
University of Florida

Department of Electrical And Computer Engineering

EEL 5666C
Intelligent Machine Design Labratory

Slappy

(The Mappy Bot)

Final Report
Louis Brandy

Tuesday, April 23, 2002

 2

Table of Contents

Abstract ………………………03
Executive Summary ………………………04
Introduction ………………………05
Integrated System ………………………07
Mobile Platform ………………………09
Actuation ………………………12
Sensors ………………………13
Behaviors ………………………20
Conclusion ………………………33
Documenation ………………………34
Appendix I ………………………35
End ………………………53

 3

Abstract

Slappy is an autonomous mobile robot that will roam around a maze, mapping as he
goes. He will align and correct himself on the walls of the maze to keep his position
within the maze where he expects it. He will produce his map at the user’s request.

 4

Executive Summary

Slappy (named by my little cousin) will wander a maze attempting to map out the

maze as he goes. He does this using 5 infrared sensors with split duties between wall-

detection and error correction. He also uses a shaft-encoder to measure distances

traveled (and angles turned).

Slappy moves using two modified servos to act as gearhead motors. These motors,

along with all electronics are controlled by an HC11 on the Axiom EVBU board

which is mounted to his moving platform.

The maze must be set up of walls corresponding to a grid. This means all walls are

orthogonal and of a specific distance. With these constraints, Slappy is able to

navigate the maze, without touching a wall, and produce a map of the areas he

traveled.

Drift errors are corrected as he moves by using the walls of a maze to orientate

himself. He corrects both linear and rotational errors by using the walls as reference

points.

 5

Introduction

Slappy is a circular robot of about 1 foot across that stands about a foot high. He

wanders around a maze, negotiating it and mapping it to memory to be shown on a

terminal later. He should also do all of this without touching any walls.

The maze that Slappy maps has certain restrictions. Most importantly, the maze is laid

upon a grid with the walls taking up an entire segment. There are no partial walls, nor

anything that is not orthogonal. The actual maze was constructed of 2x6s of wood that

were cut to size, with the 6- inch faces being the actual walls that Slappy deals with. The

minimum wall length is 16.5 inches (three 2x6 widths – 2x6s aren’t actually 2x6, but

instead 1.5 inches by 5.5 inches. 5.5 x 3 = 16.5). Therefore the entire maze can be

decomposed into a grid of square cells with each side as 16.5 inches.

Slappy’s software was written entirely in HC11 Assembly language and therefore many

routines that would otherwise be simple turn out to be rather difficult or long. Assembly,

however, provided extremely good control over certain aspects of the system (like when

interrupts occurred). It was also an excellent learning experience.

He uses a shaft-encoder to do ninety percent of the work. His forward movements are

always a specific distance determined by a certain number of clicks of the encoder.

Likewise, both his left and right turn are tuned to a specific value of clicks. However, he

will never be able to turn exactly 90-percent, nor will he be able to move exactly one cell

 6

forward. Every time he moves, or turns, these small errors will add up until Slappy is

nowhere near the center of a cell, or worse, cause him to run into a wall. Solving these

incremental errors is the heart of the problem.

After creating a program for Slappy to navigate the maze without any error correction, he

was observed to see the most common types of mistakes he makes and thus different

schemes were created to correct each of them. In the end, three different schemes are

used at different times to help Slappy keep his bearings.

 7

Integrated System

Slappy’s software is written entirely in assembly language for the HC11. It, in total, is

about 1100 lines of assembly that is broken down into sensor routines, movement

routines, error-correction routines, and the main program which uses the rout ines to solve

the problem.

The software was written in a modular style. For instance, a routine to sample an

indicated sensor (passed to the function in a register) was written and tested thoroughly

using a set of test programs. Then, a routine to turn both motors on so the robot was

moved forward, left, and right was written and tested thoroughly. The final step was to

combine all these into one program that was able to call these functions individually and

use them to solve the problem. Slappy’s routines are rather robust and form, in their own

right, a “higher- level” language to use to solve this problem.

 As stated before, the code is broken down as follows:

Main Code

Error Correction Sensor Movement

 8

In the following sections, each of these individual sections will be outlined in detail, and

the final algorithm is described in the behaviors section.

 9

Mobile Platform

Slappy’s platform is only 4 wooden pieces that fit easily onto two sheets of the wood

provided as part of the class. The main platform component is an 8 inch circular disk

consisting of holes for the board mount and the servo mounts.

The board is mounted vertically, with two steel L-brackets serving as the support

mechanism. Four of them are used, in total, two on each side. There is a screw going

through the board, to an l-bracket on both sides of the board, and each bracket is screwed

into the main platform.

 10

The servos are mounted on the underside of the board using three more pieces of wood

for support. The slots in the circular board for the servo mounts are the exact width of

the board, so a smaller board with tabs the right size can be pushed into place and secured

with wood glue. A quick diagram of the remaining pieces is shown below:

The two top pieces are inserted vertically into the circular body piece. The bottom piece

using the same tab concept, bridges the two on the bottom, parallel to the circular board.

It is diagramed below:

 11

 12

 Actuation

The only actuation on the robot consists of two hacked servo motors. The potentiometer

was removed and replaced by two equal resistors so that the servo always thinks it is at

the same position. The gears were also altered so that there was no mechanical stopping

mechanism. This turned the servos into gearhead motors that, with different pulse-widths,

can control both speed and direction.

The software to control these two motors took quite a while, though it was quite simple.

Two output compare routines were used to create pulse-widths with a total period of

32ms. In order to keep them from running over each other, one was set to go off at

0x0000 and the other at 0x8000. On these interrupts, it would set the mask for the next

interrupt at its current counter, plus the specified pulse-width. In this way, the two

memory locations that hold the current pulse-width can be altered at any time from the

program and the motors will be updated accordingly.

The actual routines to go forward, and turn consist solely of updating the pulse-widths

variables in memory with specified constants, and returning to the caller. Tuning those

values is what took up the brunt of the time spent. The experiment consisted of setting

them manually, running the robot down the hall, and making adjustments. Once decent

values for going straight and turning in place were determined, the routines were

finished.

