EVI

The M&M™ Serting Robot

University of Florida
Dept. of Computer & Electrical Engineering

EEL 5666C
Intelligent Machines Design Laboratory
Spring 2002

Final Paper
April 23, 2002
Vinh Trinh

Page 1 of 30

1.0 ABSTRACT . 3

2.0 ACKNOWLEDGEMENTS.......ccoiirirriee e 3
3.0 EXECUTIVE SUMMARY ...ttt 3
A0 THE BASICS ...ttt 3
4.1 DevelOpMENT BOAr d........coveuveereerreeereeneeie e 3
4.2 BUMP DELECTION ...ttt 4
4.3 ODJECt DELECLION ...ttt 4
4.4 Edge of the WOrld DELECTION ..o 5
4.5 WHheel ACTUBLIONcevieicrcrereee e 5
5.0 MOBILE PLATFORMooiiiii et 6
5.1 DESIgN CONSIFAINTSceiveeieeereeeiresee s sseaes 6

5.1.2 Bill Of MAENTAIS ..o 6
5.2 THE CRNASSIS....o ettt 7
5.3 Rotating PlatfOr M ... s 7
Figure 125.4 The uC Board MOUNL........cccceivicierneneeereee e sesssse s ssessneeas 7
5.4 The uC Board MOUNLcccuereireereeeseesessese s 8
o U= L TR 8
5.5 SOMING UNIt oottt ssnse s 9

6.0 UNIQUE BEHAVIORS.........ccce e, 10
6.1 Picking UP the M& M'S......ciiccereerese e 10
6.1.2 TRE FUNNEL ...t 10
6.1.3TheBreak BEam ... 10
Figure226.2 COLOR DETECTION ...ccoiirnrrrireeireeseeereeseseeseseesesseseseens 10
6.2 COLOR DETECTION ..ottt esesstsess s st ssssssnens 11
6.2.1 Blocking out Ambient Light ... 11
6.2.2 POSITIONING ...cvvirerieteeceeteece ettt sss s 11
6.2.3 COlOr SENSING ..eucvrrerreiereireee et s s s sesnns 12
6.2.4 Data COlECLION ...ttt 13
6.2.5 The Color Detection AIQOrithM........cccccvveeccnvscsererese e 14
7.0 CONCLUSION ...ooiiiiceeecieeesiee e 16

APPENDI X A: COVPLETE MANUAL CONTROL OF
ROBOT THROUGH SCl ... 17

APPENDI X B: COLOR DATA RETRI EVAL PROGRAM.22

APPENDI X C: MAI N PROGRAM......cccooirienieieeee e 25

Page 2 of 30

1.0 ABSTRACT

Color detection has been a sparsly travelled path in introductory robotics
courses due to the lack of cheap reliable color detection schemes,
uncontrollable environments, and success rates of at most 50%. To
address this issue | have developed a process that is cheap, easy to
reproduce, and has an accuracy of close to 100%. My robot, although it
does not do anything particulary useful, is a wonderful "proof of concept"
example that color detection can be done painlessly, and accurately. My
hope is to provide future students with the confidence in knowing that a
cheap reliable color detection scheme is well within their grasps, opening a
doorway to more complex robots which implement color detection.

2.0 ACKNOWLEDGEMENT S

I would like to thank Aamir Qaiyumi, Uriel Rodriguez, and Prof. Arroyo for
their guidance, patience, and motivation throughout this coarse, Dr.
Schwartz for equipming me with the skills required to code and debug
hardware/software issues (A skill only acquired after the completion of EEL
4744), And my girlfirend Heather Bryant, for building my M&M bins.

3.0 EXECUTIVE SUMMARY

My robot's name is EM. EM moves around randomly on a tabletop avoiding
obstacles and the table edge. In the meantime, EM will funnel in any M&M™
candies in its path towards a break beam that initiates a sorting sequence.
EM will then determine the color of the M&M™ and place it into the
corresponding color bin also located on the robot.

EM utilizes "Edge of the world Dectectors" to detect table top edges, IR
Emitter/Detectors to detect obstacles that are close, and a bump switch
network which is used as a backup for the IR Emitter/Detectors.

4.0 THE BASICS

4.1 Development Board

HC11 Based TJPRO Il By MEKATRONIX
(http://www.mekatronix.com)

Figure 1

Cost: $90

This little board is unbelievable. At only 2.5" by 2.5" in size it can be easily
mounted on even the smallest robots and can be easily hidden out of site.
Many students made the mistake of purchasing the MRC11 + EXPANSION
enticed by the 64k of RAM and a few more features. However | have noticed
that the limiting features have consistently been the availabilty of Analog to
Digital Converters, and the Amount of Servo Control, not RAM (I have yet to
meet a person that has written more than 20k of code) or the ability to use
DC Motors. If you plan on using DC Motor control then | suggest the
MRC11+EXPANSION since it has built in a built in H-Bridge Network. But for
most begining robotics students | highly recommend going with the TIPRO
Il.

Page 3 of 30

4.2 Bump Detection

4 - Bump Switches

Cost: Free in the lab

Press the button, it completes the circuit, enough said.

The TJ PROII has a voltage divided bump switch network built in that is
connected to an A to D port. My robot rarely bumps into things but | put
these on anyway since they are a great way to initiate operating modes for
your robot. For instance, if your robot needs calibration, you can write your
calibration routines to follow if a back bump switch is pressed. And then run
the main program when the front bump switch is pressed and so on. Itis a
common practice to put a dab of superglue on the surface of the button so
that a robot's bumper stays in contact with the switch.

4.3 Object Detection

2 - SHARP GP2D12: IR Emitter/Detector Pair

Figure 3
Strengths:

Built in 40khz Oscillator

Cheap

Reliable

No Hassle, Plug and Play

Weaknesses:
Power Hungry
Cannot be powered by the digital outs of the microcontroller

Cost: Approx $15 each (available at MEKATRONIX)

These things work beautifully. | mounted 2 of them in the front of my
robot, angling them towards the center. This allows me to detect objects
which are coming head on using only 2 emitter/detector pairs. They come
built in with a 40khz modulation/demodulation circuitry and are virtually
plug and play devices. Be sure however to give these units their own 5V
regulated supply because if you try to power them off the digital outs of a
uC they will most likely reset the board since they pull a lot of current.
Save yourself some time and buy these things so that you can work on the
more important aspects of your robot.

