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Abstract 
 
Slappy is an autonomous mobile robot that will roam around a maze, mapping as he 
goes.  He will align and correct himself on the walls of the maze to keep his position 
within the maze where he expects it.  He will produce his map at the user’s request. 
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Executive Summary 
 
Slappy (named by my little cousin) will wander a maze attempting to map out the 

maze as he goes.  He does this using 5 infrared sensors with split duties between wall-

detection and error correction.  He also uses a shaft-encoder to measure distances 

traveled (and angles turned). 

 

Slappy moves using two modified servos to act as gearhead motors.  These motors, 

along with all electronics are controlled by an HC11 on the Axiom EVBU board 

which is mounted to his moving platform. 

 

The maze must be set up of walls corresponding to a grid.  This means all walls are 

orthogonal and of a specific distance.  With these constraints, Slappy is able to 

navigate the maze, without touching a wall, and produce a map of the areas he 

traveled. 

 

Drift errors are corrected as he moves by using the walls of a maze to orientate 

himself.  He corrects both linear and rotational errors by using the walls as reference 

points. 
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Introduction 

 
Slappy is a circular robot of about 1 foot across that stands about a foot high.  He 

wanders around a maze, negotiating it and mapping it to memory to be shown on a 

terminal later.  He should also do all of this without touching any walls. 

 

The maze that Slappy maps has certain restrictions.  Most importantly, the maze is laid 

upon a grid with the walls taking up an entire segment.  There are no partial walls, nor 

anything that is not orthogonal.  The actual maze was constructed of 2x6s of wood that 

were cut to size, with the 6- inch faces being the actual walls that Slappy deals with.  The 

minimum wall length is 16.5 inches (three 2x6 widths – 2x6s aren’t actually 2x6, but 

instead 1.5 inches by 5.5 inches. 5.5 x 3 = 16.5).  Therefore the entire maze can be 

decomposed into a grid of square cells with each side as 16.5 inches. 

 

Slappy’s software was written entirely in HC11 Assembly language and therefore many 

routines that would otherwise be simple turn out to be rather difficult or long.  Assembly, 

however, provided extremely good control over certain aspects of the system (like when 

interrupts occurred).  It was also an excellent learning experience. 

 

He uses a shaft-encoder to do ninety percent of the work.  His forward movements are 

always a specific distance determined by a certain number of clicks of the encoder.  

Likewise, both his left and right turn are tuned to a specific value of clicks.  However, he 

will never be able to turn exactly 90-percent, nor will he be able to move exactly one cell 
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forward.  Every time he moves, or turns, these small errors will add up until Slappy is 

nowhere near the center of a cell, or worse, cause him to run into a wall.  Solving these 

incremental errors is the heart of the problem. 

 

After creating a program for Slappy to navigate the maze without any error correction, he 

was observed to see the most common types of mistakes he makes and thus different 

schemes were created to correct each of them.  In the end, three different schemes are 

used at different times to help Slappy keep his bearings. 
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Integrated System 

Slappy’s software is written entirely in assembly language for the HC11.  It, in total, is 

about 1100 lines of assembly that is broken down into sensor routines, movement 

routines, error-correction routines, and the main program which uses the rout ines to solve 

the problem. 

 

The software was written in a modular style. For instance, a routine to sample an 

indicated sensor (passed to the function in a register) was written and tested thoroughly 

using a set of test programs.  Then, a routine to turn both motors on so the robot was 

moved forward, left, and right was written and tested thoroughly.  The final step was to 

combine all these into one program that was able to call these functions individually and 

use them to solve the problem.  Slappy’s routines are rather robust and form, in their own 

right, a “higher- level” language to use to solve this problem. 

 

 As stated before, the code is broken down as follows: 

 

 

 

Main Code 

Error Correction Sensor Movement 
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In the following sections, each of these individual sections will be outlined in detail, and 

the final algorithm is described in the behaviors section. 
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Mobile Platform 

 

Slappy’s platform is only 4 wooden pieces that fit easily onto two sheets of the wood 

provided as part of the class.  The main platform component is an 8 inch circular disk 

consisting of holes for the board mount and the servo mounts.  

 

 

 

The board is mounted vertically, with two steel L-brackets serving as the support 

mechanism.  Four of them are used, in total, two on each side.  There is a screw going 

through the board, to an l-bracket on both sides of the board, and each bracket is screwed 

into the main platform. 
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The servos are mounted on the underside of the board using three more pieces of wood 

for support.  The slots in the circular board for the servo mounts are the exact width of 

the board, so a smaller board with tabs the right size can be pushed into place and secured 

with wood glue.  A quick diagram of the remaining pieces is shown below: 

 

 

 

The two top pieces are inserted vertically into the circular body piece. The bottom piece 

using the same tab concept, bridges the two on the bottom, parallel to the circular board.  

It is diagramed below: 
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  Actuation 

 

The only actuation on the robot consists of two hacked servo motors.  The potentiometer 

was removed and replaced by two equal resistors so that the servo always thinks it is at 

the same position.  The gears were also altered so that there was no mechanical stopping 

mechanism. This turned the servos into gearhead motors that, with different pulse-widths, 

can control both speed and direction. 

 

The software to control these two motors took quite a while, though it was quite simple.  

Two output compare routines were used to create pulse-widths with a total period of 

32ms.  In order to keep them from running over each other, one was set to go off at 

0x0000 and the other at 0x8000.  On these interrupts, it would set the mask for the next 

interrupt at its current counter, plus the specified pulse-width.  In this way, the two 

memory locations that hold the current pulse-width can be altered at any time from the 

program and the motors will be updated accordingly. 

 

The actual routines to go forward, and turn consist solely of updating the pulse-widths 

variables in memory with specified constants, and returning to the caller.  Tuning those 

values is what took up the brunt of the time spent.  The experiment consisted of setting 

them manually, running the robot down the hall, and making adjustments.  Once decent 

values for going straight and turning in place were determined, the routines were 

finished. 
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Sensors 

Shaft Encoder 

The design of a shaft-encoder was vital to the proper working of the robot, so a little 

more work was put into making a shaft-encoder and proving it worked correctly. 

The part chosen for the encoder was the Hamatsu P5587 photoreflector.  The device 

consists of an IR emitter and a phototransistor pair.  It is a 5-pin device with the follow 

layout: 

 

 

 

 

Using a pull-up resistor, the device will be at 5-volts if black paper is in front of it, and 

0V if white paper is in front of it.  Using this simple property, a shaft encoder can be 

constructed.  The following is the actual design implemented on the circuit board that 

was tested: 
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The 330 ohm resistor simply regulates the current that flows through the diode.  The 3.3k 

resistor is simply a pull-up resistor and it’s value has very little effect on performance of 

the digital output. 

 

The second part of the encoder is the encoder disk.  These are circles divided in equal 

slices of alternating black and white.  Mounting these disks to the wheel, with the 

photoreflector fixed in place and facing the wheel creates the encoder. Below is a 

reproduction of one: 
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The actual encoder disks were made in auto-cad.  Three resolutions were made for 

experimenting: a 16 section (above), a 32 section, and a 64 section. 