 13

Sensors

Shaft Encoder

The design of a shaft-encoder was vital to the proper working of the robot, so a little

more work was put into making a shaft-encoder and proving it worked correctly.

The part chosen for the encoder was the Hamatsu P5587 photoreflector. The device

consists of an IR emitter and a phototransistor pair. It is a 5-pin device with the follow

layout:

Using a pull-up resistor, the device will be at 5-volts if black paper is in front of it, and

0V if white paper is in front of it. Using this simple property, a shaft encoder can be

constructed. The following is the actual design implemented on the circuit board that

was tested:

 14

The 330 ohm resistor simply regulates the current that flows through the diode. The 3.3k

resistor is simply a pull-up resistor and it’s value has very little effect on performance of

the digital output.

The second part of the encoder is the encoder disk. These are circles divided in equal

slices of alternating black and white. Mounting these disks to the wheel, with the

photoreflector fixed in place and facing the wheel creates the encoder. Below is a

reproduction of one:

 15

The actual encoder disks were made in auto-cad. Three resolutions were made for

experimenting: a 16 section (above), a 32 section, and a 64 section.

Testing

The first test done on the shaft-encoder was to hook it up to an oscilloscope and see what

kind of signal it gave. The signal appeared quite crisp, but it was near impossib le to tell

what types of noise or bounces were occurring at the extremely slow frequency. This, at

the very least, verified the encoder was at least wired correctly.

Again, there is no easy way to test the frequency of the signal and compare that with the

angular speed of the wheel. The best way to measure if the shaft-encoder is doing it’s job

is to actually write the software to make the robot move a certain amount of ticks and

measure the distance traveled. Over the course of 20 trials, the distance the robot

traveled after two wheel-rotations was measured. The distance was chosen after a bit of

trial and error. Having the distance too long would lead to errors due to motors not being

the same speed, and having the distance too short amplifies the simple measurement

errors. These numbers were compiled and the mean, the standard deviation, and the

range were calculated. This test was done for the 16, 32, and 64 sectioned disks.

What follows is the tabulated data of the three tests done (All numbers in inches):

16 section 32 section 64 section
26.1875 26.25 26.375
26.375 26.25 26.375
26.375 26.25 26.4375

26.5 26.375 26.4375

 16

26.5 26.4375 26.4375
26.5 26.4375 26.4375
26.5 26.4375 26.4375
26.5 26.5 26.5
26.5 26.5 26.5
26.5 26.5 26.5

26.5625 26.5 26.5
26.5625 26.5 26.5
26.5625 26.5 26.5
26.5625 26.5 26.5625
26.5625 26.5625 26.5625
26.625 26.5625 26.5625

26.6875 26.5625 26.625
26.75 26.5625 26.625

26.8125 26.625 26.625
26.875 26.6875 26.75

What follows is some secondary calculations about the datasets:

 16 section 32 section 64 section

Mean: 26.55 26.475 26.5125

Std.Dev 0.153897 0.118932 0.094242

Range 0.6875 0.4375 0.375

Theoretical 0.834461 0.41723 0.208615

Much as expected, as the resolution increases, the standard deviation and total range go

down. The theoretical values are obtained by dividing the circumference by the number

 17

of sections. In theory, the encoder knows nothing about anything smaller then this

number and it’s provided as an ideal number for comparison. Two other sources of error

keep the estimated numbers from being much closer to the actual values observed. First,

there is measurement error because this is a difficult measurement to do to a high degree

of precision. Secondly, the starting and stopping of the robot is very suddenly and jerk

and often causes slight shifts and overshoots.

The final robot used the 32 section version because the 64 version proved to be too error-

prone in various noisy conditions and especially on reflective floors (ie, tile).

Infrared Sensors

The robot consisted of 5 infrared sensors, situated as follows:

 18

The two rear sensors are, in theory, orthogonal with the maze walls at all times.

Therefore, these two sensors and the fore sensor make up the wall- finding group. These

three sensors are used to tell if a wall is in either of the three main directions. The side

pointing front two sensors are used in error correction routines to detect when the robot is

not facing orthogonally and heading towards a wall.

A routine was written to sample a specified (by passing it through a register) analog port.

This routine includes the wait times to allow for a stable output of the LED (not very

long), and then a stable analog value (much longer). Waiting for an analog output value

takes quite a bit of time and consequently determines the overall sampling rate of the

robot. Since no other system of the robot waits nearly as long, this one value, effectively,

determines the speed at which the robot makes decision. It is referred to as

SAMPLETIME in the attached code.

At this point, a few of the problems with my sensors should be discussed. The distances

involved in these infrared sensors are essentially from zero range to about two cells

worth, or about 3 feet. The most important readings are point-blank walls abutting the

robot, walls about one half cell away (a nearby wall), a wall about 1.5 cells away (a wall

one cell over), and an infinite reading. Three of the sensors performed extremely well

within these ranges, but the other two were not very good. In one case, very close

readings were very easy to confuse with infinity. In the other case, it was very difficult to

 19

tell the difference between a wall nearby, and a wall one cell over (as the “peak” of the

analog output existed between the two).

After quite a bit of fiddling with the robot, it was decided that the best sensor should be

used in the front, and the other two good ones should be the front-side sensors that are

used to correct errors. The back sensors only job was to have a threshold and say ‘Yes a

wall is here’ or ‘No, a wall is not here’. Since these back sensors were rather poor, they

were limited to solely this role. As is seen later, had these back sensors been better at

these ranges, they could also be used for some error-correction routines that would

greatly add to the stability of the robot in a maze.

 20

Behaviors

The robot has a host of behaviors that will be described here, as well as a main program

which transfers from behavior to behavior based on certain stimuli. All of these

behaviors are programmed for the HC11 in straight Assembly code using the old DOS

tool Edit. The board used is from Axiom (www.axman.com). It is the Axiom EVBU

board for the HC11, revision D.

Map Negotiating

This was the first behavior to get working, and essentially set the basis for what else was

required. It was assumed that if the robot was able to navigate the maze, randomly,

without hitting a wall, then mapping each cell around it was a trivial next step.