Figure 4

Page 4 of 30

4.4 Edge of the World Detection

2 - CDS cells
2 - Ultra Bright LEDs
2 - 47 kOhm Resistors

Flgure 5

Cost:
$5 For Ulta Bright LED's
CDS Cells and resistors are Free in lab

Qutput Port

VCC

47k Ohm
220 Ohm

Signal

’\

LED

Ground — GROUND
Figure 6

Edge of the world detection is done by detecting variances in light. To
detect light, CDS Cells are commonly used. As you can see from the
pictures, | have columnated the entire unit along with the LED to prevent
any direct light from hitting the CDS Cell. | have also added a cloth skirt to

further prevent any reflective ambient light to make its way to the CDS cell.

When operating in a Bright Room (much like the MIL lab) | turn the LEDS
off and look for bright ambient light to signify table edges. In dark rooms,
the LEDS are turned on and the CDS Edge detection network is
programmed to look for DARK SPOTS to signify table edges. This method of
edge of the world detection is very reliable and works well just as long as
you set the correct mode of operation, i.e. light room or dark room.

4.5 Wheel Actuation

2 - Hacked T-53 Tower Hobby Servos
(http://www.towerhobbies.com)

S

Figure 7

Cost:
$10 Each at tower hobbies

"Hacking" a servo means to modify a servo so that it continously rotates.
This allows a servo to act as a Pulse Width Controlled motor for small
robots. For details on how to hack a servo please refer to this website.

http://www.rdrop.com/~marvin/explore/servhack.htm

The only drawback of using a hacked servo is that they have to be
calibrated in order to function properly. Mis-Calibration will prohibit your
robot from moving straight or being able to turn in place. Also, If speed is a
major issue | would go with more powerful DC motors, however an H-Bridge
will be necessary to implement DC motor control.

Page 5 of 30

5.0 MOBILE PLATFORM

I completely designed EM from the ground up using AutoCAD 2002. During
the AutoCAD learning process I've went through 3 platform revisions, the
third is the one you see now. EM is built with 5-ply 1/8" thick aircraft grade
plywood and was cut out on the T-TECH machine in the IMDL lab.

5.1 Design Constraints
Fit comfortably Inside my bag
-My bag measures 8" by 15"
-To be able to transport my robot around easily and
inconspicuously
Centered Wheels
- allows the robot to turn in place
- ensures that the robot's turning radius is the same size as
the robot's length.
Ability to Hide wires, battery, and uC Board
- Adds to the overall aesthetic of the robot
Easy Access to uC Board
Will provide 2 Degrees of Freedom for a Sorting Arm.
Does not interfere with the movement of a Sorting Arm.
Has some sort of ARM that can pick up m&ms

After evaluating and re-evaluating the constraints | designed the following 4
main parts of EM.

1.) The Chassis

2.) The uC Board Mount
3.) The Rotating Platform
4.) The Sorting Unit

5.1.2 Bill of Materials
- 5 Servo Motors ($10 each at tower hobby)

1 Thick tin modeling wire ($3 at Michaels Craft Store)
4 Bump Switches (Free in lab)
1 Yard of Cloth ($1 at walmart)
48" x 12" of 5-ply 1/8" aircraft grade plywood
2 IR Emitter Detector Pairs
1 TIPRO Il development board
3 Cans of spraypaint (Black,Silver,Blue)
1 tube of orange enamel paint
3 tubes of GOOP

Figure 9

Page 6 of 30

5.2 The Chassis

Figure 10

The maximum length of the robot was not to exceed 10", and so the chassis
design began with a 9.5" diameter circle. In order to fit inside my bag, the
robot could be no greater than 7.5" in width. The trim tool was used to trim
off the sides of the circle until it met this specification. | then cut out
centered indention on each side for the wheels and small indentions on the
front and back for the bump switches. Then one long indention was cut out
from the front to allow for sorting arm movement. Finally, the fillet tool was
used to smoothen out sharp corners, and the correct holes were added for
connecting other components.

5.3 Rotating Platform

Figure 11

The platform is supported by a servo mounted on the center of the chassis.

The axis of rotation is located about the "UF".

Page 7 of 30

5.4 The uC Board Mount

Figure 13

This unit was made by simply offsetting the bottom half of the chassis and
cutting out an indention to make room for the platform servo. The holes,
switches, and charging unit were "copy and pasted" from the TALRIK
AutoCAD drawing. This unit sits approximately 2" off from the chassis
allowing space for the uC board and the cables. As you can see in the next
picture the uC board is housed underneath. Where as the reset button,
siwtches and charging circuit are accessed from the front.

Underneath

Figure 14

The Front

TING ROAOT -

Fgure 15 '

Page 8 of 30

5.5 Sorting Unit

Outside

Figure 16

Inside

Figure 17

The sorting arm is the heart and the most dynamic part of robot. My
intention was to have 3 seperate units. One to pick up the M&M™'s, one to
detect the M&M™ color, and one to place the M&M™ into the correct bin.
Two months and six revisions later, | have come up with this simple, yet
effective design that does the work of all three.

The main design consraints were:

Height - The unit could not cause the robot to be more than 8"
high since my bag is only 9" high.

Free Uninhibited Rotation - As the sorting arm rotates from one
position to another it can not bump into any other parts of my
robot. The most prodominant being the platform on which it sat.

M&M's must not ever get stuck inside - By designing the sorting
arm based on 1" diamter circles | have ensured that no M&M™'s
will ever be stuck while they traverse the sorting unit.

Page 9 of 30

6.0 UNIQUE BEHAVIORS

6.1 Picking up the M&M's

6.1.2 The Funnel

Figure 19

M&M Funnel

As EM moves forwards, M&M™ candies are funneled in towards the break
beam network.

6.1.3 The Break Beam

Photo Transistor

Break Beam Schematic

Signal

GROLUMD

Figure 21

While IR is present on the base of the transistor, the collector has a
potential of approximately 3.5 V. When no IR is present the voltage drops to
approximately 0.2V . This characteristic is perfect for tying the signal right
to an input bit rather than wasting an A/D port. Once the break beam is

broken the arm lifts up quickly sending the M&M™ down the shaft of the
sorting unit.

Figure 22

Page 10 of 30

6.2 COLOR DETECTION

1 - Ultra Bright Blue LED

1 - Ultra Bright Green LED

1 - Ultra Bright Yellow LED

1 - Ultra Bright White LED

1 -CDS Cell

1 - 47k Ohm Resistor

Electrical Tape, or Heat Shrink Tubing

Cost:
$9 for Ultra Bright LEDs
Resistors and CDS cell are free in lab

The idea behind color detection is simple. Different colors reflect different
amounts of light. A blue M&M™ for example, when exposed to green light
shines very brightly, however in the presence of red light appears to be
black. Theoretically if one could just measure the amount of light reflecting
off the surface of an object being exposed to different colors of light, one
should be able to determine its color. That's exactly what | did.