 

Testing 

The first test done on the shaft-encoder was to hook it up to an oscilloscope and see what 

kind of signal it gave.  The signal appeared quite crisp, but it was near impossib le to tell 

what types of noise or bounces were occurring at the extremely slow frequency.  This, at 

the very least, verified the encoder was at least wired correctly. 

 

Again, there is no easy way to test the frequency of the signal and compare that with the 

angular speed of the wheel.  The best way to measure if the shaft-encoder is doing it’s job 

is to actually write the software to make the robot move a certain amount of ticks and 

measure the distance traveled.  Over the course of 20 trials, the distance the robot 

traveled after two wheel-rotations was measured.  The distance was chosen after a bit of 

trial and error.  Having the distance too long would lead to errors due to motors not being 

the same speed, and having the distance too short amplifies the simple measurement 

errors.  These numbers were compiled and the mean, the standard deviation, and the 

range were calculated.  This test was done for the 16, 32, and 64 sectioned disks.   

 

What follows is the tabulated data of the three tests done (All numbers in inches): 

16 section 32 section 64 section 
26.1875  26.25  26.375 
26.375  26.25  26.375 
26.375  26.25  26.4375 

26.5  26.375  26.4375 
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26.5  26.4375  26.4375 
26.5  26.4375  26.4375 
26.5  26.4375  26.4375 
26.5  26.5  26.5 
26.5  26.5  26.5 
26.5  26.5  26.5 

26.5625  26.5  26.5 
26.5625  26.5  26.5 
26.5625  26.5  26.5 
26.5625  26.5  26.5625 
26.5625  26.5625  26.5625 
26.625  26.5625  26.5625 

26.6875  26.5625  26.625 
26.75  26.5625  26.625 

26.8125  26.625  26.625 
26.875  26.6875  26.75 

 

 

 

 

 

What follows is some secondary calculations about the datasets: 

  16 section 32 section 64 section 

Mean:  26.55  26.475  26.5125 

Std.Dev  0.153897  0.118932  0.094242 

Range  0.6875  0.4375  0.375 

       

Theoretical 0.834461  0.41723  0.208615 

 

Much as expected, as the resolution increases, the standard deviation and total range go 

down.  The theoretical values are obtained by dividing the circumference by the number 
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of sections.  In theory, the encoder knows nothing about anything smaller then this 

number and it’s provided as an ideal number for comparison.  Two other sources of error 

keep the estimated numbers from being much closer to the actual values observed.  First, 

there is measurement error because this is a difficult measurement to do to a high degree 

of precision.  Secondly, the starting and stopping of the robot is very suddenly and jerk 

and often causes slight shifts and overshoots.    

 

The final robot used the 32 section version because the 64 version proved to be too error-

prone in various noisy conditions and especially on reflective floors (ie, tile). 

 

Infrared Sensors 

The robot consisted of 5 infrared sensors, situated as follows: 
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The two rear sensors are, in theory, orthogonal with the maze walls at all times.  

Therefore, these two sensors and the fore sensor make up the wall- finding group.  These 

three sensors are used to tell if a wall is in either of the three main directions.  The side 

pointing front two sensors are used in error correction routines to detect when the robot is 

not facing orthogonally and heading towards a wall.   

 

A routine was written to sample a specified (by passing it through a register) analog port.  

This routine includes the wait times to allow for a stable output of the LED (not very 

long), and then a stable analog value (much longer).  Waiting for an analog output value 

takes quite a bit of time and consequently determines the overall sampling rate of the 

robot.  Since no other system of the robot waits nearly as long, this one value, effectively, 

determines the speed at which the robot makes decision.  It is referred to as 

SAMPLETIME in the attached code. 

 

At this point, a few of the problems with my sensors should be discussed.  The distances 

involved in these infrared sensors are essentially from zero range to about two cells 

worth, or about 3 feet.  The most important readings are point-blank walls abutting the 

robot, walls about one half cell away (a nearby wall), a wall about 1.5 cells away (a wall 

one cell over), and an infinite reading.  Three of the sensors performed extremely well 

within these ranges, but the other two were not very good.  In one case, very close 

readings were very easy to confuse with infinity.  In the other case, it was very difficult to 
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tell the difference between a wall nearby, and a wall one cell over (as the “peak” of the 

analog output existed between the two). 

 

After quite a bit of fiddling with the robot, it was decided that the best sensor should be 

used in the front, and the other two good ones should be the front-side sensors that are 

used to correct errors.  The back sensors only job was to have a threshold and say ‘Yes a 

wall is here’ or ‘No, a wall is not here’.  Since these back sensors were rather poor, they 

were limited to solely this role.  As is seen later, had these back sensors been better at 

these ranges, they could also be used for some error-correction routines that would 

greatly add to the stability of the robot in a maze. 
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Behaviors 
 
The robot has a host of behaviors that will be described here, as well as a main program 

which transfers from behavior to behavior based on certain stimuli.  All of these 

behaviors are programmed for the HC11 in straight Assembly code using the old DOS 

tool Edit.  The board used is from Axiom (www.axman.com).  It is the Axiom EVBU 

board for the HC11, revision D. 

 

Map Negotiating 

 

This was the first behavior to get working, and essentially set the basis for what else was 

required.  It was assumed that if the robot was able to navigate the maze, randomly, 

without hitting a wall, then mapping each cell around it was a trivial next step.  

Therefore, the brunt of design was centered around successfully map negotiating.  The 

first algorithm went like this: 

Sample Front 
Is there a Wall? (Front Reading > Front Threshold) 
 Go Forward 
else 
 Sample Right 
 Is there a Wall? 
  Turn Right 
 else  
  Turn Left 
 
This basic map-negotiation routine was the basis of the final main program, and it’s 

influence is still extremely prevalent.  All of the routines stated above will be described 

below, in their inner workings, and this will be returned to in a moment 
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Wall-Detection  

 

All wall-detection is done in a very simple way.  Each of the there wall- finding sensors 

(fore, left rear, right rear) has a threshold value.  These, along with many other constants, 

are at the beginning of the ASM file and can be changed quickly for various conditions. 

 

Slappy assumes a wall is present in that direction if and only if the sensor reading from 

the appropriate analog port is above the threshold. 

 

Go Forward/Turn Left/Turn Right 

All three of these routines incorporate the motor driver routines and the shaft encoder.  

The go-forward routine is a close relative of the following: 

 
Clear PulseCount 
Set Motor to Forward 
Is Pulses equal to FORWARD_PULSE_CONSTANT, yet? 
Set Motor to STOP 
 
The routine to turn right and left is essentially identical except the motor is set to turn in 

those directions.  All three have their own constant that, again, is tuned through large 

amounts of trial-and error.  The left and right routines were tuned by having the robot 

perform 8 turns, and then go forward.  In this way, any small error was easily recognized 

and the number of pulses adjusted.  Going forward was tuned later, when error-correction 

was the concern. 
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Map Negotiating, Revisited 

Now that all of the pieces of the following have been described, it can be shown how this 

formed the basis of the eventual solution. 