Therefore, the brunt of design was centered around successfully map negotiating. The

first algorithm went like this:

Sample Front
Is there a Wall? (Front Reading > Front Threshold)
 Go Forward
else
 Sample Right
 Is there a Wall?
 Turn Right
 else
 Turn Left

This basic map-negotiation routine was the basis of the final main program, and it’s

influence is still extremely prevalent. All of the routines stated above will be described

below, in their inner workings, and this will be returned to in a moment

 21

Wall-Detection

All wall-detection is done in a very simple way. Each of the there wall- finding sensors

(fore, left rear, right rear) has a threshold value. These, along with many other constants,

are at the beginning of the ASM file and can be changed quickly for various conditions.

Slappy assumes a wall is present in that direction if and only if the sensor reading from

the appropriate analog port is above the threshold.

Go Forward/Turn Left/Turn Right

All three of these routines incorporate the motor driver routines and the shaft encoder.

The go-forward routine is a close relative of the following:

Clear PulseCount
Set Motor to Forward
Is Pulses equal to FORWARD_PULSE_CONSTANT, yet?
Set Motor to STOP

The routine to turn right and left is essentially identical except the motor is set to turn in

those directions. All three have their own constant that, again, is tuned through large

amounts of trial-and error. The left and right routines were tuned by having the robot

perform 8 turns, and then go forward. In this way, any small error was easily recognized

and the number of pulses adjusted. Going forward was tuned later, when error-correction

was the concern.

 22

Map Negotiating, Revisited

Now that all of the pieces of the following have been described, it can be shown how this

formed the basis of the eventual solution.

Sample Front
Is there a Wall? (Front Reading > Front Threshold)
 Go Forward
else
 Sample Right
 Is there a Wall?
 Turn Right
 else
 Turn Left

At this point, after hours and hours of tuning three IR thresholds, one IR timing delay,

four motor speed values (2 forward, 2 reverse), and three numbers of pulse- lengths for

movement, Slappy was ready to be run in an actual maze. The first time Slappy ran, with

the above decision scheme, he actually negotiated the maze fairly well, and the finely

tuned values served him well through the first 5 or 6 cells. At this point, the small errors,

mostly linear in nature caught up with him and he made the first, of many, collisions with

a wall.

Error

There are three kinds of error that Slappy incurs over time. The most obvious two are

linear errors and rotational errors. Rotational error occurs, over time, as Slappy’s

attempts at 90-degree turns have small errors that collect until he is off the 0-90-180-270

axis. The linear error is split into two kinds, one is situated in the forward-rear direction,

 23

as opposed to side-to-side errors. The reason this differentiation is made is because

Slappy can easily correct front-linear errors since he can move in that direction. It’s

much harder for him to correct side-linear errors.

Fore-Linear Correction

Again, this was a fairly straightforward and powerful technique to correct error.

Essentially, two more routines for the motor were written with two new, slower speeds –

one for forward, one for backward. Using these very slow movements, Slappy could

scoot up, or back off of a wall until his FORE sensor read a certain value, another

constant, called STDDIST. This value was chosen very carefully for later reasons

discussed.

It should be noted that since Slappy’s wall-detecting sensors are in the rear of the

platform, Slappy is much better to be closer to a fore wall, to maximize the amount of

 24

wall in the view of these sensors. This also meant his FWDPULSE should be increased a

little as to allow Slappy to use those sensors to detect things, and consequently back off

the wall after the detection took place. In the end, Slappy works a bit better with a few

more pulses then is required to go 16.5 inches. The obvious flaw to this design, is that in

a long straightaway, Slappy will be creating large amounts of forward error and when he

finally reaches a wall, he may be too far forward to stop in time.

To correct this lesser issue, Slappy’s GoForward routine was changed to contain an

emergency stop value. If, when going forward, Slappy’s Fore Sensor hits an emergency

threshold, that means he needs to stop immediately, and return out of the subroutine.

Going full speed, and stopping at this threshold will stop Slappy about an inch from the

wall he was about to hit. Slappy assumes, always, that although he has not moved an

entire set of pulses forward, he did move one cell forward. This assumption is based on

the fact that he tends to create forward error (ie, moving too far) as opposed to rear error

(not moving far enough). After an emergency stop, Slappy will do a fore-error correction

to back off this wall to his STDDIST.

Rotational-Correction

The rotational correction algorithm used is quite simple in theory, and quite impressive in

practice. Two new behaviors were created to do this: AlignL and AlignR. These two

turned in the specified direction until the Fore Sensor decreased at all. By doing AlignR

and then AlignL, you could, in theory, end up near orthogonal with any wall in front of

you.

 25

This pair of behaviors, in conjunction, work fairly well but often the FORE sensor takes a

quick dip that it shouldn’t and this results in a false stopping. To correct this, in the

actual implementation, the right and left alignment is repeated 3 times each, in an

alternating fashion. In this way, he does a fairly good job of fixing his rotational errors.

The STDDIST that Slappy corrects himself to is governed by this routine. Remember,

STDDIST is the distance that Slappy moves to when there is a wall in front of him that is

supposed to represent the center of that cell. As a separate consideration, the most

sensitive distance region on the fore sensor should be used for the Align routines.

Therefore, STDDIST doesn’t quite work out to the center of a square. It is, instead, near

the center, where the FORE sensor is the most sensitive.

It may seem like a coincidence that the distance from the center of a square to a wall in

front is very near the most sensitive region of a particular IR sensor. The IR sensor to be

used in the front was chosen for its sensitivity in that range, and positioned on the robot

accordingly to maximize this effect.

Side-Linear-Correction

At this point, there were two main ways of correcting error that, together, did a pretty

decent job of keeping Slappy from hitting walls. At this point, it would be wise to

discuss a little bit of the relationship between the errors. Linear-Forward error is easily

correctable and corrected the most accurately. Once the robot turns, his Linear-Side error

 26

becomes his Linear-Forward error, which is corrected the next time he hits a wall.

Therefore, given no rotational error, over time he will correct all of his linear errors

extremely well.

