

Phil Thomas
Intelligent Machine Design Lab--EEL5666

Final Report
Tuesday, April 23, 2002

Sister Roboto

Table of Contents

ABSTRACT.. 3
EXECUTIVE SUMMARY .. 4
INTRODUCTION .. 5
INTEGRATED SYSTEMS .. 5
MOBILE PLATFORM... 7
ACTUATION ... 8
SENSORS ... 8

Bump Sensors:.. 9
IR Detector:.. 9
Bend Sensor: .. 10
Microswitches: ... 10

BEHAVIORS.. 11

Searching:... 11
Line up: .. 11
Punching:.. 12
Celebration: .. 12

EXPERIMENTAL RESULTS.. 13
CONCLUSION... 14
APPENDIX A... 15
APPENDIX B... 28

ABSTRACT

 Sister Roboto searches for targets and attempts to knock them over using a
punching nun finger puppet. If she is successful at knocking over a target, she does a
victory dance and moves on to the next target. If she is unsuccessful at knocking down
her target after an allotted period of time, she pouts and then moves on to a new target.

EXECUTIVE SUMMARY

 Sister Roboto is designed to seek out targets and knock them over by punching

them. Her punching mechanism is controlled by two servos, which actuate a pair of

levers. The levers, in turn, extend her arms. On the tips of the arms are two switches that

detect when a hit has been made. Also attached to each of her arms, is a bend sensor,

which measures the degree of extension of her arms. All of her destructive power would

be wasted if she could not move around and search for targets, so Sister Roboto has two

wheels at her base, each powered by a hacked servo.

 Sister Roboto does not distinguish between targets; there is no need to. However,

she is designed for a specific type of target in mind, those which are both sturdy enough

to trigger her bump sensor, but unsteady enough to be knocked down by her punches. At

the center of Sister Roboto’s electronics is a Tecel Electronics P500 board, which

contains a Philips 80C552 microcontroller. Sister Roboto draws her power from 8

rechargeable AA NiMH batteries and relies on a series of 5 bump sensors, an IR detector,

two flex sensors and a pair of microswitches to tell her about her surroundings.

INTRODUCTION

 The world is full of things that could and should be knocked over. From fruit

displays at the grocery store to precariously leaning Italian monuments, there are items all

over the world that are practically begging to be pummeled until they come toppling

down. My robot, Sister Roboto, sets out, on a very diminished scaled, to make things

right in the world by punching random objects and attempting to knock them down. The

main objective of my project was to design an autonomous punching machine using a

punching nun finger puppet.

INTEGRATED SYSTEMS

 I built Sister Roboto using a TJ inspired design I created

myself. The entire robot can be seen in figure one. The

microcontroller board uses the onboard sensors to detect the

state of Sister Roboto’s surroundings, and then uses the servos

to position it for optimal punching. Once properly positioned,

Sister Roboto unleashes a barrage of punches on her target,

hopefully knocking it over. If she is successful in knocking

over her target, she celebrates by spinning around, if she is

unsuccessful, she shakes back and forth. After either pouting

or celebrating, Sister Roboto moves on to find another target.

Figure 1 Sister Roboto

 The microcontroller I used for Sister

Roboto, the Philips 80C552, an 8051 derivative,

was very well suited for controlling a robot. The

chip features 8 10-bit A/D converters and 2 PWM

channels as well as the rest of the 8051’s normal

features. The first 80C552 I received had a

broken A/D converter; I had to buy a new one

from Tecel. The P500 board, seen in figure two, was well designed, however the

accompanying EPROM monitor and development environment had some major

problems. When using the included EPROM monitor, a developer is forced to use a DOS

based program for editing, compiling and downloading his code. As a Linux user, I did

not appreciate this fact especially since it was not advertised as such on the dealer’s

website. Throughout the course of the semester, I was unable to get the development

program to run under Windows 98 in the IMDL lab, I always had to reboot the machine

into DOS mode. The DOS program seems to communicate its intention to upload a

program with the EPROM monitor using non-printing control characters that I could not

reproduce in a terminal program. The included “Small-C” compiler had several galling

bugs. If more than 32 variables are used, the compiler silently fails, producing invalid

code that executes partway, but then fails. Although the documentation claims that the

compiler supports arrays, elements of arrays cannot be changed and are always equal to

