORA
STAA

PAC2 LDAA
STAA

RTI

#%9©0100000
TFLG2

PCOUNT
PCOUNT

PACTL
#99©0010000
PACL

PACTL
#9411101111
PACTL

PAC2

PACTL
#%69©0010000
PACTL

HSFF
PACNT

EE R R I I I I R I R S R R

*¥xxx*x SENSOR SAMPLI NG ROUTI NE ******

EE R R I I S R R S I I

*Usage, LOAD A with defined port to sanple

*JSR here, read sanple in A

R R R R R R R R R RS R R R R R R

SAMPLE PSHB
PSHX
PSHA
LDX

SUBA
BNE
BSET
JwP

SNext1 ADDA
SUBA
BNE
BSET
JWP

SNext 2 ADDA
SUBA

#$1000

#FORE

SNext 1

0, X #99©0010000
Wout

#FORE

#LFORE

SNext 2

8, X #%9©0000100
Wout

#LFORE
#RFORE

**Port

D, Pin 2

48

BNE

BSET

JVP
SNext 3 ADDA

BSET
Wout LDAB

Weanp4 LDAA

Weanp2 DECA
BNE
DECB
BNE

SNext 3
8, X #9000
Wout

#RFORE
8, X #%9000

0100

1000

#SAMPLETI ME

#SFF
Wsanp?2

Wsanmp4

**** pul|l stored A and read that

PULA
STAA
LDAA
WEanp DECA
BNE

LDAA
STAA
BCLR
LDAA

PULX
PULB
RTS

ADCTL
#10

WBanp

#$0

PORTD

0, X #%001
ADDATA

0000

**Wai t 300us for

port

ESE R S I S I I I I R I O

khkkkkkkhkkkkx

[NI TI ALI ZATI ONS *****

khkkhkhhkdhhkdrdhdhkdrhhkrrdrrhhrhdhxkhkxx*k

I Nl T_AD LDAA
STAA
LDAA

WADI NT DECA
BNE
RTS

| NI T_SENSOR
STAA
LDAA
STAA
RTS

| NI T_MOTOR
STD
LDD
STD

LDAA

#9%41.0000000
OPTI ON
#40

WADI NT

LDAA #%60000100

SPCR
#99©0111100
DDRD

LDD
TOC2
#$8000
TOC3

#%9©1100000

#$0000

analog to stablize

49

STAA
LDAA
STAA
RTS

I NI T_SHAFT

NI T_SC

STAA
LDAA
ORA

ANDA
STAA

LDAA
ORA
STAA

LDAA
STAA
RTS

PSHA
PSHA
JSR
PULA
JSR
JSR
PULA
RTS

PSHB
PSHA

PSHA
JSR
PULA
JSR

TBA

PSHA
JSR
PULA
JSR
JSR

PULA
PULB
RTS

PSHA
LDAA
STAA
LDAA
STAA
LDAA
STAA

TMBK1
#%10100000
TCTL1

LDAA #$00

PCOUNT
PACTL
#%6©1010000
#991011111
PACTL

TMBK2
#%9©0100000
TMBK2

#$FF
PACNT

$E4DE

$SE4E2
$E508

$E4ADE

$E4E2

$E4DE

$E4E2
$E508

#$30

BAUD
#%60000000
SCCR1
#9%60001100
SCCR2

50

PULA
RTS

EE R I R R I R R R R O R

*** Subroutin:

* k%

LDXAD - Load X with Address of current

X Y dat a.

EE R I S O I S R I R I R O

LDXAD PSHA
PSHB
LDAB
LSLB
LSLB
LSLB
LSLB
ADDB
LDAA
XGDX

PULB
PULA
RTS

SHOWVAP PSHX
PSHA
PSHB

LDAA
STAA
SMAP3 LDAA
STAA

***********Fi rst

SMAP2 JSR

LDAB
ANDB
BEQ

BRA

SMAP222 LDAB
ANDB
BEQ

LDAA
JSR
LDAA
JSR
LDAA
JSR
BRA
SMAP22 LDAA
JSR

#$30

#0

YY
#0

XX

Pass (T(P)***********
LDXAD

0, X
#9%40000000
SVAP222

SMAP22

0, X
#%60000010 *Top mask
SMAP22

#DASH
$E4EC
#DASH
$E4EC
#DASH
$E4EC
SMAP23
#SPACE
$E4EC

51

LDAA
JSR
LDAA
JSR

SMAP23 I NC
LDAA
CVPA
BNE

LDAA
STAA

PSHA
JSR
PULA

***********SECO\ID PASS (m ddl e)***************

SMAP4 JSR
* JSR

LDAB
ANDB
BEQ
LDAA
JSR
LDAA
JSR
LDAA
BRA

SVAP444 LDAB
ANDB
BEQ
LDAA
BRA

SMAP42 LDAA

SMAP43 JSR
LDAA
JSR

LDAB
ANDB
BEQ
LDAA
BRA
SMAP44 LDAA
SMAP45 JSR

I NC
LDAA
CVPA
BNE

LDAA

#SPACE
$E4EC
#SPACE
$E4EC

#16
SMAP2

$E508

LDXAD
Qut D

0, X
#%410000000
SVAP444
#SPACE
$E4EC
#AST
$E4EC
#SPACE
SMAP45

0, X
#%690000001
SMAP42

#Pl PE
SMAP43
#SPACE
$E4EC
#SPACE
$E4EC

0, X
#%690000100
SMAP44

#PI PE
SMAP45
#SPACE
$E4EC

XX

XX
#16

SMAP4

#0

52

STAA XX

PSHA
JSR $E508
PULA

***********Thi rd PaSS (bottorr) kkhkkkhkhkkkhkhkkkkkk*k
SMAP5S JSR LDXAD

LDAB 0, X
ANDB #94.0000000
BEQ SMAP555
BRA SMAP52

SMAP555 LDAB 0, X
ANDB #9%690001000 *Bot MASK

BEQ SMAP52
LDAA #DASH
JSR $E4EC
LDAA #DASH
JSR $E4EC
LDAA #DASH
JSR $E4EC
BRA SMAP53
SMAP52 LDAA #SPACE
JSR $E4EC
LDAA #SPACE
JSR $E4EC
LDAA #SPACE
JSR $E4EC
SMAP53 | NC XX
LDAA XX
CMVPA #16
BNE SMAP5
PSHA
JSR $E508
PULA
| NC YY
LDAA YY
CVMPA #10
BEQ SMAPEND
JWP SMAP3
SMAPEND PULB
PULA
PULX

RTS