Rotational Error, however, complicates these things. Rotational error creates side-error

over time, as the robot moves forward. With Slappys’ decent rotational error correction,

major side-error isn’t really a concern. He can have moderate side-error that will be

corrected as long as there is a wall to turn him soon. Without a wall to turn him, and

move his side error into the correctable forward region, he will eventually fail.

What all this means, is that our two schemes are ineffective in cases where Slappy does

not turn for long periods of time – say three squares. In this case, Slappy’s success rate

goes down considerably. Therefore, a third scheme must be developed to correct side-

errors when in long corridors.

The technique used is simply to poll the front-right and front-left sensors using a

threshold while moving forward. When the threshold kicks in, the opposite wheel is

slowed down. For instance, if the front-right sensor is over the threshold, he must turn

left, and thus slow down his left motor. The question is, how much should it be slowed

down?

Several techniques were tried:

1) Slow down the motor by a constant amount

 27

2) Slow down the motor equal to the difference in threshold

3) Slow down the motor twice the difference

By ‘slowing down’ the motor, I mean subtracting (or adding, in the case of the servo

going in reverse) a number from the pulse-width used.

Slowing down the motor by a constant amount caused a serious overcorrection problem if

that constant was too high, and a serious under-correction problem when it was too low.

Numbers in the middle ground tended to overcorrect small errors, and under-correct big

ones. This scheme was clearly ineffective.

The second and third were identical in implementation other then a SHIFT-LEFT in the

multiplied version. Again, I ran into similar control issues as before. The un-multiplied

one ran into under-correction problems with large errors, and the multiplied one ran into

overcorrection problems with smaller errors.

Since most of the errors he encountered were small, the un-multiplied version seemed to

be the logical choice. To aid in his under-correction problem, the threshold was lowered

a bit from desired.

However, this system is not perfect. The errors that can cause him problems are

discussed in the conclusion.

 28

Final Negotiating Routine

Below is a pseudo-code representation of what the final main routine looks like, and how

it puts together the error correction and movement routines together to form the main

brains of the robot.

Wall in Front?

No -> Go Forward while correcting side errors

Go Back to Top

Yes ->

Correct Linear Distance in Front of us

Orient to wall in front (AlignL/AlignR x3)

Re-Correct Linear (new orientation, new reading of fore)

Wall to the Right?

Yes -> Turn Left

Go Back to Top

No -> Turn Right

Go Back to Top

Mapping

The mapping aspect was a close conceptual extension of the previous decision making

algorithm, but the implementation was quite tricky. He has three sensors that already tell

him if a wall is in a specific spot. This means he already knows, for certain, of the three

 29

walls around him. Do not make mistake of thinking he also knows the fourth, the wall

behind him, because he came from that direction. That is only true after a forward

motion, and not after a turn.

At the very beginning of the decision routine, he jumps to a mapping routine which takes

the three binary values of the three walls around him and has the job of writing those

three bits to the correct place in memory.

Each cell is given it’s own place in memory, with the lesser 4 bits denoting the walls as

shown:

 1

8 2

 4

For the rest of this text, 1 will be referred to as North, 2 and East, etc. While these terms

are technically incorrect, they make it a bit easier to both explain and understand.

Whatever direction the robot is started in is his North. The most significant bit is used to

set whether a cell has been visited at all or not. The other three bits are unused.

The robot must also keep track of his direction, as he turns. Knowing his fore-sensor

reads a wall is not of any value if he doesn’t know if that represents a North or East. To

do this, he has a direction variable that is updated with every turn and is defaulted to 1

(North).

 30

At this point in the design phase, it is wise to note that a pair of lower four-bit circular

rotations was created, for left and right. It will be used extensively as we will see. It

zeros the top four bits, and rotates the bottom four in the specified direction.

If the data is passed in a poor or arbitrary format, then the amount of bit manipulation

required is a bit staggering to update the three corresponding wall bits in memory. To

correct this problem, the data format was carefully chosen. First, the sensors are read and

a bit- field is created with the following format 0000 P0SF. P stands for Port (left), and S

for starboard (right). It is formatted so oddly as to correspond to the bit assignments of

North, South, East, and West. When the robot is facing North, then this bit- field is

correct and ready to be ORed with memory. However, when he is not facing north, the

lower four bits needs to be rotated as many times as the direction indicates before it is

ORed with the current cell in memory.

The scheme of storage and rotation was designed after a painstaking thought process as to

doing this in an efficient way. The final solution is far more elegant then using a random

assignment system would have been. It’s also a lot easier to code and thus less prone to

error.

Map Output

The map, in memory, was now complete. However, there needed to be a way to output it

to the terminal. The simplest way to do this was to create a display program at another

address, far from the original code and run that when you wish to display the map.

 31

The program to output the map in memory is essentially two for- loops to traverse each

memory location, and then three sequential for- loops nested inside to run through an

entire line on the screen and print the top, middle, and bottom of each cell respectively.

The actual code for the map display is extremely long and a bit convoluted, but if the

basic premise is understood, it tends to modularize into repeated segments pretty easily.

Deficiencies

Using the three correction algorithms described and the decision making process above,

Slappy is fairly successful in negotiating and mapping a maze. Slappy has a few pitfalls.

As described, two of the hacked IR sensors were poor. If five good IR sensors were

available, the error-correction routines could be a lot better (ie, the AlignR and AlignL

could be applied after turning, instead of before) and Slappy’s error-correction ability

could be vastly improved.

The truth is, there are times when Slappy will still hit a wall. Since Slappy is prone to

severe rotational or side-error while moving forward, these are essentially the main

causes of his collision with walls. His correction algorithm, as is, doesn’t have enough

control to really swerve him out of the way of these collisions. These types of error

almost always result from a poor turn, since no rotational error is corrected after the turn,

only before. This means that if the shaft-encoder malfunctions he can turn too far or too

short, and the results are often catastrophic.

 32

For this reason, Slappy works best on very short carpet or a mat ofr some sort with

minimal reflectivity. Sunlight onto tile-floor will really harm his ability to use the shaft-

encoder and often cause unpredictable errors in his motions.