There are two main pitfalls which hinder the accuracy of any color detection
scheme, they are:

1.) The Presence of Ambient light

2.) Inconsistent Positioning of the objects.

These two problems are the by far the biggest obstacles one must overcome
when attempting color detection. The actual color detection process is very
straightforward and easy to reproduce once the previous 2 conditions are
met. In fact, | personally think it is a good practice to sit back and spend
some time working out these type of problems before jumping in and

getting your hands dirty. It is good practice to ask yourself: "How can
somebody screw up my robot's behavior?". Solving these type of problems
early in the development phase will save you a lot of time and headache
later on.

6.2.1 Blocking out Ambient Light
Why do | need to block out the ambient light, and how can | do it?

If you plan on demonstrating your robot in more than one room (and I'm
sure you are) then you must account for the various lighting conditions.
Moreover, the brighter the ambient light, the less accurate your color
readings will be. Think of a glass of fruit juice as your brightly colored
M&M™ . Start pouring water into it and the vibrant red of the juice begins to
dilute losing its color.

The way | overcame this obstacle was by placing the M&M™ inside a
controlled pitch black environment. The sorting unit | built is enclosed on all
sides (Refer to Figures 16 & 17) and the inside is spray painted black to
stop all reflections of light from the entrance and exit.

This works very well for small objects but what if you wanted to do color
detection on large ones. My suggestion is to carry out color detection
beneath your robot, using the chassis of the robot as a shield to ambient
light. And then on top of that, design the color sensor so that it will be
positioned completely flush with any object that you wish to carry out color
detection.

6.2.2 Positioning

It is important that the object is consistently positioned in front of the color
sensor. Spherical objects, such as M&M™'s, are easiest since they are
relatively the same in all positions. Because of this | did not have to worry
too much about the orientation of the m&m's as they fall in front of the
color sensor. However, If you plan on applying color detection on something
with an awkward shape you must devise a method to not only place the
object in front of the sensor in a consistent manner but orientate the object
so the same side is facing the sensor as well.

Page 11 of 30

6.2.3 Color Sensing Once an M&M™ is securely positioned in front of the color sensor, the

method | use for color detection is as follows:

The Color Sensor

1.) Turn on the green LED turn OFF all others - RECORD

2.) Turn on the white LED turn OFF all others - RECORD

3.) Turn on the blue LED turn OFF all others - RECORD

4.) Turn on the red LED turn OFF all others - RECORD

5.) Pass the 4 recorded values into a color detection function. The function
runs my color detection algorithm and returns the correct M&M™ color.

The following is a schematic of my color sensor. (See figures 23-25)

CDS Cell 47k Ohm

Figure 23

Ground

VCC

Signal

PORT OQUTPUT PORT QUTPUT PORT

Figure 24

Fi ure 25

Figure 26

Co_lor 4 Ultra Bright Voltage
Detection Columnated Divided CDS
Pedestal LEDs Cell

Page 12 of 30

6.2.4 Data Collection
Figure 27

Yellow
Yellow
Yellow

Yellow
YELLOW

o b
© O

N
~

00 W W W W
w
o)

(O8]
N

[

Orange 5 124 88
Orange 12 149 108
Orange 5 132 104
Orange 8 133 106
ORANGE 75 1345 102

The first 4 columns of the table represent the data recorded from the CDS
Cell through the A/D when the corresponding LED is turned on. For
example, starting from the top left, the CDS cell measures 55 units for a
yellow M&M™ in a green light, 175 in white light, 117 in blue, and 193 in
red. The program | wrote called "CLRTST.C" was used to quickly obtain test
data and can be found in APPENDIX B . This is a sample screenshot of that
program.

e e s s s s s S s EEsEsEssSsSsSssEsssEssSsssss=ssssssss=4
H Color Testing Program H
i 't' To Begin +/— To Change Light Delay |
FEE IS SN EEEEEEEEEEEEEEEEE
E Lights are on for ¢ 288> milliseconds E
i MO LIGHT WUALUE: 253 i
i GREEN LED UALUE: 3 i
i WHITE LED UALUE: 65 i
i BLUE LED UALUE: 114 H
i RED LED UALUE: L1 H
E SUH LED UALUE: 237 E
{ MBM Color: Blue
: ‘
Figure 28

| tabulated 4 trial runs for each color M&M™ and then calculated the
average which | then underlined to be able to see quickly. It is crucial at
this point to have a database program such as EXCEL that will allow one to
quickly do calculations on a large amount of data and display that data in a
organized manner. It is also a big plus to be able to change the font colors
so that you can hide values that you don't care for any longer.

6.2.5 The Color Detection Algorithm

To begin, please refer frequently to figure x in order to follow the color
detection process. If you look at all the colors you will notice that brown
has consistently smaller values for ALL lights. Using this first trend we can
add all the light values (G + B + W + R) which is calculated and displayed
in the next column. Notice that brown is 216, significantly less than the
other colors. The next closest would be blue which is at 277. | take the
average of these 2 values (approx 240) and create the first conditional of
my algorithm. (See Figure 29). Now even if this conditional is met there is
still a SLIGHT chance that the M&M™ could still be blue. So what I need is
one more nested conditional that does nothing but distinguish between blue
or brown. Looking back at the table we notice that the GREEN, WHI TE, and
BLUE readings for the brown M&M are less than the blue M&M, however the
RED reading for brown is greater. Using this data we create one more
column (G + W + B - R) and we notice that there is a very nice gap

between the blue and brown. Using this data we now have a way to
determine if the M&M™ is brown.

At this point we can assume that if any readings get pass our first
conditional than the color can not be brown. And so in excel we can ignore
all values of brown. With one color already gone it becomes even easier to
find minimum or maximum light trends for the various M&M™'s. Let us do
one more example. Now that brown is out of the equation we look back at
our data and see that BLUE now has the smallest RED value by far (56)! So
to keep things consistent | make a column for just red (R). We notice that
the next closest M&M™ is green with a value of 98. So we take the average
of these 2 values (56 + 98 / 2 = 76) and create our next conditional. Now
all we need is a way to distinguish between blue and green and we can then
take blue completely out of the picture. So looking back at the table we
notice blue is smaller than green for all color readings. With this information
we create one more (G + W + B + R) column, take the average for blue and
green and create yet another nested conditional that will distinguish blue
from all the rest of the M&M™'s.