0xFFFF. The compiler does not support floating point, has irregular syntax and functions

can neither be passed parameters, nor do they return values. The only error message ever

returned by the compiler in the case of a failed compile is “Invalid character” and a line

Figure 2 P500 Board

number that the invalid character appears on. There does exist an open source monitor

for the 8051 called PaulMon, which in retrospect, I should have used. With this monitor,

I would have been able to write standard ANSI C code and compiled it with SDCC, a

GCC based microcontroller compiler. This combination of tools would have made the

development of Sister Roboto much easier.

MOBILE PLATFORM

 Sister Roboto’s mobile platform is a TJ-inspired design which I designed myself

in AutoCAD and cut out of a balsa wood

sheet using the T-Tech machine. Figure

three shows the constructed platform along

with the skeleton of the punching nun

finger puppet inserted in the hole in the

front. Two wheels are located towards the

back of the robot with a caster in the front.

I probably could have made my platform

smaller, as it is, there is a lot of unused

space on the edges and in the back. The batteries sit underneath the platform and the

microcontroller board is bolted onto the top.

Figure 3 Mobile Platform plus finger puppet frame

ACTUATION

 Sister Roboto has 4 servos, two

standard and two hacked. The hacked

servos control the wheels while the

other two are glued onto the top of the

platform next to the finger puppet.

These servos are attached to the levers,

which control the extension of the

arms via wire linkages. Figure four

shows how the arm-extending levers operate. A hole was drilled in the plastic of the

lever and a wire was attached from the hole to the arm on the corresponding servo. This

setup allowed for an adequate range of motion and strength of punch, I believe that in

order to punch faster or harder, I would have had to upgrade to a stronger, more

expensive servo than the standard ones I used. When dealing with my servos, I learned

the hard way that it pays to have all wires clearly labeled, I reversed the polarity of one of

my servos and burned it up, forcing me to purchase a new one. This gave rise to my

perhaps distracting, but thorough labeling system.

SENSORS

 My robot has 4 different types of sensors, bump detecting sensors on the

periphery of the platform, a single IR detector attached to the middle of the finger puppet,

a bend sensor for each arm, and a switch for the tip of each arm.

Figure 4 Arm Extension

Bump Sensors:

 I arranged my bump sensors in the

resistor network shown in figure five.

Each switch in the figure represents one of

the push buttons we were given in lab.

These switches are arranged along the

outer edge of the platform and a rubber

hose is run over the top of them so

bumping into an object triggers them. The circuit is a simple voltage divider when any of

the switches are closed. My code uses a series of if statements to determine which

buttons are pressed after using an A/D channel to read Vout. The values corresponding to

each button were determined experimentally and are shown in my code in appendix A.

IR Detector:

 For my robot, I used an integrated IR detector package purchased from Jameco.

My board, unlike the Mekatronix board, did not have a simple way to generate a 30Khz

signal needed to drive an IR LED to use a Sharp IR can, so I decided to use the integrated

package. The device simply plugs into a power source and supplies an analog voltage

depending on the distance of the object the IR beam is reflected from. The further away

an object is, the lower the analog value, peaking at a digital value of about 800, and then

falling off slightly as the object gets closer until the analog reading is zero because the

object is blocking either the transmitting LED or the detector. Sister Roboto uses her IR

detector to scan for objects she can hit. I believe that my design could benefit from

another IR detector, I purchased two, but one broke, these detectors are very fragile. The

Figure 5 Bump Sensors

second detector could be placed in the front at the very bottom to aid in avoiding already

knocked over targets, which seem to be a problem.

Bend Sensor:

 My robot has a bend sensor mounted on each arm to help it determine how far

each arm is extended. I purchased these flex sensors from Jameco. When they are

straight, the resistance across the two terminals is about 10kΩ, when they are bent, the

resistance reaches about 40kΩ. The interface circuit for the flex sensor is shown in figure

six.