Furthermore, Slappy absolutely requires obstacles to alleviate his errors. Without the

feedback of obstacles, Slappy has no way of correcting his errors and will find himself in

a completely different location than he thinks, over time. In order to improve this, the

dead-reckoning aspect of Slappy would have to be improved. This would require a more

precise shaft-encoder, and much more finely tuned motor speeds for his movement. The

better the dead-reckoning of the robot, the less obstacles he requires to fix his position.

 33

Conclusion

Overall, I’d have to rate Slappy’s final performance to be a great success. He works in a

large variety of mazes and works with pretty good results. He has accomplished all of

the initial goals I’d set out for, and although his success rate isn’t perfect – there are

several plausible solutions I’ve come up with. I think that, much like several other

things, I ran out of time, more then I ran out of ideas, to solve his problems.

If Slappy had 5 good IR sensors, and a slight rewrite in his error-correction scheme, his

ability to negotiate a maze in a stable fashion for long periods of time would greatly

improve. Unfortunately, the downside of the current system is it has no way of detecting

a major error and likely the results would leave large unexplored areas corrupted with bad

data. Given enough time, Slappy would recover from most errors, and remap the entire

thing correctly – just with extra unvisited squares corrupted by old data. Perhaps with a

method of detecting major errors (bump switch?) and a new routine, those obsolete areas

of the maps could be erased as a finishing routine.

 Also, given more time with Slappy, after I got two better sensors, I would add in some

computer science to his decision making to make him decide to go to new and exciting

places rather then wandering around in his current arbitrary fashion. He lacks any

explorative instinct that could make his feats all the more impressive.

 34

Documentation
Credits

In case you were wondering, my robot is officially entitled “Slappy the Mappy bot”. It
was given by my little cousin (who is 8) who began laughing hysterically at her own joke
when she said it, that none of us have had the courage to change it.

I’d like to thank Dr. Arroyo, Dr. Schwartz, Aamir, Tae, and Uriel for all their help in the
lab, and in the administrative details that has given me this experience.

The following websites are excellent reads and extremely informative on how to do
certain things.

(Shaft Encoder)
http://www.gorobotics.net/servoencoder.shtml
Also a very good site for all things robotics! Lots of great ideas.

(A similar project)
http://web.sbu.edu/cs/roboticsLab/mapperI/index.html
This site details an extremely similar project done at St. Bonaventure University. I found
this late in the semester when I was getting a bit depressed that this might not even be
possible with the hardware I had. Our sensor setups worked out to be somewhat similar,
though our error correction routines came out pretty different. They mainly provided
psychological support for me, that I could get this working.

Parts List

Infrared Sensors – Sharp GPIUX sensors. These are essentially your basic IR cans. At
some point during the semester, www.radioshack.com stopped carrying them. They were
my supplier.

Shaft Encoder – Hamatsu P5587 photoreflector
www.acroname.com

Servos – Standard S3003 servos – hacked
www.servocity.com

HC11 Board – Axiom EVBU-D board
www.axman.com

 35

Appendix
Final Code

TCTL1 EQU $1020
TMSK1 EQU $1022
TMSK2 EQU $1024
TFLG1 EQU $1023
TFLG2 EQU $1025
PACTL EQU $1026
PACNT EQU $1027
TOC2 EQU $1018
TOC3 EQU $101A
PORTA EQU $1000
BAUD EQU $102B
SCCR1 EQU $102C
SCCR2 EQU $102D
OPTION EQU $1039
ADCTL EQU $1030
ADDATA EQU $1031
PORTD EQU $1008
DDRD EQU $1009
SPCR EQU $1028

PE1 EQU %00000001
FORE EQU %00000010
RFORE EQU %00000011
PE4 EQU %00000100
LREAR EQU %00000101
RREAR EQU %00000110
LFORE EQU %00000111

******** ASCII Constants **************
SPACE EQU $20
DASH EQU $2D
USCORE EQU $5F
PIPE EQU $7C
AST EQU $2A

**** Number of pulses of encoder disk until stop

FWDPULSES EQU 42 * 42 (other numbers for testing)
LEFTPULSES EQU 18 * 17
RIGHTPULSES EQU 20 * 20

**** IR Thresholds
LREART EQU $60 * Wall here?
RREART EQU $5D * Wall here?
FORET EQU $59 * Wall here?
STDDIST EQU $6C * Standard distance (FORE READING)

 36

LFORET EQU $71 * 6A
RFORET EQU $73 * 73
EMERG EQU $72 * Fore reading meaning to STOP

**** IR Delay
SAMPLETIME EQU $3F

FORW EQU $0AF0 * Standard movement (and stop)
STOPR EQU $0A40
STOPL EQU $09C0
BACK EQU $0910
SL2 EQU $0A10 * Right Motor (SLOW to LEFT)
SL1 EQU $0998 * Left Motor (SLOW TO LEFT)
SR2 EQU $0A70 * Right Motor (SLOW TO RIGHT)
SR1 EQU $09F8 * Left Motor (SLOW TO RIGHT)
SLOWF1 EQU $09F0 * L
SLOWF2 EQU $0A10 * R
SLOWB1 EQU $0998 * L ** SlowF/B PWs
SLOWB2 EQU $0A6A * R

***Stop: RIGHT Motor : OC2.asm : OC3 : 0A40 : BACK
***Stop: LEFT Motor : OC.asm : OC2 : 09C0 : FORW

 ORG $00D9
 JMP OC3_ISR
 JMP OC2_ISR

 ORG $00CD
 JMP PAO_ISR

 ORG $0100
PW1 FDB $07D0 ; Current Pulse Width: Oc2 (Left)
PW2 FDB $0FA0 ; Current Pulse Width: Oc3 (Right)
PCOUNT RMB 1

 ORG $3000
MAP RMB 256
XX RMB 1
YY RMB 1
DIR RMB 1

 ORG $4000
 JSR SHOWMAP
INFIN4 BRA INFIN4

 ORG $4100
 JSR CLRMAP
 JMP INFIN4

 ORG $2000
 LDS #$1FF
 LDAA #$10

 JSR INIT_SCI
 JSR INIT_MOTOR

 37

 JSR INIT_SHAFT
 JSR INIT_SENSOR
 JSR INIT_AD

 LDAA #4
 STAA XX * Start position set to 4,4
 STAA YY
 LDAA #1
 STAA DIR * Direction set to NORTH