So now after 6 lines of code we have already distinguished 2 of the 6
M&M™'s and it becomes easier and easier with each M&M™ we can take out
of the equation. | continue my analysis for the rest of the M&M™'s the same
way and produce the color detection algorithm which you see here.

int detectColor(int white, int red, int blue, int green) {
if ((white + red + blue + green) <= 240) {
/* Brown, Perhaps Blue */
if ((green + white + blue - red) <= 116) return 1; // brown
else return 2; // blue

}

else if ((red <=78)) {

/* Blue, Perhaps Green */
if ((green + white + blue + red) <= 367) return 2; // blue
else return 3; // green

}

else if ((green + blue - red) >=55) {

/* GREEN, Perhaps Yellow */
if ((white + red - green - blue) <= 110) return 3; // green
else return 5; // yellow

}

else if ((green+white+blue) >= 308) return 5; // yellow
else if ((green + white + blue + red) >= 372) return 6; // orange
elsereturn 4;//red }

Figure 29

Page 14 of 30

6.3 M&M Positioning

Figure 30

[1] - The M&M is lifted up and travels down the shaft of the sorting unit and
onto the color detection pedestal.

[2] - This is where color detection takes place. Refer to Section 7.0 for details
on the color detection sensor and how color detection is implemented.

[3] - M&M is dropped down to the bottom level of the sorting arm. At this point
the arm is then positioned in front corresponding color bin.

Z0BO0N DNLLAOS NN

s et @

[4] - M&M is sent down the last chute into color bins located at the back of the
robot

[5] - The color bins

=
Figure 31

Page 15 of 30

7.0 CONCLUSION

EM moves around on a table top avoiding the edges, avoiding obstacles, and
even responding to bumps. In the meantime, EM is able to pick up M&M's and
sort them by color with an accuracy of close to 100%. | can happily say that EM
turned out to be a complete success. Every aspect of EM, from edge avoidance,
to color detection, worked out better than | could have ever expected. Had |
the opportunity to redo this project | would create a design that could be
completely snap and locked together with nothing but wood, (no screws, no
glue, no tape).

IMDL has turned out to be one of the greatest learning experiences of my life.
This class has given me the opportunity to apply almost all of the skills taught
as an electrical engineer at the University of Florida, and even acquire some
new ones. After the completion of this class | have become better at C
programming, better with Electronics, a MASTER at AutoCAD, unbelievably
immaculate when it comes to debugging Hardware/Software issues, and to top
it all off, I'm even more comfortable with public speaking. This robot is the
capstone to my career as an undergraduate electrical engineering student and |
am very proud at the ease at which | was able to create it.

Figure 33

Page 16 of 30

APPENDI X A: COVPLETE MANUAL CONTRCOL OF ROBOT THROUGH SCI

e
Modul e: C \iccll\em MANCTRL. C
Aut hor : Vinh Trinh
Proj ect:
St at e:
Creation Date: 3/02/02
Description: Al | ows manual Control of robot novenent and
servos.
A T R T I NCLUDES -----------cmmmmmm e oo

#i ncl ude <tj pbase. h>

#i ncl ude <stdio. h>

#i ncl ude <nmath. h>

#i ncl ude <hc1l. h>

#i nclude <mil.h>

#def i ne LEFT_MOTOR 0
#define R GHT_MOTOR 1
#define sanpl eRate 4000

#defi ne maxspeed 99
#define minspeed 1
#defi ne maxaccel 19
#define mnaccel 1

#define maxchange 99 // Maxi mum anmount the servo can change by
#define mnchange 1 // Mninumanount the servo can change by

#define servo_delta 1 // Anmount to i ncrement change

[H e T END OF | NCLUDES- - - = -« == -=smmmmmmmmaenn

#pragna interrupt_handl er sci_hand;
void init_sci(void);
void sci_hand();

/* GLOBALS */

char scibuffer;

int sciflag;

/* Servo Dead Areas*/

voi d mai n(void){

char clear[

1= "\'x1b\ x5B\ x32\ x4A\ x04"; /*cl ear screen*/
char place[]

"\ x1b[1; 1H"; /*position at (1,1)*/

/* Motor Commands */

char f = e';
char b = td
char | = 's';
char r = B
char s = "X
char speed_u = B
char speed_d = ‘g
char accel _u = 'q';
char accel_d = 'a';
char Imoff = W
char rmoff = r'g

/* Servo Commands */
char armu = 'y,
char armd = "h';
char push_u it
char push_d "kt
char plat_u phs
char plat_d = H
char arm.change_u
char arm change_d

char push_change_u
char push_change_d
char plat_change_u
char plat_change_d
char change_node =
char inc_delay =
char dec_del ay
char col ortest

0O o <N
St — o

/* LED TOGGLE */
char LEDO = '0";

char LEDL = "'1";
char LED2 = '2";
char LED3 = '3';
char LED4 = '4';
char LED5 = '5';
char LED6 = '6'";
char LED7 = '7";

char *LEDOFF[3] = {"+"};
char *LEDON[3] = {"-"};

char action, oldaction;
char *printaction[20] = {"ldle"};
char *printnode[20] = {"Increnent"};

/* Initial Mtor Values */
int speed = 20,
accel =1,
Imstatus = 0,
rmstatus = 0;

/* Initial Servo Values */

int arnpw = arm.init_pw,
platpw = plat_init_pw,
pushpw = push_i ni t _pw,
arm change = 20,
pl at _change = 10,
push_change 20,
arnPosition 1;

/* Initial LED Values */

int |0Status = 0,
| 1St atus
| 2St at us
| 3St at us
| 4St at us
| 5St at us
| 6St at us
| 7St at us
LEDMASK = 0

Sol

o000

x o

00;

int servonode = 0; /* 0 = Increnental 1 = Continuous */
int servodelay = 5;

int colorDelay = O;
int noLight;

init_analog();
init_motortjp();
init_clocktjp();
init_servotjp();
init_serial();
init_sci();

noLi ght = COLOR_CDS;
printf("%", clear);
printf("%", place);

[T G

Page 17 of 30

printf("] |\n");

printf("] Manual Robot Control Program |\n");

printf("] |\n");

Printf (" 4o R R R +\n");

printf("] MOTOR STATUS | MOTOR COMVANDS |\n");