Microswitches:

 Probably the most important of the sensors in my design, I got the microswitches

on the tips of the arms from RadioShack. At first I tried using the bump sensors we were

given in lab, but they had far too great a resistance to being pushed, these sensors have a

little metal bar covering the button, which makes it much easier to push. At first, I had

this mounted vertically but it was not quite easy enough to push. At the advice of Aamir,

I mounted the switches horizontally, thereby making the switches at just the right angle

so that when the robot hits something, it actually trips the switch. These switches are

wired to the external interrupt which, when pressed, set a flag called rhit or lhit,

Figure 6 Flex Sensor Circuit

depending on which arm scored the hit, this flag helps the robot know how far it needs to

extend its arm for the next punch. There really is no circuit involved with the

microswitches; they simply connect the external interrupt pin to +5V.

BEHAVIORS

Sister Roboto has four basic behaviors, searching, lining-up, punching and

celebrating.

Searching:

 At the very beginning, Sister Roboto sits in a tight loop until the back bumper is

pressed. Then she begins searching using her IR detector to scan for a target and

performing obstacle avoidance with her bump sensors. First she turns a random distance,

all the while scanning with her IR detector to see if it sees anything closer than

IR_LONG_THRESH. If she does, she stops immediately and begins moving forward, if

she does not see anything this close, she completes the random turn and begins to move

forward. She moves forward until the IR detector senses something closer than

IRTHRESH. When it does it moves into the next mode.

Line up:

 This mode is the first time the external interrupts are used, so they are activated

and the arms are extended one bit at a time. They are extended until they either are at

their maximum and haven’t hit anything, or until they receive a hit. If one arm receives a

hit and the other doesn’t, the robot turns in the appropriate direction and tries again. If

neither arm scores a hit, the robot checks the IR detector to make sure that the target is

still there, if so, it moves forward a bit and starts line_up again, if not, it goes back into

search mode. Once both arms have detected a hit in line_up mode, the robot moves into

punching mode.

Punching:

 When Sister Roboto enters punching mode, she knows how far she has to extend

each arm to hit her target. So, she executes a random series of combinations with the

external interrupts enabled. This allows her to make sure she is still hitting her target.

Finally, when she has either executed 4 combos, or determined that her target is knocked

down, Sister Roboto goes into celebrate mode.

Celebration:

 Sister Roboto celebrates when she thinks that she has knocked over her target.

She backs up, spins back and forth and then goes back into search mode. If she was

unable to knock down her target, she backs up and shakes back and forth then goes back

to search mode. I was originally going to have music play while she was celebrating, but

I was unable to implement this.

EXPERIMENTAL RESULTS

 On demo day, Sister Roboto did not quite perform as well as she could have. I

did not spend much time testing the targets I selected; I used several different books,

some of which were far too short to even be detected by the IR detector. I already

mentioned the poor placement of the touch sensors on the tips of the arms: even when she

should have been registering hits, she was not. Since then I’ve significantly tweaked the

code, rotated the bump sensors on the tips of the arms so they are better able to make

contact, and I have selected better targets and tested them all. I am much more satisfied

with my robots performance now.

CONCLUSION

 My primary goal in my robot design was a punching robot capable of knocking

over random targets. I believe I have fulfilled this goal. Despite several setbacks

including compiler errors, burned out servos, and problems with my A/D converter, I was

able to accomplish my goal. For a while, I did not think that Sister Roboto would

actually be able to effectively knock down many targets, with the tweaks I’ve made since

demo day thought, I am very pleased with her ability to wreak havoc. The main

limitations of my design are the relative weakness of the arm extending servos, the lack

of possible program optimization due to the faulty compiler, and the lack of music during

celebration. If I could start the project over from scratch, I certainly would use a different

development environment, I probably would get a bit more expensive servos, and I would

have better investigated my options regarding playing music.