 
 
Sample Front 
Is there a Wall? (Front Reading > Front Threshold) 
 Go Forward 
else 
 Sample Right 
 Is there a Wall? 
  Turn Right 
 else  
  Turn Left 
 
 
At this point, after hours and hours of tuning three IR thresholds, one IR timing delay, 

four motor speed values (2 forward, 2 reverse), and three numbers of pulse- lengths for 

movement, Slappy was ready to be run in an actual maze.  The first time Slappy ran, with 

the above decision scheme, he actually negotiated the maze fairly well, and the finely 

tuned values served him well through the first 5 or 6 cells.  At this point, the small errors, 

mostly linear in nature caught up with him and he made the first, of many, collisions with 

a wall. 

 

Error 

 

There are three kinds of error that Slappy incurs over time.  The most obvious two are 

linear errors and rotational errors.  Rotational error occurs, over time, as Slappy’s 

attempts at 90-degree turns have small errors that collect until he is off the 0-90-180-270 

axis.  The linear error is split into two kinds, one is situated in the forward-rear direction, 
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as opposed to side-to-side errors.  The reason this differentiation is made is because 

Slappy can easily correct front-linear errors since he can move in that direction.  It’s 

much harder for him to correct side-linear errors. 

 
 

 
 

 
 
Fore-Linear Correction 

 
Again, this was a fairly straightforward and powerful technique to correct error.  

Essentially, two more routines for the motor were written with two new, slower speeds – 

one for forward, one for backward.  Using these very slow movements, Slappy could 

scoot up, or back off of a wall until his FORE sensor read a certain value, another 

constant, called STDDIST.  This value was chosen very carefully for later reasons 

discussed.   

 

It should be noted that since Slappy’s wall-detecting sensors are in the rear of the 

platform, Slappy is much better to be closer to a fore wall, to maximize the amount of 
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wall in the view of these sensors.  This also meant his FWDPULSE should be increased a 

little as to allow Slappy to use those sensors to detect things, and consequently back off 

the wall after the detection took place.  In the end, Slappy works a bit better with a few 

more pulses then is required to go 16.5 inches.  The obvious flaw to this design, is that in 

a long straightaway, Slappy will be creating large amounts of forward error and when he 

finally reaches a wall, he may be too far forward to stop in time. 

 

To correct this lesser issue, Slappy’s GoForward routine was changed to contain an 

emergency stop value.  If, when going forward, Slappy’s Fore Sensor hits an emergency 

threshold, that means he needs to stop immediately, and return out of the subroutine.  

Going full speed, and stopping at this threshold will stop Slappy about an inch from the 

wall he was about to hit.  Slappy assumes, always, that although he has not moved an 

entire set of pulses forward, he did move one cell forward.  This assumption is based on 

the fact that he tends to create forward error (ie, moving too far) as opposed to rear error 

(not moving far enough).  After an emergency stop, Slappy will do a fore-error correction 

to back off this wall to his STDDIST. 

 

Rotational-Correction 

The rotational correction algorithm used is quite simple in theory, and quite impressive in 

practice.  Two new behaviors were created to do this: AlignL and AlignR.  These two 

turned in the specified direction until the Fore Sensor decreased at all.  By doing AlignR 

and then AlignL, you could, in theory, end up near orthogonal with any wall in front of 

you. 
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This pair of behaviors, in conjunction, work fairly well but often the FORE sensor takes a 

quick dip that it shouldn’t and this results in a false stopping.  To correct this, in the 

actual implementation, the right and left alignment is repeated 3 times each, in an 

alternating fashion.  In this way, he does a fairly good job of fixing his rotational errors. 

 

The STDDIST that Slappy corrects himself to is governed by this routine.  Remember, 

STDDIST is the distance that Slappy moves to when there is a wall in front of him that is 

supposed to represent the center of that cell. As a separate consideration, the most 

sensitive distance region on the fore sensor should be used for the Align routines.  

Therefore, STDDIST doesn’t quite work out to the center of a square.  It is, instead, near 

the center, where the FORE sensor is the most sensitive. 

 

It may seem like a coincidence that the distance from the center of a square to a wall in 

front is very near the most sensitive region of a particular IR sensor.  The IR sensor to be 

used in the front was chosen for its sensitivity in that range, and positioned on the robot 

accordingly to maximize this effect. 

 

Side-Linear-Correction 

At this point, there were two main ways of correcting error that, together, did a pretty 

decent job of keeping Slappy from hitting walls.  At this point, it would be wise to 

discuss a little bit of the relationship between the errors.  Linear-Forward error is easily 

correctable and corrected the most accurately.  Once the robot turns, his Linear-Side error 
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becomes his Linear-Forward error, which is corrected the next time he hits a wall.  

Therefore, given no rotational error, over time he will correct all of his linear errors 

extremely well. 

 

Rotational Error, however, complicates these things.  Rotational error creates side-error 

over time, as the robot moves forward.  With Slappys’ decent rotational error correction, 

major side-error isn’t really a concern.  He can have moderate side-error that will be 

corrected as long as there is a wall to turn him soon.  Without a wall to turn him, and 

move his side error into the correctable forward region, he will eventually fail. 

 

What all this means, is that our two schemes are ineffective in cases where Slappy does 

not turn for long periods of time – say three squares.  In this case, Slappy’s success rate 

goes down considerably.  Therefore, a third scheme must be developed to correct side-

errors when in long corridors. 

 

The technique used is simply to poll the front-right and front-left sensors using a 

threshold while moving forward.  When the threshold kicks in, the opposite wheel is 

slowed down.  For instance, if the front-right sensor is over the threshold, he must turn 

left, and thus slow down his left motor.  The question is, how much should it be slowed 

down? 

 

Several techniques were tried: 

1) Slow down the motor by a constant amount 
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2) Slow down the motor equal to the difference in threshold 

3) Slow down the motor twice the difference 

 

By ‘slowing down’ the motor, I mean subtracting (or adding, in the case of the servo 

going in reverse) a number from the pulse-width used. 

 

Slowing down the motor by a constant amount caused a serious overcorrection problem if 

that constant was too high, and a serious under-correction problem when it was too low.  

Numbers in the middle ground tended to overcorrect small errors, and under-correct big 

ones.  This scheme was clearly ineffective. 

 

The second and third were identical in implementation other then a SHIFT-LEFT in the 

multiplied version.  Again, I ran into similar control issues as before.  The un-multiplied 

one ran into under-correction problems with large errors, and the multiplied one ran into 

overcorrection problems with smaller errors. 

 

Since most of the errors he encountered were small, the un-multiplied version seemed to 

be the logical choice.  To aid in his under-correction problem, the threshold was lowered 

a bit from desired. 