Printf(decem i ie B R R T +\n");
printf("| |\n")

printf("] | H
printf("| Action: |
printf("| Left Mdtor: | H
printf("| Right Mtor: | Right..................... ;
printf("| Mtor Speed: | Stop......... \n");
printf("| Mtor Acceleration: | Speed Up.................. \n");
printf("]| | Speed Down................ \n");
printf ("] | Acceleration Up...... \n");
printf("] | Acceleration Down.... .. \n");
printf("] | Turn OFf Left Mdtor....... \n");
printf("]| | Turn Of Right Mdtor...... \n");
printf("] | \n");
prinmtf(d--e e R TR TP \n");
printf("] SERVO STATUS | SERVO COMVANDS \n");
printf(4o B e \n");
printf("] | \n");
printf("| Sorting Arm PW | Sorting ArmUp............ \n");
printf("| Delta: | Sorting Arm Down..... \n");
printf ("] | +/- Arm Moverent \n");
printf("| PlatformPW | \n");
printf("| Delta: | PlatformUp............... p \n");
printf("]| | PlatformDown............. ; \n");
printf("| Push Arms PW | +/- Platform Mvenent ...[/] |\n");
printf("| Delta: | [\n");
printf("] | Push Arms Up.............. i |\n");
printf("| MODE | Push Arms Down............ k |\n");
printf("]-------mmime e | +/- Push Arm Movenent....o/l \n");
printf("| Current SCI BUFFER: | \n");
printf("| Servo Del ay: | Mode Change............... z \n");
printf("] | +/- Servo Del ay vib \n");
printf("+---------mmiee e + \n");
printf("] \n");
printf("] \n");
printf("] \n");
printf("+ \n");
printf("]| \n");
printf("+ \n");

stop();

printf("\x1b[11; 21H¥8d", | mstatus);

printf("\x1b[12; 21H/Bd", rmstatus);

printf("\x1b[13; 21H/Bd", speed);

printf("\x1b[14; 21H/Bd", accel);

printf("\x1b[25; 21H/Bd", arnpw);

printf("\x1b[26;21H¥8d", arm change);

printf("\x1b[28;21H¥8d", platpw);

printf("\x1b[29; 21H¥8d", pl at_change);

printf("\x1b[31;21H¥8d", pushpw);

printf("\x1b[32; 21H/Bd", push_change);

printf("\x1b[37; 21H/8d", servodel ay);

printf("\x1b[34;18H%41s", *printnode);

printf("\x1b[41; 6H/Bs", *LEDOFF);

printf("\x1b[41;20HBs", *LEDOFF);

printf("\x1b[41; 36H¥8s", *LEDOFF);

printf("\x1b[41; 52H¥8s", *LEDOFF);

printf("\x1b[42; 6H¥8s", *LEDOFF);

printf("\x1b[42; 20H8s", *LEDOFF);

printf("\x1b[42; 36H¥8s", *LEDOFF);

printf("\x1b[42; 52H/8s", *LEDOFF);

/* Put Servos Into Initial Positions */

servo(pl at, pl at pw) ;
wai t (500);
servo(arm arnpw) ;
servo(push, pushpw);
wai t (1000) ;
servo(ar mO);
servo(plat, 0);
servo(push, 0);

whi le(1){

if (sciflag == 1) {
sciflag = 0;
action = scibuffer;
if (action == || action == b ||
servo(armO0);
servo(plat, 0);
servo(push, 0);

if (action == f)
forwar ds(speed) ;
*printaction = "Forwards";
Imstatus = 1;
rmstatus 1;

else if(action == b) {
backwar ds(speed) ;
*printaction = "Backwards";
| m status 1
rmstatus 1

else if(action == 1) {
| ef t (speed);
*printaction = "Left";
Imstatus = 1;
rmstatus = 1;

else if(action ==r1) {
ri ght (speed);
*printaction = "Right";
Imstatus = 1
rmstatus =1

el se if(action == speed_u && speed
speed = speed + accel;
printf("\x1b[13;21HXBd", speed);

else if(action == speed_d && speed
speed = speed - accel;
printf("\x1b[13;21H/Bd", speed);

el se if(action == accel _u && accel
accel ++;
printf("\x1b[14; 21H%d", accel);

else if(action == accel _d &k accel
accel - -;
printf("\x1b[14;21H/8d", accel);
}

else if(action == Imoff) {

I mof f();

Imstatus = 0;

printf("\x1b[11; 21H¥8d", | mstatus);
}
else if(action == rmoff) {

rmoff();

action == |1

>=

>=

maxspeed) {

m nspeed) {

maxaccel) {

m naccel) {

action == r){

Page 18 of 30

rmstatus = 0;
printf("\x1b[11;21H¥8d", rmstatus);

}

else if(action == s) {
stop();
*printaction = "|DLE";
Imstatus =0 ;
rmstatus = 0 ;

el se if(action == arm change_u && arm change < maxchange) {
arm change = arm change + servo_delta ;
printf("\x1b[26; 21H¥8d", arm change) ;

else if(action == armchange_d && arm change > ninchange) {
arm change = arm.change - servo_delta ;
printf("\x1b[26;21H¥8d", arm change) ;

el se if(action == plat_change_u && pl at _change < naxchange) {
pl at _change = pl at_change + servo_delta ;
printf("\x1b[29; 21H/Bd", pl at_change) ;

else if(action == plat_change_d && plat_change > ninchange) {
pl at _change = plat_change - servo_delta ;
printf("\x1b[29;21H¥8d", plat_change) ;

else if(action == push_change_u && push_change < maxchange) {
push_change = push_change + servo_delta ;
printf("\x1b[32; 21H¥8d", push_change) ;

el se if(action == push_change_d && push_change > m nchange) {
push_change = push_change - servo_delta;
printf("\x1b[32;21H¥8d", push_change) ;

}

else if(action == change_node) {
servonnde = servonode ~ 1;
if (servonnde == 1) *printnode = "Conti nuous";
el se *printnode = "lIncrenment"”;
printf("\x1b[34;18H%1s", *pri ntnode);

}

else if(action == inc_delay || action == dec_delay) {
if (action == inc_del ay) servodel ay++;
el se servodel ay--;
printf("\x1b[37; 21H/8d", servodel ay);

else if(action == colortest) {
swi tch(arnPosition) {

case 1:

for (arnpw = arm.init_pw, arnpw <= sortPosl; arnpw = arnpw + arm change) {
wai t (servodel ay) ;
servo(arm arnpw);

}

noLi ght = COLOR_CDS;
arnPosition = 2;
br eak;
case 2:
for (arnmpw, arnpw >= sortPos2; arnmpw = arnpw - arm change){
wai t (servodel ay) ;
servo(arm arnpw);

arnPosition = 3;
br eak;
case 3:
for (arnpw, armpw <= sortPos3; arnmpw = arnmpw + arm change){
wai t (servodel ay) ;
servo(arm arnpw);

arnPosition = 4,

br eak;
case 4:
for (arnpw, arnpw >= arm.init_pw, arnpw = arnpw - arm change){
servo(arm arnpw);

arnmPosition = 1;
break;
defaul t:
servo(arm arminit_pw);
armPosition = 1;
break;