APPENDIX A

Program Code:
 All of the code for the robot was organized in one file, robot.c since the compiler
was unable to deal with include files or compiling from multiple files. I apologize for
any inconsistent indentation; my editor did not like the fact that no lines ended in
semicolons.

int line, ad_result, i, j, k, l, button, rand, z
int lbend_rest, rbend_rest, lineup_count
int lbend_result, rbend_result, count
int ltarget_dist, rtarget_dist, ltarget_bend, rtarget_bend
int bend_result, ir_result, rdist, ldist
int lhit, rhit, rand_dir, distance, arm, wheel
int hi, lo, arm_wheel, dir, extnd, retrct, diff, final
int s
int contact, combo_cnt

define BUMP 0
define IR 1
define LBEND 3
define RBEND 4
define IRTHRESH 550
define IR_LONG_THRESH 150
define IR_TOO_CLOSE 750
define WHEEL 0
define ARM 1
define FORWARD 0
define STOP 1
define BACK 2
define RIGHT 3
define LEFT 4
define BOTH 5

define RF 220
define RB 200
define LF 240
define LB 250

define REXT 224
define RRET 190
define LEXT 159
define LRET 187

 org 0x8000

main(){
 main2()
}

 org 0x8003

exint0vector(){
 extint0()
 }

 org 0x8013

exint1vector(){
 extint1()
 }

 org 0x8100

main2(){

 // enables free running counter
 TMOD = 33
 TCON = 208

 bend_sensor_calibrate()

 // waits for the back bumper to be hit
 start

 // print("starting\n")
 do_bump()

 if (button != 5) {
 goto start
 }

 go

 bump_sens_avoid()

 bend_sens_avoid()

 bend_sensor_calibrate()

 // goto start

 rand_turn()

 move_fw()

 bump_sens_avoid()

 // search for a target

 search
 // print("searching\n")
 do_ir()

 bump_sens_avoid()
 bend_sens_avoid()
 bend_sensor_calibrate()

 if (ir_result <= IRTHRESH) {
 goto search
 }

 // if ir_result > IRTHRESH, then we should stop
 stop()

 // only try to line up 5 times
 lineup_count = 0

 // line up our target
 line_up
 print("line_up\n")

 bump_sens_avoid()
 bend_sens_avoid()

 lineup_count++

 // if we have tried to line up more than 5 times, back up
 // and start over
 if (lineup_count > 5) {
 move_bw()

 for(i 0, 0xFFF) {
 for(j 0, 3) {}
 }
 stop()
 goto go
 }

 // make sure object is still there
 do_ir()

 if (ir_result < IRTHRESH) {
 goto go }

 rdist = 0
 ldist = 0

 EA = 1 // enable all interrupts
 EX0 = 1 // enable external interrupt 0
 EX1 = 1 // enable external interrupt 1

 rhit = 0
 lhit = 0

 for (z 0, 13) {
 distance = z

 if (rhit == 0) {
 arm = RIGHT
 move_arm()
 }
 if (lhit == 0) {
 arm = LEFT
 move_arm()
 }
 if (lhit == 0){
 for (j 0, 0x8FFF) {}
 }
 if (rhit == 0) {
 for (j 0, 0x8FFF) {}
 }
 }

 distance = 0
 arm = RIGHT
 move_arm()
 arm = LEFT
 move_arm()
 for (j 0, 0xFFFF) {}

 if (lhit != 1) {
 if (rhit != 1) {
 do_ir()
 if (ir_result <= IRTHRESH) {
 move_bw()
 for (i 0, 0xFFFF) {
 for (j 0, 1) {}
 }
 stop()
 goto go
 }
 if (ir_result >= IR_TOO_CLOSE) {
 move_bw()
 for (i 0, 0xFFFF) {}
 stop()
 goto go
 }
 move_fw()
 for(i 0, 0x1FFF) { }
 stop()
 goto line_up