 

However, this system is not perfect.  The errors that can cause him problems are 

discussed in the conclusion. 
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Final Negotiating Routine  

Below is a pseudo-code representation of what the final main routine looks like, and how 

it puts together the error correction and movement routines together to form the main 

brains of the robot. 

 

Wall in Front? 

No -> Go Forward while correcting side errors  

Go Back to Top 

Yes -> 

Correct Linear Distance in Front of us 

Orient to wall in front (AlignL/AlignR x3) 

Re-Correct Linear (new orientation, new reading of fore) 

 

Wall to the Right? 

Yes -> Turn Left 

Go Back to Top 

No -> Turn Right 

Go Back to Top 

 

Mapping 

The mapping aspect was a close conceptual extension of the previous decision making 

algorithm, but the implementation was quite tricky.  He has three sensors that already tell 

him if a wall is in a specific spot.  This means he already knows, for certain, of the three 
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walls around him.  Do not make mistake of thinking he also knows the fourth, the wall 

behind him, because he came from that direction.  That is only true after a forward 

motion, and not after a turn.   

 

At the very beginning of the decision routine, he jumps to a mapping routine which takes 

the three binary values of the three walls around him and has the job of writing those 

three bits to the correct place in memory. 

 

Each cell is given it’s own place in memory, with the lesser 4 bits denoting the walls as 

shown: 

 1 

8  2 

 4 

For the rest of this text, 1 will be referred to as North, 2 and East, etc.  While these terms 

are technically incorrect, they make it a bit easier to both explain and understand.  

Whatever direction the robot is started in is his North.  The most significant bit is used to 

set whether a cell has been visited at all or not.  The other three bits are unused. 

 

The robot must also keep track of his direction, as he turns.  Knowing his fore-sensor 

reads a wall is not of any value if he doesn’t know if that represents a North or East.  To 

do this, he has a direction variable that is updated with every turn and is defaulted to 1 

(North). 
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At this point in the design phase, it is wise to note that a pair of lower four-bit circular 

rotations was created, for left and right.  It will be used extensively as we will see. It 

zeros the top four bits, and rotates the bottom four in the specified direction. 

 

If the data is passed in a poor or arbitrary format, then the amount of bit manipulation 

required is a bit staggering to update the three corresponding wall bits in memory.  To 

correct this problem, the data format was carefully chosen.  First, the sensors are read and 

a bit- field is created with the following format 0000 P0SF.  P stands for Port (left), and S 

for starboard (right).  It is formatted so oddly as to correspond to the bit assignments of 

North, South, East, and West.  When the robot is facing North, then this bit- field is 

correct and ready to be ORed with memory.  However, when he is not facing north, the 

lower four bits needs to be rotated as many times as the direction indicates before it is 

ORed with the current cell in memory. 

 

The scheme of storage and rotation was designed after a painstaking thought process as to 

doing this in an efficient way.  The final solution is far more elegant then using a random 

assignment system would have been.  It’s also a lot easier to code and thus less prone to 

error. 

 

Map Output 

The map, in memory, was now complete.  However, there needed to be a way to output it 

to the terminal.  The simplest way to do this was to create a display program at another 

address, far from the original code and run that when you wish to display the map.   
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The program to output the map in memory is essentially two for- loops to traverse each 

memory location, and then three sequential for- loops nested inside to run through an 

entire line on the screen and print the top, middle, and bottom of each cell respectively. 

 

The actual code for the map display is extremely long and a bit convoluted, but if the 

basic premise is understood, it tends to modularize into repeated segments pretty easily. 

 
Deficiencies  

 
Using the three correction algorithms described and the decision making process above, 

Slappy is fairly successful in negotiating and mapping a maze.  Slappy has a few pitfalls.  

As described, two of the hacked IR sensors were poor.  If five good IR sensors were 

available, the error-correction routines could be a lot better (ie, the AlignR and AlignL 

could be applied after turning, instead of before) and Slappy’s error-correction ability 

could be vastly improved. 

 

The truth is, there are times when Slappy will still hit a wall.  Since Slappy is prone to 

severe rotational or side-error while moving forward, these are essentially the main 

causes of his collision with walls.  His correction algorithm, as is, doesn’t have enough 

control to really swerve him out of the way of these collisions.  These types of error 

almost always result from a poor turn, since no rotational error is corrected after the turn, 

only before.  This means that if the shaft-encoder malfunctions he can turn too far or too 

short, and the results are often catastrophic. 

 



 32

For this reason, Slappy works best on very short carpet or a mat ofr some sort with 

minimal reflectivity.  Sunlight onto tile-floor will really harm his ability to use the shaft-

encoder and often cause unpredictable errors in his motions. 

 

Furthermore, Slappy absolutely requires obstacles to alleviate his errors.  Without the 

feedback of obstacles, Slappy has no way of correcting his errors and will find himself in 

a completely different location than he thinks, over time.  In order to improve this, the 

dead-reckoning aspect of Slappy would have to be improved.  This would require a more 

precise shaft-encoder, and much more finely tuned motor speeds for his movement.  The 

better the dead-reckoning of the robot, the less obstacles he requires to fix his position. 
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Conclusion 
 

Overall, I’d have to rate Slappy’s final performance to be a great success.  He works in a 

large variety of mazes and works with pretty good results.  He has accomplished all of 

the initial goals I’d set out for, and although his success rate isn’t perfect – there are 

several plausible solutions I’ve come up with.  I think that, much like several other 

things, I ran out of time, more then I ran out of ideas, to solve his problems. 

 

If Slappy had 5 good IR sensors, and a slight rewrite in his error-correction scheme, his 

ability to negotiate a maze in a stable fashion for long periods of time would greatly 

improve.  Unfortunately, the downside of the current system is it has no way of detecting 

a major error and likely the results would leave large unexplored areas corrupted with bad 

data.  Given enough time, Slappy would recover from most errors, and remap the entire 

thing correctly – just with extra unvisited squares corrupted by old data.  Perhaps with a 

method of detecting major errors (bump switch?) and a new routine, those obsolete areas 

of the maps could be erased as a finishing routine. 

 

 Also, given more time with Slappy, after I got two better sensors, I would add in some 

computer science to his decision making to make him decide to go to new and exciting 

places rather then wandering around in his current arbitrary fashion.  He lacks any 

explorative instinct that could make his feats all the more impressive. 
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Documentation 
Credits 
 
In case you were wondering, my robot is officially entitled “Slappy the Mappy bot”.  It 
was given by my little cousin (who is 8) who began laughing hysterically at her own joke 
when she said it, that none of us have had the courage to change it. 
 
I’d like to thank Dr. Arroyo, Dr. Schwartz, Aamir, Tae, and Uriel for all their help in the 
lab, and in the administrative details that has given me this experience.  
 
The following websites are excellent reads and extremely informative on how to do 
certain things. 
 
(Shaft Encoder) 
http://www.gorobotics.net/servoencoder.shtml 
Also a very good site for all things robotics! Lots of great ideas. 
 