}

}
else if(action == LEDO || action == LED1 || action == LED2 || action == LED3

|| action == LED4 || action == LED5 || action == LED6 || action ==
if (action == LEDO) {
LEDVASK = LEDVASK ~ 0x01;
|0Status = | 0Status ~ 1;
(l0Status == 1) ? printf("\x1b[41; 6H¥@s", *LEDON)
cprintf("\x1b[41; 6H¥8s", *LEDOFF);

}
else if (action == LED1) {
LEDVASK = LEDMASK " 0x02;
|1Status = | 1Status ~ 1;
(l1Status == 1) ? printf("\x1b[41; 20H¥3s", *LEDON)
cprintf("\x1b[41; 20H8s", *LEDCFF);

else if (action == LED2) {
LEDMASK = LEDMASK ~ 0x04;
| 2Status = | 2Status ~ 1;
(l2Status == 1) ? printf("\x1b[41; 36H¥8s", *LEDON)
cprintf("\x1b[41; 36HY8s", *LEDOFF);

else if (action == LED3) {
LEDVASK = LEDMASK 7~ 0x08;
I3Status = | 3Status ~ 1;
(I3Status == 1) ? printf("\x1b[41;52H¥/3s", *LEDON)
cprintf("\x1b[41; 52HY8s", *LEDOFF);

else if (action == LED4) {
LEDVASK = LEDMASK ~ 0x10;
| 4Status = |4Status ~ 1;
(l4Status == 1) ? printf("\x1b[42; 6H¥/Bs", *LEDON)
cprintf("\x1b[42; 6H¥Bs", *LEDOFF);

}
else if (action == LED5) {
LEDVASK = LEDVASK ~ 0x20;
| 5Status = | 5Status ~ 1;
(I5Status == 1) ? printf("\x1b[42; 20HBs", *LEDON)
printf("\x1b[42; 20HYBs", *LEDOFF);

else if (action == LED6) {
LEDVASK = LEDMASK ~ 0x40;
| 6Status = | 6Status ~ 1;
(I6Status == 1) ? printf("\x1b[42; 36H¥8s", *LEDON)
cprintf("\x1b[42;36H%8s", *LEDCFF);

else if (action == LED7) {
LEDMASK = LEDMASK ~ 0x80;
| 7Status = | 7Status ~ 1;
(I 7Status == 1) ? printf("\x1b[42; 52H¥8s", *LEDON)
cprintf("\x1b[42; 52HY8s", *LEDOFF);

*(unsigned char *)(0x7000) = LEDMASK;

else {

LED?) {

Page 19 of 30

if (servonode == 1) {
while (platpw >= M N_PLATPW && sci buffer !=s) {

stop();
if (action == armu && arnpw <= MAX_ARMPW {
if (servonode == 1) { if (platpw > DEAD_ M N && pl at pw < DEAD_MAX)
while (arnmpw <= MAX_ARWPW && sci buffer !'=s) { pl at pw = DEAD_M N;
if (arnpw > DEAD M N && arnmpw < DEAD_MAX) el se {
arnpw = DEAD_MAX; pl at pw = pl at pw - pl at _change;
else { servo(pl at, pl at pw) ;
arnmpw = arnmpw + arm change; wai t (servodel ay) ;
servo(arm arnpw) ; }
wai t (servodel ay) ; }
}
} el se {
if (platpw > DEAD_M N && pl at pw < DEAD_MAX)
else { pl at pw = DEAD M N,
else {
pl atpw = pl atpw - plat_change;

if (armpw > DEAD_ M N && ar npw < DEAD_MAX)
arnpw = DEAD MAX;
else {

servo(pl at, pl at pw) ;

arnmpw = arnpw + arm change;
servo(arm arnpw) ; }
} printf("\x1b[28; 21H¥8d", platpw);
}
printf("\x1b[25; 21H¥8d", arnpw); else if (action == push_u && pushpw <= MAX_PUSHPW {
if (servonmode == 1) {
whil e (pushpw <= MAX_PUSHPW && sci buffer !=s) {

else if (action == armd && arnmpw >= M N_ARMPW {
if (servonode == 1) { if (pushpw > DEAD M N && pushpw < DEAD_MAX)
while (arnmpw >= M N_ARMPW && sci buffer !'=s) { pushpw = DEAD_MNAX;
if (arnpw > DEAD M N && arnmpw < DEAD_MAX) el se {
pushpw = pushpw + push_change;
servo(push, pushpw) ;

armpw = DEAD_M N,
else {
armpw = arnpw - arm change; wai t (servodel ay) ;
servo(arm arnmpw) ;
wai t (servodel ay) ; }
}
} el se {
if (pushpw > DEAD_M N && pushpw < DEAD MAX)
el se { pushpw = DEAD_MAX;
if (arnmpw > DEAD M N && arnmpw < DEAD_MAX) el se {
arnpw = DEAD_M N, pushpw = pushpw + push_change;
else { servo(push, pushpw) ;
arnmpw = arnpw - arm change; }
}
printf("\x1b[31; 21H¥8d", pushpw);

servo(arm arnpw) ;
}
ar mpw) ; else if (action == push_d && pushpw >= M N_PUSHPW {
if (servonmode == 1) {
while (pushpw >= M N_PUSHPW && sci buffer !=s) {
if (servonode == 1) { if (pushpw > DEAD_ M N && pushpw < DEAD_MAX)
whil e (platpw <= MAX_PLATPW && sci buffer !=s) { pushpw = DEAD M N
if (platpw > DEAD_M N && pl at pw < DEAD_MAX) el se {
pushpw = pushpw - push_change;
servo(push, pushpw) ;

}
printf("\x1b[25; 21H%8d",
}
else if (action == plat_u && pl at pw <= MAX_PLATPW {

pl at pw = DEAD_MAX;
el se {

pl atpw = pl atpw + pl at _change; wai t (servodel ay) ;

servo(pl at, pl at pw) ; }

wai t (servodel ay) ; }
} }

} el se {
if (pushpw > DEAD_M N && pushpw < DEAD_MAX)
el se { pushpw = DEAD M N,
else {
pushpw = pushpw - push_change;

if (platpw > DEAD_M N && pl at pw < DEAD_MAX)
pl at pw = DEAD_MAX;
else { servo(push, pushpw) ;
pl atpw = pl at pw + pl at _change; }
servo(pl at, pl at pw) ; }
printf("\x1b[31; 21H¥8d", pushpw);

) }
printf("\x1b[28;21H¥8d", platpw); }

} printf("\x1b[10; 18H%d1s", *printaction);

else if (action == plat_d && platpw >= M N_PLATPW { printf("\x1b[36;21H %", action);

Page 20 of 30

ol daction = action;