 JSR STOP
 CLI

HERE
 JSR DECIDE
 PSHA
 SUBA #1
 BNE NOTS * If we go straight
 JSR WAIT
 JSR UPDATEXY
 JSR GOFCOR
 JSR MAPIT * After all going forwards *
 JMP BOT

NOTS PULA
 PSHA
 CMPA #2
 BNE NOTL * If we turn left
 JSR LINDIST
 JSR WAIT
 JSR ALIGNR
 JSR ALIGNL
 JSR ALIGNR
 JSR ALIGNL
 JSR ALIGNL
 JSR ALIGNR
 JSR LINDIST
 JSR WAIT

** Re-decide to ensure accuracy?

 JSR UPDATEL
 JSR TURNL
 BRA BOT

NOTL PULA
 PSHA
 CMPA #3
 BNE NOTR * If we turn right
 JSR LINDIST
 JSR WAIT
 JSR ALIGNR
 JSR ALIGNL
 JSR ALIGNR
 JSR ALIGNL

 38

 JSR ALIGNL
 JSR ALIGNR
 JSR LINDIST
 JSR WAIT
 JSR UPDATER
 JSR TURNR
 BRA BOT

NOTR JSR LINDIST
 JSR WAIT
 JSR ALIGNL
 JSR ALIGNR
 JSR ALIGNL
 JSR ALIGNL
 JSR ALIGNR
 JSR LINDIST
 JSR WAIT
 JSR UPDATER
 JSR TURNR * If we are at a deadend

BOT JMP HERE

***** MAPPING ROUTINES ****************

**** Lower 4 bit circular shift routines
**** Using register A

CLRMAP LDX #MAP
 LDAA #$FF
 LDAB #$00

CLRMAP2 STAA 0,X
 INCB
 INX
 CMPB #0
 BNE CLRMAP2

 RTS

ROTTMP RMB 1

ROTAL LSLA
 STAA ROTTMP
 ANDA #%00010000
 BEQ ROTAL2
 LDAA ROTTMP
 ORA #%00000001
 ANDA #%11101111
 RTS
ROTAL2 LDAA ROTTMP
 RTS

ROTAR STAA ROTTMP

 39

 ANDA #%00000001
 BEQ ROTAR2

 LDAA #%00010000
 ORA ROTTMP
 LSRA
 RTS
ROTAR2 LDAA ROTTMP
 LSRA
 RTS

**This subroutine examines the area around
** around it, and updates the map

MAPIT LDAB #$0

 LDAA #FORE
 JSR SAMPLE
 JSR OutA
 SUBA #FORET
 BLO MAP3
 ORAB #%00001000

MAP3 LDAA #LREAR
 JSR SAMPLE
 JSR OutA
 SUBA #LREART
 BLO MAP5
 ORAB #%00000001

MAP5 LDAA #RREAR
 JSR SAMPLE
 JSR OutA
 SUBA #RREART
 BLO MAP7
 ORAB #%00000100

MAP7 TBA
 JSR OutA
 JSR UPDATEMAP
 RTS

*** UPDATEMAP: Given the wall locations in the form
*** 0000 FR0L -- In register B
*** It should update the 3 bits effected
*** in the map at X,Y, taking into account
*** direction
*** *** THIS IS ONLY RUN AFTER A GOFORWARD
*** *** BECAUSE IT ASSUMED THAT BEHIND IS A 0