(A similar project) 
http://web.sbu.edu/cs/roboticsLab/mapperI/index.html 
This site details an extremely similar project done at St. Bonaventure University.  I found 
this late in the semester when I was getting a bit depressed that this might not even be 
possible with the hardware I had.  Our sensor setups worked out to be somewhat similar, 
though our error correction routines came out pretty different.  They mainly provided 
psychological support for me, that I could get this working. 
 
 

Parts List 
 
Infrared Sensors – Sharp GPIUX sensors.  These are essentially your basic IR cans.  At 
some point during the semester, www.radioshack.com stopped carrying them.  They were 
my supplier. 
 
Shaft Encoder – Hamatsu P5587 photoreflector 
www.acroname.com 
 
Servos – Standard S3003 servos – hacked 
www.servocity.com 
 
HC11 Board – Axiom EVBU-D board 
www.axman.com 
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Appendix 
Final Code 
 
TCTL1   EQU     $1020 
TMSK1   EQU     $1022 
TMSK2   EQU     $1024 
TFLG1   EQU     $1023 
TFLG2   EQU     $1025 
PACTL   EQU     $1026 
PACNT   EQU     $1027 
TOC2    EQU     $1018 
TOC3    EQU     $101A 
PORTA   EQU     $1000 
BAUD    EQU     $102B 
SCCR1   EQU     $102C 
SCCR2   EQU     $102D 
OPTION  EQU     $1039 
ADCTL   EQU     $1030 
ADDATA  EQU     $1031 
PORTD   EQU     $1008 
DDRD    EQU     $1009 
SPCR    EQU     $1028 
 
 
PE1     EQU     %00000001 
FORE    EQU     %00000010 
RFORE   EQU     %00000011 
PE4     EQU     %00000100 
LREAR   EQU     %00000101 
RREAR   EQU     %00000110 
LFORE   EQU     %00000111 
 
******** ASCII Constants ************** 
SPACE   EQU     $20 
DASH    EQU     $2D 
USCORE  EQU     $5F 
PIPE    EQU     $7C 
AST     EQU     $2A 
 
**** Number of pulses of encoder disk until stop 
 
FWDPULSES  EQU  42      * 42 (other numbers for testing) 
LEFTPULSES EQU  18      * 17 
RIGHTPULSES EQU 20      * 20 
 
**** IR Thresholds 
LREART   EQU     $60    * Wall here? 
RREART   EQU     $5D    * Wall here? 
FORET    EQU     $59    * Wall here? 
STDDIST  EQU     $6C    * Standard distance (FORE READING) 
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LFORET   EQU     $71    * 6A 
RFORET   EQU     $73    * 73 
EMERG    EQU     $72    * Fore reading meaning to STOP 
 
 
**** IR Delay 
SAMPLETIME EQU  $3F      
 
FORW    EQU     $0AF0   * Standard movement (and stop) 
STOPR   EQU     $0A40 
STOPL   EQU     $09C0 
BACK    EQU     $0910 
SL2     EQU     $0A10   * Right Motor (SLOW to LEFT) 
SL1     EQU     $0998   * Left  Motor (SLOW TO LEFT) 
SR2     EQU     $0A70   * Right Motor (SLOW TO RIGHT) 
SR1     EQU     $09F8   * Left  Motor (SLOW TO RIGHT) 
SLOWF1  EQU     $09F0   * L 
SLOWF2  EQU     $0A10   * R 
SLOWB1  EQU     $0998   * L ** SlowF/B PWs 
SLOWB2  EQU     $0A6A   * R 
 
 
***Stop: RIGHT Motor : OC2.asm : OC3 : 0A40 : BACK 
***Stop: LEFT Motor  : OC.asm  : OC2 : 09C0 : FORW 
 
        ORG     $00D9 
        JMP     OC3_ISR 
        JMP     OC2_ISR 
 
        ORG     $00CD 
        JMP     PAO_ISR 
 
        ORG     $0100 
PW1     FDB     $07D0           ; Current Pulse Width: Oc2 (Left) 
PW2     FDB     $0FA0           ; Current Pulse Width: Oc3 (Right) 
PCOUNT  RMB     1 
 
        ORG     $3000 
MAP     RMB     256 
XX      RMB     1 
YY      RMB     1 
DIR     RMB     1 
 
        ORG     $4000 
        JSR     SHOWMAP 
INFIN4  BRA     INFIN4 
 
        ORG     $4100 
        JSR     CLRMAP 
        JMP     INFIN4 
 
        ORG     $2000 
        LDS     #$1FF 
        LDAA    #$10 
 
        JSR     INIT_SCI 
        JSR     INIT_MOTOR 
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        JSR     INIT_SHAFT 
        JSR     INIT_SENSOR 
        JSR     INIT_AD 
 
        LDAA    #4 
        STAA    XX  * Start position set to 4,4 
        STAA    YY 
        LDAA    #1 
        STAA    DIR  * Direction set to NORTH 
 
        JSR     STOP 
        CLI 
 
 
HERE    
        JSR     DECIDE 
        PSHA 
        SUBA    #1 
        BNE     NOTS    * If we go straight 
        JSR     WAIT 
        JSR     UPDATEXY 
        JSR     GOFCOR 
        JSR     MAPIT   * After all going forwards *                 
        JMP     BOT 
 
NOTS    PULA 
        PSHA 
        CMPA    #2 
        BNE     NOTL    * If we turn left 
        JSR     LINDIST 
        JSR     WAIT 
        JSR     ALIGNR 
        JSR     ALIGNL 
        JSR     ALIGNR 
        JSR     ALIGNL 
        JSR     ALIGNL 
        JSR     ALIGNR 
        JSR     LINDIST 
        JSR     WAIT 
 
************ 
** Re-decide to ensure accuracy? 
************ 
        JSR     UPDATEL 
        JSR     TURNL 
        BRA     BOT 
 
NOTL    PULA 
        PSHA 
        CMPA    #3 
        BNE     NOTR    * If we turn right 
        JSR     LINDIST 
        JSR     WAIT 
        JSR     ALIGNR 
        JSR     ALIGNL 
        JSR     ALIGNR 
        JSR     ALIGNL 
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        JSR     ALIGNL 
        JSR     ALIGNR 
        JSR     LINDIST 
        JSR     WAIT 
        JSR     UPDATER 
        JSR     TURNR 
        BRA     BOT 
 
         
NOTR    JSR     LINDIST 
        JSR     WAIT 
        JSR     ALIGNL 
        JSR     ALIGNR 
        JSR     ALIGNL 
        JSR     ALIGNL 
        JSR     ALIGNR 
        JSR     LINDIST 
        JSR     WAIT 
        JSR     UPDATER 
        JSR     TURNR    * If we are at a deadend 
 
BOT     JMP     HERE 
 
 
*************************************** 
***** MAPPING ROUTINES **************** 
*************************************** 
********* 
**** Lower 4 bit circular shift routines 
**** Using register A 
********* 
CLRMAP  LDX     #MAP 
        LDAA    #$FF 
        LDAB    #$00 
 