} /* end if */
if (colorDelay == sanpleRate) {
printf("\x1b[44;26H¥8d", (noLi ght - COLOR CDS));
colorDelay = O;
}
col orDel ay ++;
}/* End While */

} /* end main */

voi d sci_hand(void){
sci buffer = SCDR;
sciflag = 1;
CLEAR_FLAG(SCSR, 0x20) ;
}

void init_sci(void) {
I NTR_OFF();
*((void (**)())0oxffd6) = sci_hand;
CLEAR_FLAG(SCSR, 0x20);
SET_BI T(SCCR2, 0x20);
INTR_ON();

Page 21 of 30

APPENDI X B: COLOR DATA RETRI EVAL PROGRAM

#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude

<tj pbase. h>
<stdio. h>
<hc1l. h>
<m|.h>

#define servoffset

tweak thema little.
#define arm change 20
#define servodelay 5

50 // Servo constants for some reason

#defi ne
#def i ne
#define
#define
#defi ne

sortPosl 3600
sortPosl_2 2000
sortPos2 2210
sort Pos3 4460
sort Pos4 800

/* SCI STUFF */

#pragna interrupt_handl er sci_hand;
void init_sci(void);

void sci_hand();

char scibuffer;

int sciflag;
/* dobals */
int whi te,
red,
bl ue,
green;

void mai n(void) {

char clear[]= "\x1b\ x5B\ x32\ x4A\ x04"; /*cl ear screen*/
char place[]= "\x1b[1; 1H'; /*position at (1,1)*/
char g[]= "Geen";
char r[]= "Red";
char b[] = "Blue";
char y[] = "Yellow';
char o[] = "Orange";
char br[] = "Brown";
char e[] = "Error";
char W] = "Wite";
char begin = "t'
char upDelay = '+';
char downDelay = "'-";
int arnmPosition,
ar mpw,
pl at pw,
pushpw,
nolLi ght,
l'i ght On,
col or;

arnpw = arm.init_pw,
platpw = plat_init_pw
pushpw = push_init _pw,
/* Term nal Screen*/
printf("%",clear);
printf("%", pl ace);

printf(" \n")

printf("] Col or Testing Program

arne't

the sane!

use this to

printf("|] 't' To Begin +/ - To Change Light Delay |\n
printf("+==== \n
printf ("] |\
printf("] Lights are on for () milliseconds |\
printf("] |\
printf("| NO LI GHT VALUE: |\
printf ("] GREEN LED VALUE: |\
printf ("] WHI TE LED VALUE: |\
printf("| BLUE LED VALUE: |\
printf("] RED LED VALUE: I\
printf("| SUM LED VALUE: [\
printf("] |\
printf("| M&M Col or : |\
printf("]| I\
Printf(d--cmmm oo +\
/* Turn On all Systens*/

ni t _anal og();
nit_notortjp();
nit_clocktjp();
nit_servotjp();
nit_serial();
nit_sci();

/* Initialize Variabl es*/
sciflag = 0;

armPosition = 1;

noLi ght = COLOR_CDS;

lightOn = 200;

wai t (100);
printf("\x1b[6;24H¥%6d", i ght On);

/* Initialize Servos*/
I *servo(pl at, pl at pw) ;
wai t (500) ;

servo(arm arnpw) ;
servo(push, pushpw) ;
wai t (1000) ; */
servo(arm 0);

servo(pl at, 0);
servo(push, 0);

whi | e(1){
if(sciflag == 1) {
sciflag = 0;
if(scibuffer == begin) {
swi tch(arnPosition) {
case 1:

for (arnpw, armpw <= sortPosl_2; arnpw = arnpw + arm change){

wai t (servodel ay) ;
servo(arm arnpw);

for (; arnpw <= sortPos1;
wai t (servodel ay*3);
servo(arm arnpw);

}

wai t (1000) ;

noLi ght = 0;

LEDS_OFF;

/lservo(armO0);

while (noLight < 230) {

noLi ght = COLOR_CDS;
printf("\x1b[8; 22H¥d ")
printf("\x1b[8; 22H%4d", noLi ght);
wai t (200) ;

}

535353353535 3535333 35

R

arnpw = arnpw + arm change) {

Page 22 of 30

GREEN_ON,
wai t (lightOn);
green = (noLight - COLOR CDS);

printf("\x1b[9;22HMd ");
printf("\x1b[9; 22H%d", green);
LEDS_OFF;

WHI TE_ON;

wait (1ightOn);
white = (noLight - COLOR CDS);

printf("\x1b[10; 22H ")
printf("\x1b[10; 22H%d", white);
LEDS_OFF;

BLUE_ON;

wai t (1ightOn);
bl ue = (noLight - COLOR CDS);

printf("\x1b[11;22H ")
printf("\x1b[11; 22H%d", bl ue);
LEDS_COFF;

RED_ON;

wai t (1ightOn);
red = (noLight - COLOR CDS);

printf("\x1b[12; 22H ")
printf("\x1b[12; 22H%d", red);
LEDS_OFF;

printf("\x1b[13; 22H%d", (gr een+whi t e+r ed+bl ue)) ;

col or = detectCol or (white,red, bl ue, green);

I*
br own:
bl ue:
green:
red:
yel | ow:
orange:
error:

oA WNE

*/
switch(color) {
case 1:
printf("\x1b[15; 22H¥Bs", br);
br eak;
case 2:
printf("\x1b[15;22H¥8s", b);
br eak;
case 3:
printf("\x1b[15; 22H¥8s", g);
break;
case 4:
printf("\x1b[15; 22H¥8s",r);
br eak;
case 5:
printf("\x1b[15;22H¥8s",y);
break;
case 6:
printf("\x1b[15; 22H¥8s", 0) ;
br eak;
case 7:
printf("\x1b[15; 22H¥8s", w);
br eak;
defaul t:
printf("\x1b[15;22H¥Bs", e);
break;
} /* END SWTCH */

arnPosition = 2;
br eak;
case 2:

for (arnpw, armpw >= sortPos2; arnpw = arnpw -

wai t (servodel ay) ;
servo(arm arnpw);

arnmPosition = 3;
br eak;

case 3:

for (arnmpw, arnpw <= sortPos3; arnpw = arnpw + arm change) {

wai t (servodel ay) ;
servo(arm arnpw);

arnPosition = 4;
br eak;
case 4:

for (arnpw, arnpw >= (sortPos4);

wai t (servodel ay/ 2);
servo(arm arnpw);

arnPosition = 1;
br eak;
defaul t:
servo(arm arm.init_pw);
arnPosition = 1;
break;
}/* End switch(arnPosition) */
}/* End if(scibuffer) */
else if (scibuffer == upDelay) {
lightOn = lightOn + 10;
printf("\x1b[6;24H¥6d", 1i ght On);

else if (scibuffer == downDel ay) {
lightOn = lightOn - 10;
printf("\x1b[6; 24H¥6d", | i ght On);