 }
 if (lhit == 0) {
 turn_r()
 for(i 0, 0x1FFF) { }
 stop()
 goto line_up
 }
 }
 if (lhit == 1){
 if (rhit != 1) {
 turn_l()
 for(i 0, 0x1FFF) {}
 stop()
 goto line_up
 }
 }
 if (rhit == 1) {
 if (lhit == 1) {
 goto punch }
 }

 goto line_up

 // goto line_up

 // we've hit with both sensors, so now we go on to punching

 contact = 0

 punch
 print("punching\n")

 for (i 0, 0xFFFF) {}

 EX0 = 1
 EX1 = 1

 lhit = 0
 rhit = 0
 contact = 0

 for (combo_cnt 0, 5) {

 EX0 = 1
 EX1 = 1

 // one of the glove must contact every combo
 contact = 0

 do_combo()

 // if no glove has hit, go to line_up which will
 // check if the target is still there, if so, it will
 // adjust the robot to hit it
 if (rhit == 0) {
 if (lhit == 0) {
 if (contact == 0) {
 goto line_up
 }}}

 // re-enable the interrupts which may have been disabled
 // when the gloves hit
 EX0 = 1
 EX1 = 1

 if (rhit == 0) {
 if (lhit == 0) {
 if (contact == 1) {
 goto celebrate
 }
 }

 }

 // if we made contact with at least one glove, then
 // we will punch again, until we've tried 4 times
 if (combo_cnt == 4) {
 goto pout
 }

 }

 celebrate
 print("celebrate\n")
 move_bw()
 for (i 0, 0x1FFF) {}
 spin_r()
 for (i 0, 0xFFFF) {
 for (j 0, 5) {}
 }
 spin_l()
 for (i 0, 0xFFFF) {
 for (j 0, 2) {}
 }
 stop()
 goto go

 pout
 for (s 0, 5) {
 move_bw()
 for (i 0, 0x8FFF) {}
 spin_r()
 for (i 0, 0x4FFF) {}
 spin_l()
 for (i 0, 0x4FFF){}
 stop()
 }
 goto go

 }

bend_sensor_calibrate() {

// calibrates bend sensors--assumes sensors at rest
 line = LBEND
 do_bend()
 lbend_rest = bend_result
 line = RBEND
 do_bend()
 rbend_rest = bend_result

}

extint0() {

 print("foo\n")
 // right glove ext int.
 EX0 = 0
 rtarget_dist = z
 rhit = 1
 contact = 1
 line = RBEND
 do_bend()
 rtarget_bend = bend_result

 reti()

 }

extint1() {
 // left glove ext int.
 print("bar\n")

 EX1 = 0
 ltarget_dist = z
 lhit = 1
 contact = 1

 line = LBEND
 do_bend()
 ltarget_bend = bend_result

 reti()

 }

do_combo() {

 EX0 = 1
 EX1 = 1

 rhit = 0
 lhit = 0

 rand = TL0
 rand = rand / 0x40

 // rand = 3

 print("doing combo #rand\n")

 if (rand == 0) {
 for (s 0, 3) {
 distance = ltarget_dist
 // print("ldist = #ltarget_dist\n")
 left_punch()
 for(j 0, 0xFFFF) {}
 distance = rtarget_dist
 right_punch()
 for(j 0, 0xFFFF) {}
 lpunch_end()
 for (j 0, 0xFFFF) {}
 rpunch_end()

 }
 }

 if (rand == 1) {
 for (s 0, 3) {
 distance = ltarget_dist
 left_punch()
 for(j 0, 0x8FFF) {}
 lpunch_end()
 for(j 0, 0xFFFF) {}
 distance = ltarget_dist
 left_punch()
 for(j 0, 0x2FFF) {}
 distance = rtarget_dist
 right_punch()
 lpunch_end()
 for(j 0, 0xFFFF) {}
 rpunch_end()
 left_punch()
 for (j 0, 0xFFFF) {}
 }
 }

 if (rand == 2) {
 for (s 0,3) {
 distance = rtarget_dist
 right_punch()
 for(j 0, 0x2FFF) {}
 distance = ltarget_dist

 left_punch()
 for(j 0, 0x8FFF) {}
 lpunch_end()
 for(j 0, 0xFFFF) {}
 distance = ltarget_dist
 left_punch()
 for(j 0, 0xFFFF) {}
 lpunch_end()
 rpunch_end()
 for(j 0, 0xFFFF) {}
 }
 }

 if (rand == 3) {
 for(s 0, 3) {
 distance = ltarget_dist
 left_punch()
 for(j 0, 0x8FFF) {}
 lpunch_end()
 for(j 0, 0xFFFF) {}
 }

 distance = rtarget_dist
 right_punch()
 for(j 0, 0xFFFF) {}
 rpunch_end()
 for(j 0, 0xFFFF) {}
 }