 40

UPDATEMAP LDAA DIR

UPDMAP3 LSRA
 BCS UPDMAP2
 PSHA
 TBA
 JSR ROTAR
 TAB
 PULA
 BRA UPDMAP3
UPDMAP2 JSR LDXAD
 STAB 0,X
 RTS

* Turning routines for updating direction

UPDATEL LDAA DIR
 CMPA #%00000001
 BEQ UPLONE
 LSRA
 BRA UPLOUT
UPLONE LDAA #%00001000
UPLOUT STAA DIR
 RTS

UPDATER LDAA DIR
 CMPA #%00001000
 BEQ UPRONE
 LSLA
 BRA UPROUT
UPRONE LDAA #%00000001
UPROUT STAA DIR
 RTS

** Used when going FORW **

UPDATEXY LDAA DIR
 CMPA #%00000001
 BNE UPD2
 INC YY
 BRA UBOT

UPD2 LDAA DIR
 CMPA #%00000010
 BNE UPD3
 INC XX
 BRA UBOT

UPD3 LDAA DIR
 CMPA #%00000100
 BNE UPD4
 DEC YY
 BRA UBOT

UPD4 LDAA DIR

 41

 CMPA #%00001000
 BNE UBOT
 DEC XX
UBOT RTS

***** WAIT ROUTINES *******************

WAIT PSHA
 PSHB
 LDAB #$FF
WAIT2 LDAA #$FF
WAIT3 DECA
 BNE WAIT3
 DECB
 BNE WAIT2
 PULB
 PULA
 RTS

***** ERROR CORRECTION ****************

** Linear Correction ******************

LINDIST LDAA #FORE
 JSR SAMPLE
 SUBA #STDDIST
 BLO LINLOW
 BEQ LINDONE

** Too Close **
LINHI JSR SLOWB
 LDAA #FORE
 JSR SAMPLE
 SUBA #STDDIST
 BEQ LINDONE
 BLO LINDONE
 BRA LINHI

** Too Far **
LINLOW JSR SLOWF
 LDAA #FORE
 JSR SAMPLE
 SUBA #STDDIST
 BLO LINLOW
 BRA LINDONE

LINDONE JSR STOP
 RTS

***** ALIGNR ***********************

 42

FREQ RMB 1
VALR RMB 1

ALIGNR LDAA #$0
 STAA FREQ
 STAA VALR
 LDAA #FORE
 JSR SAMPLE
 STAA VALR
 JSR SLOWR

AL2 LDAA #FORE
 JSR SAMPLE

 SUBA VALR
 BEQ ALEQ
 BLO ALLO

*** Greater Than **
 ADDA VALR
 STAA VALR
 LDAA #$00
 STAA FREQ
 BRA AL2

*** Equal To **
ALEQ LDAA FREQ
 INCA
 STAA FREQ
 BRA AL2
*** Less Than **
ALLO JSR STOP
 RTS

***********AlignL*************

VALL RMB 1

ALIGNL LDAA #$0
 STAA FREQ
 STAA VALL
 LDAA #FORE
 JSR SAMPLE
 STAA VALL
 JSR SLOWL

AL2 LDAA #FORE
 JSR SAMPLE

 SUBA VALL
 BEQ ALEQ
 BLO ALLO

*** Greater Than **
 ADDA VALL

 43

 STAA VALL
 LDAA #$00
 STAA FREQ
 BRA AL2

*** Equal To **
ALEQ LDAA FREQ
 INCA
 STAA FREQ
 BRA AL2
*** Less Than **
ALLO JSR STOP

 RTS

***** DECISION MAKING *****************

****** Return:
****** 0 -> Dead-End
****** 1 -> Go Forward
****** 2 -> Turn Left
****** 3 -> Turn Right

DECIDE LDAA #FORE
 JSR SAMPLE
 SUBA #FORET
 BLO DEC2
 BRA DEC3
DEC2 LDAA #1
 RTS

DEC3 LDAA #LREAR
 JSR SAMPLE
 SUBA #LREART
 BLO DEC4
 BRA DEC5
DEC4 LDAA #2
 RTS

DEC5 LDAA #RREAR
 JSR SAMPLE
 SUBA #RREART
 BLO DEC6
 BRA DEC7
DEC6 LDAA #3
 RTS

DEC7 LDAA #0
 RTS

***** MOTOR SUBROUTINES ***************

GOF PSHA

 44

 PSHB
 LDAA #$0
 STAA PCOUNT

 LDD #FORW
 STD PW1
 LDD #BACK
 STD PW2

GOF2 LDAA PCOUNT
 CMPA #FWDPULSES
 BEQ GOF3
 BRA GOF2

GOF3 JSR STOP
 PULB
 PULA
 RTS

TEMP RMB 2

GOFCOR PSHA
 PSHB
 LDAA #$0
 STAA PCOUNT

 LDD #FORW
 STD PW1
 LDD #BACK
 STD PW2

GOFC2 LDAA #LFORE
 JSR SAMPLE
 SUBA #LFORET
 BLO GOFC5
 TAB
 LDAA #$0
* LSLD
 ADDD PW2
 ADDD #10
 STD PW2
 BRA GOFC7

GOFC5 LDAA #RFORE
 JSR SAMPLE
 SUBA #RFORET
 BLO GOFC6
 TAB
 LDAA #$0
* LSLD
 STD TEMP
 LDD PW1
 SUBD TEMP
 SUBD #10
 STD PW1

 45

 BRA GOFC7

GOFC6 LDD #FORW
 STD PW1
 LDD #BACK
 STD PW2
GOFC7 LDAA #FORE
 JSR SAMPLE
 SUBA #EMERG
 BLO GOFC4
 JSR STOP
 BRA GOFC3

GOFC4 LDAA PCOUNT
 CMPA #FWDPULSES
 BEQ GOFC3
 BLO GOFC2
 BRA GOFC3

GOFC3 JSR STOP
 PULB
 PULA
 RTS

SLOWF PSHA
 PSHB
 LDD #SLOWF1
 STD PW1
 LDD #SLOWF2
 STD PW2
 PULB
 PULA
 RTS

SLOWB PSHA
 PSHB
 LDD #SLOWB1
 STD PW1
 LDD #SLOWB2
 STD PW2
 PULB
 PULA
 RTS

TURNL PSHA
 PSHB
 LDAA #$0
 STAA PCOUNT

 LDD #BACK
 STD PW1
 STD PW2

 46

TURNL2 LDAA PCOUNT
 CMPA #LEFTPULSES
 BEQ TURNL3
 BRA TURNL2
TURNL3 JSR STOP

 PULB
 PULA
 RTS

TURNR PSHA
 PSHB
 LDAA #$0
 STAA PCOUNT

 LDD #FORW
 STD PW1
 STD PW2

TURNR2 LDAA PCOUNT
 CMPA #RIGHTPULSES
 BEQ TURNR3
 BRA TURNR2
TURNR3 JSR STOP

 PULB
 PULA
 RTS

SLOWL PSHA
 PSHB
 LDD #SL1
 STD PW1
 LDD #SL2
 STD PW2
 PULB
 PULA
 RTS

SLOWR PSHA

 PSHB
 LDD #SR1
 STD PW1
 LDD #SR2
 STD PW2
 PULB
 PULA
 RTS

STOP PSHA
 PSHB
 LDD #STOPL
 STD PW1

 47

 LDD #STOPR
 STD PW2
 PULB
 PULA
 RTS

OC2_ISR LDAA #%01000000
 STAA TFLG1

 LDAA TCTL1
 ANDA #%01000000
 BNE LASTHI

 LDAA TCTL1
 ORA #%11000000
 STAA TCTL1

 LDD #$0000
 STD TOC2
 JMP OC2_OUT

LASTHI LDAA TCTL1 ; or TCTL in version 2
 ORA #%10000000
 ANDA #%10111111
 STAA TCTL1

 LDD PW2
 STD TOC2
OC2_OUT RTI

OC3_ISR LDAA #%00100000
 STAA TFLG1

 LDAA TCTL1
 ANDA #%00010000
 BNE LASTHI2

 LDAA TCTL1
 ORA #%00110000
 STAA TCTL1

 LDD #$8000
 STD TOC3
 JMP OC3_OUT

LASTHI2 LDAA TCTL1
 ORA #%00100000
 ANDA #%11101111
 STAA TCTL1

 LDD PW1
 ADDD #$8000
 STD TOC3
OC3_OUT RTI

 48

****** SHAFT ENCODER CONTROL ******

PAO_ISR LDAA #%00100000
 STAA TFLG2

 LDAA PCOUNT
 INCA
 STAA PCOUNT

 LDAA PACTL
 ANDA #%00010000
 BEQ PAO1

*Put 0 in here
 LDAA PACTL
 ANDA #%11101111
 STAA PACTL
 BRA PAO2

PAO1
*Put 1 in here
 LDAA PACTL
 ORA #%00010000
 STAA PACTL

PAO2 LDAA #$FF
 STAA PACNT

 RTI

***** SENSOR SAMPLING ROUTINE ******

*Usage, LOAD A with defined port to sample
*JSR here, read sample in A

SAMPLE PSHB
 PSHX
 PSHA
 LDX #$1000

 SUBA #FORE
 BNE SNext1
 BSET 0,X #%00010000
 JMP Wout

SNext1 ADDA #FORE
 SUBA #LFORE
 BNE SNext2
 BSET 8,X #%00000100 **Port D, Pin 2
 JMP Wout