CLRMAP2 STAA    0,X 
        INCB 
        INX 
        CMPB    #0 
        BNE     CLRMAP2 
 
        RTS 
 
ROTTMP  RMB     1 
 
ROTAL   LSLA         
        STAA    ROTTMP 
        ANDA    #%00010000 
        BEQ     ROTAL2 
        LDAA    ROTTMP 
        ORA     #%00000001 
        ANDA    #%11101111 
        RTS 
ROTAL2  LDAA    ROTTMP 
        RTS 
 
ROTAR   STAA    ROTTMP 
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        ANDA    #%00000001 
        BEQ     ROTAR2 
 
        LDAA    #%00010000 
        ORA     ROTTMP 
        LSRA 
        RTS         
ROTAR2  LDAA    ROTTMP 
        LSRA 
        RTS 
 
 
******** 
**This subroutine examines the area around 
** around it, and updates the map 
******** 
 
MAPIT   LDAB    #$0 
 
        LDAA    #FORE 
        JSR     SAMPLE 
        JSR     OutA 
        SUBA    #FORET 
        BLO     MAP3 
        ORAB    #%00001000 
 
MAP3    LDAA    #LREAR 
        JSR     SAMPLE 
        JSR     OutA 
        SUBA    #LREART 
        BLO     MAP5 
        ORAB    #%00000001 
 
 
MAP5    LDAA    #RREAR 
        JSR     SAMPLE 
        JSR     OutA 
        SUBA    #RREART 
        BLO     MAP7 
        ORAB    #%00000100 
 
MAP7    TBA 
        JSR     OutA 
        JSR UPDATEMAP 
        RTS 
 
 
********** 
*** UPDATEMAP: Given the wall locations in the form 
***            0000 FR0L    -- In register B 
***            It should update the 3 bits effected 
***            in the map at X,Y, taking into account 
***            direction 
*** *** THIS IS ONLY RUN AFTER A GOFORWARD 
*** *** BECAUSE IT ASSUMED THAT BEHIND IS A 0 
********** 
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UPDATEMAP LDAA  DIR 
 
UPDMAP3 LSRA 
        BCS     UPDMAP2 
        PSHA 
        TBA 
        JSR     ROTAR 
        TAB 
        PULA 
        BRA     UPDMAP3 
UPDMAP2 JSR     LDXAD 
        STAB    0,X 
        RTS 
**** 
* Turning routines for updating direction 
**** 
 
UPDATEL LDAA    DIR 
        CMPA    #%00000001 
        BEQ     UPLONE 
        LSRA         
        BRA     UPLOUT 
UPLONE  LDAA    #%00001000 
UPLOUT  STAA    DIR 
        RTS 
 
UPDATER LDAA    DIR 
        CMPA    #%00001000 
        BEQ     UPRONE 
        LSLA         
        BRA     UPROUT 
UPRONE  LDAA    #%00000001 
UPROUT  STAA    DIR 
        RTS 
 
************************** 
** Used when going FORW ** 
************************** 
UPDATEXY LDAA   DIR 
        CMPA    #%00000001 
        BNE     UPD2 
        INC     YY 
        BRA     UBOT 
 
UPD2    LDAA    DIR 
        CMPA    #%00000010 
        BNE     UPD3 
        INC     XX 
        BRA     UBOT 
 
UPD3    LDAA    DIR 
        CMPA    #%00000100 
        BNE     UPD4 
        DEC     YY 
        BRA     UBOT 
 
UPD4    LDAA    DIR 
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        CMPA    #%00001000 
        BNE     UBOT 
        DEC     XX 
UBOT     RTS 
 
 
*************************************** 
***** WAIT ROUTINES ******************* 
*************************************** 
 
WAIT    PSHA 
        PSHB 
        LDAB    #$FF 
WAIT2   LDAA    #$FF 
WAIT3   DECA 
        BNE     WAIT3 
        DECB 
        BNE     WAIT2 
        PULB 
        PULA 
        RTS 
 
*************************************** 
***** ERROR CORRECTION **************** 
*************************************** 
** Linear Correction ****************** 
*************************************** 
 
LINDIST LDAA    #FORE 
        JSR     SAMPLE 
        SUBA    #STDDIST 
        BLO     LINLOW 
        BEQ     LINDONE 
 
** Too Close ** 
LINHI   JSR     SLOWB 
        LDAA    #FORE 
        JSR     SAMPLE 
        SUBA    #STDDIST 
        BEQ     LINDONE 
        BLO     LINDONE 
        BRA     LINHI 
 
** Too Far ** 
LINLOW  JSR     SLOWF 
        LDAA    #FORE 
        JSR     SAMPLE 
        SUBA    #STDDIST 
        BLO     LINLOW 
        BRA     LINDONE 
 
LINDONE JSR     STOP 
        RTS 
 
*************************************** 
***** ALIGNR    *********************** 
*************************************** 
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FREQ    RMB     1 
VALR     RMB     1 
 
ALIGNR   LDAA    #$0 
        STAA    FREQ 
        STAA    VALR 
        LDAA    #FORE 
        JSR     SAMPLE 
        STAA    VALR 
        JSR     SLOWR 
 
AL2     LDAA    #FORE 
        JSR     SAMPLE 
 
        SUBA    VALR 
        BEQ     ALEQ 
        BLO     ALLO 
 
*** Greater Than ** 
        ADDA    VALR 
        STAA    VALR 
        LDAA    #$00 
        STAA    FREQ 
        BRA     AL2 
 
*** Equal To     ** 
ALEQ    LDAA    FREQ 
        INCA 
        STAA    FREQ 
        BRA     AL2 
*** Less Than    ** 
ALLO    JSR     STOP 
        RTS 
 
****************************** 
***********AlignL************* 
****************************** 
VALL     RMB     1 
 
ALIGNL   LDAA    #$0 
        STAA    FREQ 
        STAA    VALL 
        LDAA    #FORE 
        JSR     SAMPLE 
        STAA    VALL 
        JSR     SLOWL 
 
AL2     LDAA    #FORE 
        JSR     SAMPLE 
 
        SUBA    VALL 
        BEQ     ALEQ 
        BLO     ALLO 
 
*** Greater Than ** 
        ADDA    VALL 
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        STAA    VALL 
        LDAA    #$00 
        STAA    FREQ 
        BRA     AL2 
 
*** Equal To     ** 
ALEQ    LDAA    FREQ 
        INCA 
        STAA    FREQ 
        BRA     AL2 
*** Less Than    ** 
ALLO    JSR     STOP 
 
        RTS 
 
*************************************** 
***** DECISION MAKING ***************** 
*************************************** 
****** 
****** Return: 
****** 0 -> Dead-End 
****** 1 -> Go Forward 
****** 2 -> Turn Left 
****** 3 -> Turn Right 
*************************************** 
DECIDE  LDAA    #FORE 
        JSR     SAMPLE 
        SUBA    #FORET 
        BLO     DEC2 
        BRA     DEC3 
DEC2    LDAA    #1 
        RTS 
 