 // if this is our fourth hit, try the super-duper finishing move
 if (combo_cnt == 4) {
 move_fw()
 for (j 0, 0x1FFF) {}
 stop()
 for (j 0, 0xFFF) {}

 distance = rtarget_dist
 right_punch()
 for(j 0, 0xFFFF) {}
 // move back so we don't get too close to target
 rpunch_end()
 move_bw()
 for(j 0, 0x1FFF) {}
 stop()
 for (j 0, 0x8FFF) {}
 }
}

left_punch() {

 distance = ltarget_dist + 1
 arm = LEFT
 move_arm()
 line = LBEND
 do_bend()
 i = ltarget_bend - 50
 j = ltarget_bend + 50

 }

lpunch_end() {

 distance = 0
 arm = LEFT
 move_arm()
 }

right_punch() {

 distance = rtarget_dist + 1

 arm = RIGHT
 move_arm()
 line = RBEND
 do_bend()
 i = rtarget_bend - 50
 j = rtarget_bend + 50

 }

rpunch_end() {

 distance = 0
 arm = RIGHT
 move_arm()
 }

bump_sens_avoid() {

 line = BUMP

 do_bump()

 if (button == 0) {
 ret()
 }
 if (button == 5) {
 move_fw()
 for (i 0, 0xFFF) {
 for (j 0, 1) {}
 }
 stop()
 ret()
 }

 move_bw()
 for (i 0, 0xFFF) {
 for (j 0, 1) {}
 }
 stop()

}

rand_turn() {

 // gets a pseudo random # from counter
 rand = TH0
 rand = rand * 0xF0
 rand = rand + TL0

 rand_dir = rand / 0x8000

 if (rand_dir == 0) {
 turn_l()
 }
 if (rand_dir == 1) {
 turn_r()
 }

 // wait for rand clock cycles
 for (i 0, rand) {
 line = IR
 do_ir()
 if (ir_result >= IR_LONG_THRESH) {
 stop()
 ret() }
 }
 // wait at least this long
 // for (i 0, 0xFFFF) {}

 stop()

}

bend_sens_avoid() {

 line = LBEND
 do_bend()
 i = lbend_rest - 10
 j = lbend_rest + 10
 if (bend_result < i) {
 if (bend_result > j) {
 move_bw()
 for (i 0, 0xFFF) {
 for (j 0, 1) {} }
 stop()
 ret()
 }

 line = RBEND
 do_bend()
 i = rbend_rest - 10
 j = rbend_rest + 10
 if (bend_result < i) {
 if(bend_result > j) {
 move_bw()
 for (i 0, 0xFFFF){
 for (j 0, 1) {}}
 stop()
 }

 }

 }
}

do_ir() {

 line = IR
 do_ad()
 ir_result = ad_result

}

do_bend() {

 do_ad()
 bend_result = ad_result

}

do_ad() {

 ADCON = 0x00
 line = line + 8
 ADCON = line

 repeat
 // s = 0x80
 // s = s & ADCON
 //if (s == 0) {
 // goto repeat }
 for(count 1,100) {}
 ad_result = ADCH * 4
 i = ADCON / 64
 ad_result = ad_result + i
}

do_bump() {

 line = BUMP
 do_ad()

 hi = ad_result + 10
 lo = 0

 if (ad_result >= 10) {
 lo = ad_result - 10
 }

 button = 0

 if (ad_result < 20) { button = 0 }

 if (hi >= 729) { if (lo <= 729) { button = 1 }}

 if (hi >= 582) { if (lo <= 582) {button = 2}}

 if (hi >= 488) { if (lo <= 488) {button = 3}}

 if (hi >= 291) { if (lo <= 291) {button = 4 }}

 if (hi >= 131) { if (lo <= 131) {button = 5}}

 if (hi >= 912) { if (lo <= 912) {button = 6}}
 if (hi >= 786) { if (lo <= 786) {button = 7}}
 if (hi >= 628) { if (lo <= 628) {button = 8}}
 if (hi >= 878) { if (lo <= 878) {button = 9}}
 if (hi >= 699) { if (lo <= 699) {button = 10}}