SNext2 ADDA #LFORE
 SUBA #RFORE

 49

 BNE SNext3
 BSET 8,X #%00000100
 JMP Wout

SNext3 ADDA #RFORE
 BSET 8,X #%00001000

Wout LDAB #SAMPLETIME **Wait 300us for analog to stablize
WSamp4 LDAA #$FF
WSamp2 DECA
 BNE WSamp2
 DECB
 BNE WSamp4

**** Pull stored A and read that port
 PULA
 STAA ADCTL
 LDAA #10
WSamp DECA
 BNE WSamp

 LDAA #$0
 STAA PORTD
 BCLR 0,X #%00010000
 LDAA ADDATA

 PULX
 PULB
 RTS

*********** INITIALIZATIONS *****

INIT_AD LDAA #%10000000
 STAA OPTION
 LDAA #40
WADINT DECA
 BNE WADINT
 RTS

INIT_SENSOR LDAA #%00000100
 STAA SPCR
 LDAA #%00111100
 STAA DDRD
 RTS

INIT_MOTOR LDD #$0000
 STD TOC2
 LDD #$8000
 STD TOC3

 LDAA #%01100000

 50

 STAA TMSK1
 LDAA #%10100000
 STAA TCTL1
 RTS

INIT_SHAFT LDAA #$00
 STAA PCOUNT
 LDAA PACTL
 ORA #%01010000
 ANDA #%01011111
 STAA PACTL

 LDAA TMSK2
 ORA #%00100000
 STAA TMSK2

 LDAA #$FF
 STAA PACNT
 RTS

OutA PSHA
 PSHA
 JSR $E4DE
 PULA
 JSR $E4E2
 JSR $E508
 PULA
 RTS

OutD PSHB
 PSHA

 PSHA
 JSR $E4DE
 PULA
 JSR $E4E2

 TBA

 PSHA
 JSR $E4DE
 PULA
 JSR $E4E2
 JSR $E508

 PULA
 PULB
 RTS

INIT_SCI PSHA
 LDAA #$30
 STAA BAUD
 LDAA #%00000000
 STAA SCCR1
 LDAA #%00001100
 STAA SCCR2

 51

 PULA
 RTS

*** Subroutin: LDXAD - Load X with Address of current
*** X Y data.

LDXAD PSHA
 PSHB
 LDAB YY
 LSLB
 LSLB
 LSLB
 LSLB
 ADDB XX
 LDAA #$30
 XGDX

 PULB
 PULA
 RTS

SHOWMAP PSHX
 PSHA
 PSHB

 LDAA #0
 STAA YY
SMAP3 LDAA #0
 STAA XX

***********First Pass (TOP)***********
SMAP2 JSR LDXAD

 LDAB 0,X
 ANDB #%10000000
 BEQ SMAP222

 BRA SMAP22

SMAP222 LDAB 0,X
 ANDB #%00000010 *Top mask
 BEQ SMAP22

 LDAA #DASH
 JSR $E4EC
 LDAA #DASH
 JSR $E4EC
 LDAA #DASH
 JSR $E4EC
 BRA SMAP23
SMAP22 LDAA #SPACE
 JSR $E4EC

 52

 LDAA #SPACE
 JSR $E4EC
 LDAA #SPACE
 JSR $E4EC

SMAP23 INC XX
 LDAA XX
 CMPA #16
 BNE SMAP2

 LDAA #0
 STAA XX

 PSHA
 JSR $E508
 PULA

***********SECOND PASS (middle)***************
SMAP4 JSR LDXAD
* JSR OutD

 LDAB 0,X
 ANDB #%10000000
 BEQ SMAP444
 LDAA #SPACE
 JSR $E4EC
 LDAA #AST
 JSR $E4EC
 LDAA #SPACE
 BRA SMAP45

SMAP444 LDAB 0,X
 ANDB #%00000001
 BEQ SMAP42
 LDAA #PIPE
 BRA SMAP43
SMAP42 LDAA #SPACE
SMAP43 JSR $E4EC
 LDAA #SPACE
 JSR $E4EC

 LDAB 0,X
 ANDB #%00000100
 BEQ SMAP44
 LDAA #PIPE
 BRA SMAP45
SMAP44 LDAA #SPACE
SMAP45 JSR $E4EC

 INC XX
 LDAA XX
 CMPA #16
 BNE SMAP4

 LDAA #0

 53

 STAA XX

 PSHA
 JSR $E508
 PULA

***********Third Pass (bottom)***************
SMAP5 JSR LDXAD

 LDAB 0,X
 ANDB #%10000000
 BEQ SMAP555
 BRA SMAP52

SMAP555 LDAB 0,X
 ANDB #%00001000 *Bot MASK
 BEQ SMAP52

 LDAA #DASH
 JSR $E4EC
 LDAA #DASH
 JSR $E4EC
 LDAA #DASH
 JSR $E4EC

 BRA SMAP53

SMAP52 LDAA #SPACE
 JSR $E4EC
 LDAA #SPACE
 JSR $E4EC
 LDAA #SPACE
 JSR $E4EC

SMAP53 INC XX
 LDAA XX
 CMPA #16
 BNE SMAP5

 PSHA
 JSR $E508
 PULA

 INC YY
 LDAA YY
 CMPA #10
 BEQ SMAPEND
 JMP SMAP3
SMAPEND PULB
 PULA
 PULX
 RTS