DEC3    LDAA    #LREAR 
        JSR     SAMPLE 
        SUBA    #LREART 
        BLO     DEC4 
        BRA     DEC5 
DEC4    LDAA    #2 
        RTS 
 
DEC5    LDAA    #RREAR 
        JSR     SAMPLE 
        SUBA    #RREART 
        BLO     DEC6 
        BRA     DEC7 
DEC6    LDAA    #3 
        RTS 
 
DEC7    LDAA    #0 
        RTS 
 
 
*************************************** 
***** MOTOR SUBROUTINES *************** 
*************************************** 
GOF     PSHA 
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        PSHB 
        LDAA    #$0 
        STAA    PCOUNT 
 
        LDD    #FORW 
        STD    PW1 
        LDD    #BACK 
        STD    PW2 
 
GOF2    LDAA    PCOUNT 
        CMPA    #FWDPULSES 
        BEQ     GOF3 
        BRA     GOF2 
 
GOF3    JSR     STOP 
        PULB 
        PULA 
        RTS 
 
***************************** 
***************************** 
TEMP    RMB     2 
 
GOFCOR  PSHA 
        PSHB 
        LDAA    #$0 
        STAA    PCOUNT 
         
        LDD    #FORW 
        STD    PW1 
        LDD    #BACK 
        STD    PW2 
 
GOFC2   LDAA    #LFORE 
        JSR     SAMPLE 
        SUBA    #LFORET 
        BLO     GOFC5       
        TAB 
        LDAA    #$0 
*        LSLD 
        ADDD    PW2 
        ADDD    #10 
        STD     PW2 
        BRA     GOFC7 
  
GOFC5   LDAA    #RFORE 
        JSR     SAMPLE 
        SUBA    #RFORET 
        BLO     GOFC6 
        TAB 
        LDAA    #$0 
*        LSLD 
        STD     TEMP 
        LDD     PW1 
        SUBD    TEMP 
        SUBD    #10 
        STD     PW1 
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        BRA     GOFC7 
 
GOFC6   LDD     #FORW 
        STD     PW1 
        LDD     #BACK 
        STD     PW2 
GOFC7   LDAA    #FORE 
        JSR     SAMPLE 
        SUBA    #EMERG 
        BLO     GOFC4 
        JSR     STOP 
        BRA     GOFC3 
    
 
GOFC4   LDAA    PCOUNT 
        CMPA    #FWDPULSES 
        BEQ     GOFC3 
        BLO     GOFC2 
        BRA     GOFC3 
 
GOFC3   JSR     STOP 
        PULB 
        PULA 
        RTS 
 
 
***************** 
 
***************** 
SLOWF   PSHA 
        PSHB 
        LDD     #SLOWF1 
        STD     PW1 
        LDD     #SLOWF2 
        STD     PW2 
        PULB 
        PULA 
        RTS 
 
SLOWB   PSHA 
        PSHB 
        LDD     #SLOWB1 
        STD     PW1 
        LDD     #SLOWB2 
        STD     PW2 
        PULB 
        PULA 
        RTS 
 
TURNL   PSHA 
        PSHB 
        LDAA    #$0 
        STAA    PCOUNT 
 
        LDD     #BACK 
        STD    PW1 
        STD    PW2 
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TURNL2  LDAA    PCOUNT 
        CMPA    #LEFTPULSES 
        BEQ     TURNL3 
        BRA     TURNL2 
TURNL3  JSR     STOP 
 
        PULB 
        PULA 
        RTS 
 
TURNR   PSHA 
        PSHB 
        LDAA    #$0 
        STAA    PCOUNT 
 
        LDD     #FORW 
        STD     PW1 
        STD     PW2 
 
TURNR2  LDAA    PCOUNT 
        CMPA    #RIGHTPULSES 
        BEQ     TURNR3 
        BRA     TURNR2 
TURNR3  JSR     STOP 
 
 
        PULB 
        PULA 
        RTS 
 
SLOWL   PSHA 
        PSHB 
        LDD     #SL1 
        STD     PW1 
        LDD     #SL2 
        STD     PW2 
        PULB 
        PULA 
        RTS 
 
SLOWR   PSHA 
 
        PSHB 
        LDD     #SR1 
        STD     PW1 
        LDD     #SR2 
        STD     PW2 
        PULB 
        PULA 
        RTS 
 
 
STOP    PSHA 
        PSHB 
        LDD     #STOPL 
        STD     PW1 



 47

        LDD     #STOPR 
        STD     PW2 
        PULB 
        PULA 
        RTS 
 
OC2_ISR LDAA    #%01000000 
        STAA    TFLG1 
 
        LDAA    TCTL1 
        ANDA    #%01000000 
        BNE     LASTHI 
 
        LDAA    TCTL1 
        ORA     #%11000000 
        STAA    TCTL1 
 
 
        LDD     #$0000 
        STD     TOC2 
        JMP     OC2_OUT 
 
LASTHI  LDAA    TCTL1    ; or TCTL in version 2 
        ORA     #%10000000 
        ANDA    #%10111111 
        STAA    TCTL1 
 
        LDD     PW2 
        STD     TOC2 
OC2_OUT RTI 
 
 
OC3_ISR LDAA    #%00100000 
        STAA    TFLG1 
 
        LDAA    TCTL1 
        ANDA    #%00010000 
        BNE     LASTHI2 
 
        LDAA    TCTL1 
        ORA     #%00110000 
        STAA    TCTL1 
 
        LDD     #$8000 
        STD     TOC3 
        JMP     OC3_OUT 
 
LASTHI2 LDAA    TCTL1 
        ORA     #%00100000 
        ANDA    #%11101111 
        STAA    TCTL1 
 
        LDD     PW1 
        ADDD    #$8000 
        STD     TOC3 
OC3_OUT RTI 
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*********************************** 
****** SHAFT ENCODER CONTROL ****** 
*********************************** 
 
PAO_ISR LDAA    #%00100000 
        STAA    TFLG2 
 
        LDAA    PCOUNT 
        INCA 
        STAA    PCOUNT 
 
        LDAA    PACTL 
        ANDA    #%00010000 
        BEQ     PAO1 
 
*Put 0 in here 
        LDAA    PACTL 
        ANDA    #%11101111 
        STAA    PACTL 
        BRA     PAO2 
 
PAO1 
*Put 1 in here 
        LDAA    PACTL 
        ORA     #%00010000 
        STAA    PACTL 
 
PAO2    LDAA    #$FF 
        STAA    PACNT 
 
        RTI 
 
************************************ 
***** SENSOR SAMPLING ROUTINE ****** 
************************************ 
*Usage, LOAD A with defined port to sample 
*JSR here, read sample in A 
************************************ 
 
SAMPLE  PSHB 
        PSHX 
        PSHA 
        LDX     #$1000 
 
        SUBA    #FORE 
        BNE     SNext1 
        BSET    0,X #%00010000 
        JMP     Wout 
 