}

move_fw() {

 arm_wheel = WHEEL
 dir = FORWARD
 servo()
}

move_bw() {
 arm_wheel = WHEEL
 dir = BACK
 servo()
}

turn_l() {
 arm_wheel = WHEEL
 dir = LEFT
 servo()
}

turn_r() {
 arm_wheel = WHEEL
 dir = RIGHT
 servo()
}

spin() {

 turn_l()
 turn_r()
 // arm_wheel = WHEEL
 //dir = RIGHT
 //servo()
 //dir = LEFT
 //servo()
 }

stop() {

 arm_wheel = WHEEL
 dir = STOP
 servo()
 }

arm_rext() {

 arm_wheel = ARM
 arm = RIGHT
 servo()
}

arm_lext() {

 arm_wheel = ARM
 arm = LEFT
 servo()
}

servo() {
 if (arm_wheel == WHEEL) {
 move_wheel()
 for(i 0, 0x1FFF) {}

 }
 if (arm_wheel == ARM) {
 move_arm()
 for(i 0, 0x1FFFF) {}
 }
}

move_wheel() {

 if (dir == FORWARD) {
 r_f() l_f() }
 if (dir == BACK) {
 r_b() l_b() }
 if (dir == RIGHT) {
 r_s() l_f() }
 if (dir == LEFT) {
 r_f() l_s() }
 if (dir == STOP) {
 r_s() l_s() }

}

r_f() {
P4.0 = 1
P4.1 = 0
PWMP = 200
PWM0 = RF
}

r_s() {
P4.0 = 1
P4.1 = 0
PWMP = 200
PWM0 = 0
}

r_b() {
P4.0 = 1
P4.1 = 0
PWMP = 200
PWM0 = RB
}

l_f() {
P4.0 = 1
P4.1 = 0

PWMP = 200
PWM1 = LF
}

l_s() {
P4.0 = 1
P4.1 = 0
PWMP = 200
PWM1 = 0
}

l_b() {
P4.0 = 1
P4.1 = 0
PWMP = 200
PWM1 = LB
}

spin_r() {
 P4.0 = 1
 P4.1 = 0
 PWMP = 200
 PWM0 = RF
 PWM1 = LB
 }

spin_l() {
 P4.0 = 1
 P4.1 = 0
 PWMP = 200
 PWM0 = RB
 PWM1 = LF
 }

move_arm() {

 P4.0 = 0
 P4.1 = 1

 if (arm == RIGHT) {
 diff = REXT - RRET
 }
 if (arm == LEFT) {
 diff = LRET - LEXT
 }

 // diff = extnd - retrct

 final = diff / 10
 final = final * distance
 // print("final = #final\n")

 if (arm == RIGHT) {
 final = final + RRET
 // print("right\n")
 }
 if (arm == LEFT) {
 final = LRET - final
 // print("left\n")
 }

 // print("final = #final\n")

 if (distance == 0) {
 final = 0}

 PWMP = 100
 if (arm == RIGHT) {

 PWM0 = final }
 if (arm == LEFT) {
 PWM1 = final }

}

APPENDIX B

Price List:

Item Vendor Price each

4 Fubata Standard Sports Servos Servo City 4 x $10.95

1 P500 Microcontroller Board (11.05 Mhz) Tecel Electronics $70.00

2 Flex Sensors Jameco 2 x $10.15

1 IR Detector Jameco $13.35

1 Punching Nun Fingerpuppet Spencer Gifts $9.95

2 Microswitches RadioShack 2 x $2.95

Total: $163.30