SNext1  ADDA    #FORE 
        SUBA    #LFORE 
        BNE     SNext2 
        BSET    8,X #%00000100     **Port D, Pin 2 
        JMP     Wout 
 
SNext2  ADDA    #LFORE 
        SUBA    #RFORE 
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        BNE     SNext3 
        BSET    8,X #%00000100 
        JMP     Wout 
 
SNext3  ADDA    #RFORE 
        BSET    8,X #%00001000 
 
Wout    LDAB    #SAMPLETIME     **Wait 300us for analog to stablize 
WSamp4  LDAA    #$FF 
WSamp2  DECA 
        BNE     WSamp2 
        DECB     
        BNE     WSamp4 
 
**** Pull stored A and read that port 
        PULA 
        STAA    ADCTL 
        LDAA    #10 
WSamp   DECA 
        BNE     WSamp 
 
 
        LDAA    #$0 
        STAA    PORTD 
        BCLR    0,X #%00010000 
        LDAA    ADDATA 
 
        PULX 
        PULB 
        RTS 
 
 
 
 
********************************* 
*********** INITIALIZATIONS ***** 
********************************* 
 
INIT_AD LDAA    #%10000000 
        STAA    OPTION 
        LDAA    #40 
WADINT  DECA 
        BNE     WADINT 
        RTS 
 
INIT_SENSOR     LDAA    #%00000100 
        STAA    SPCR 
        LDAA    #%00111100 
        STAA    DDRD 
        RTS 
 
INIT_MOTOR        LDD     #$0000 
        STD     TOC2 
        LDD     #$8000 
        STD     TOC3 
 
        LDAA    #%01100000 
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        STAA    TMSK1 
        LDAA    #%10100000 
        STAA    TCTL1 
        RTS 
 
INIT_SHAFT      LDAA    #$00 
        STAA    PCOUNT 
        LDAA    PACTL 
        ORA     #%01010000 
        ANDA    #%01011111 
        STAA    PACTL 
 
        LDAA    TMSK2 
        ORA     #%00100000 
        STAA    TMSK2 
 
        LDAA    #$FF 
        STAA    PACNT 
        RTS 
 
OutA    PSHA 
        PSHA 
        JSR     $E4DE 
        PULA 
        JSR     $E4E2 
        JSR     $E508 
        PULA 
        RTS 
 
OutD    PSHB 
        PSHA 
 
        PSHA 
        JSR     $E4DE 
        PULA 
        JSR     $E4E2 
         
        TBA 
 
        PSHA 
        JSR     $E4DE 
        PULA 
        JSR     $E4E2 
        JSR     $E508 
 
        PULA 
        PULB 
        RTS 
 
INIT_SCI PSHA 
        LDAA    #$30 
        STAA    BAUD 
        LDAA    #%00000000 
        STAA    SCCR1 
        LDAA    #%00001100 
        STAA    SCCR2 
 



 51

        PULA 
        RTS 
 
******************************** 
*** Subroutin: LDXAD - Load X with Address of current 
***                     X Y data. 
*************************** 
 
LDXAD   PSHA 
        PSHB 
        LDAB    YY 
        LSLB 
        LSLB 
        LSLB 
        LSLB 
        ADDB    XX 
        LDAA    #$30 
        XGDX 
 
        PULB 
        PULA 
        RTS 
 
 
SHOWMAP PSHX 
        PSHA 
        PSHB 
 
        LDAA    #0 
        STAA    YY 
SMAP3    LDAA    #0 
        STAA    XX 
 
 
 
***********First Pass (TOP)*********** 
SMAP2    JSR     LDXAD 
 
        LDAB    0,X 
        ANDB    #%10000000 
        BEQ     SMAP222 
 
        BRA     SMAP22 
 
SMAP222 LDAB    0,X 
        ANDB    #%00000010   *Top mask 
        BEQ     SMAP22 
 
        LDAA    #DASH 
        JSR     $E4EC 
        LDAA    #DASH 
        JSR     $E4EC 
        LDAA    #DASH 
        JSR     $E4EC 
        BRA     SMAP23 
SMAP22   LDAA    #SPACE 
        JSR     $E4EC 
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        LDAA    #SPACE 
        JSR     $E4EC 
        LDAA    #SPACE 
        JSR     $E4EC 
 
SMAP23   INC     XX 
        LDAA    XX            
        CMPA    #16 
        BNE     SMAP2 
 
        LDAA    #0 
        STAA    XX 
 
        PSHA 
        JSR     $E508 
        PULA 
 
 
***********SECOND PASS (middle)*************** 
SMAP4    JSR     LDXAD 
*        JSR     OutD 
 
        LDAB    0,X 
        ANDB    #%10000000 
        BEQ     SMAP444 
        LDAA    #SPACE 
        JSR     $E4EC 
        LDAA    #AST 
        JSR     $E4EC 
        LDAA    #SPACE         
        BRA     SMAP45 
 
SMAP444 LDAB    0,X 
        ANDB    #%00000001 
        BEQ     SMAP42 
        LDAA    #PIPE 
        BRA     SMAP43 
SMAP42   LDAA    #SPACE 
SMAP43   JSR     $E4EC 
        LDAA    #SPACE 
        JSR     $E4EC 
 
        LDAB    0,X 
        ANDB    #%00000100 
        BEQ     SMAP44 
        LDAA    #PIPE 
        BRA     SMAP45 
SMAP44   LDAA    #SPACE 
SMAP45   JSR     $E4EC 
 
 
        INC     XX 
        LDAA    XX 
        CMPA     #16 
        BNE     SMAP4 
 
        LDAA    #0 
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        STAA    XX 
 
        PSHA   
        JSR     $E508 
        PULA 
 
***********Third Pass (bottom)*************** 
SMAP5    JSR     LDXAD 
 
        LDAB    0,X 
        ANDB    #%10000000 
        BEQ     SMAP555 
        BRA     SMAP52 
 
SMAP555 LDAB    0,X 
        ANDB    #%00001000   *Bot MASK 
        BEQ     SMAP52 
 
        LDAA    #DASH 
        JSR     $E4EC 
        LDAA    #DASH 
        JSR     $E4EC 
        LDAA    #DASH 
        JSR     $E4EC 
 
        BRA     SMAP53 
 
SMAP52   LDAA    #SPACE 
        JSR     $E4EC 
        LDAA    #SPACE 
        JSR     $E4EC 
        LDAA    #SPACE 
        JSR     $E4EC 
 
SMAP53   INC     XX 
        LDAA    XX 
        CMPA     #16 
        BNE     SMAP5 
 
 
        PSHA   
        JSR     $E508 
        PULA 
 
 
        INC     YY 
        LDAA    YY 
        CMPA    #10 
        BEQ     SMAPEND 
        JMP     SMAP3 
SMAPEND  PULB 
        PULA 
        PULX 
        RTS 
 

 