}
}* End if (sciflag) */
}/* End While(1) */
}/* End Main */

voi d sci _hand(voi d){
sci buf fer = SCDR;
sciflag = 1;
CLEAR_FLAG(SCSR, 0x20) ;
}

void init_sci(void) {
I NTR_OFF() ;
*((void (**)())0xffdé) = sci_hand;
CLEAR_FLAG(SCSR, 0x20);
SET_BI T(SCCR2, 0x20) ;
INTR_ON() ;
}

/*

white: 7
br own:
bl ue:
green:
red:

yel | ow
orange:
error:

CouhwWNE

*/

int detectColor(int white, int red, int blue,

arnpw = arnpw - arm change) {

int green) {

Page 23 of 30

if ((white + red + blue + green) >= 600)
/* WH TE THANKS TO AAM R */
return 7;
else if ((white + red + blue + green) <= 250)
/* Brown */
return 1;
else if ((white + blue - red) <= 32)
/* RED */
return 4;
else if ((green + blue + white - red) <= 109)
/* ORANGE */
return 6;
else if ((red >= 137))
I* YELLOW */
return 5;
else if ((white + green + red) >= 257)
/* GREEN */
return 3;
else if ((green + white + blue - red) >= 160)
/* BLUE */
return 2;
el se
return 0;

if ((white + red + blue + green) > 600)
return 7;
if ((white + red + blue + green) <= 331){
/* Blue, Brown */
if ((white + blue - red) > 100)
/* blue */
return 2;
el se
/* brown */
return 1;

/* RED, GREEN, YELLOW ORANGE */
if ((white) < 125)
/* red */
return 4;
else {
/* yellow, geen, orange */
if (green < 30)
/* Orange */
return 6;
/* yellow, green */
else if (red < 125)
/* Geen */
return 3;
el se
/* yellow */
return 5;

/1 ALL COLORS

Page 24 of 30

APPENDI X C. MAI N PROGRAM

[REXFRKE AR AR KRR KA KKK R AF A | o] OGS FAFFAF A A AR KKK KA KKK KKK KK KX KA AR

#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude

<anal og. h>
<cl ocktj p. h>
<nmotortjp.h>
<servotjp. h>
<serialtp.h>
<i srdecl . h>
<vectors. h>
<inport.h>
<control . h>
<stdi o. h>
<mat h. h>

[rxkxrxxkkxkkxrkxrkxkkxrt Engd of | NC| UGS *¥FHXFHXF AR Kk KKK K KR KKK KKK KAk |

[RAEXFAK KA KA A KA KKK KKK KA KRR K AF R CONGLANES FHXFA XA A I AR KA KA XK AR KA KA XK KKK KA XKk [

#def i ne
#define
#define
#define
#def i ne
#define
#def i ne
#def i ne
#define
#define
#define
#def i ne
#def i ne
#def i ne
#def i ne

#def i
#def i

#def i
#defi
#def i
#def i

ne
ne

ne
ne
ne
ne

MAX_SPEED
ZERO_SPEED

M N_ARMPW 92
MAX_ARMPW 45
M N_PLATPW
MAX_PLATPW

M N_PUSHPW
MAX_PUSHPW
DEAD_M N 19
DEAD_MAX 21
arm 2

pl at 1
push 0
plat_init_pw
arm.init_pw
push_init_pw
push_i n_pw

BUMPER an
RIGHT_IR an
LEFT_IR an

100
0
0
00
700
4600
700
4000
80
50

2650
920
4200
680

al og(0)
al og(2)
al og(3)

/1 These dont work so try the old way

#define irled 0x08

#define cdsled 0x03
#define greenled 0x10
#define bluel ed 0x40
#define redl ed 0x80
#define whitel ed 0x20
#define allled 0xFO

// COLOR DETECTI ON LED CONTROL CONSTANTS

#defi
#defi

ne
ne

LEDS_ON
LEDS_OFF

*(unsigned char *)(0x7000) = OxFF
*(unsigned char *)(0x7000) = 0x00

#defi ne CDS_ON

*(unsigned char *)(0x7000) = 0x03

#define WH TE_ON *(unsi gned char *)(0x7000) = 0x20

#define
#define

RED_ON *(unsigned char *)(0x7000)
BLUE_ON *(unsi gned char *)(0x7000)

= 0x80
= 0x40

#define GREEN_ON *(unsigned char *)(0x7000) = 0x10

/* FACI NG ROBOT FROM LEFT TO RI GHT*/

#defi ne nobin 3800
#define binl 3460
#define bin2 3060
#define bin3 2680
#define bin4 2300
#define bin5 1950
#define bin6 1700
#define brownpos bi n1
#define bl uepos bi n4
#define redpos bi n5
#define greenpos bi n2
#define orangepos bin3
#define yell owpos biné
#defi ne badpos nobi n

RI GHT_CDS

anal og(7)

#def i
#def i
#defi

ne
ne
ne

LEFT_CDS anal og(5)
BREAK_BEAM i nport (0)
COLOR_CDS anal og(4)

/* COLOR TESI NG DEFI NES */

#define servoffset 50 // Servo constants for sone reason arne't
tweak thema little.

#define push_change 10

#define arm change 20

#define servodel ay 5

/* Enabl
#def i ne

/*Di sabl
#define

#def i ne

e OC4 interrup
SERVOS_ON

e OC4 interrup
SERVOS_OFF

t and all servo operations */
SET_BI T(TMBK1, 0x10)

t: Stops all servo holding torques, useful for energy savings*/
CLEAR _BI T(TMSK1, 0x10)

#define
#define
#define
#define
#defi ne

sortPosl
sort Pos2
sort Pos3
sort Pos4
sort Pos5

4000
3600
2100
4700
4300

#def i
#def i
#defi
#defi
#def i
#defi
#defi
#defi
#defi
#def i
#def i
#def i
#defi
#defi
#defi
#defi

ne

ne
ne
ne
ne

ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne

CDS_THRESHOLD L 60
CDS_THRESHOLD_D 8

I R_THRESHOLD 100
sanpl edel ay 10
speed 45
backwar dsdel ay 1100
doubl echeck 50
arndel ta 20
arndel ay 5
platdelta 10

pl at del ay 10
pushdelta 30
pushdel ay 20

SORTPOSI TI ON MAX_PLATPW
MAXTURNDELAY 2500
candy_settle 300

fal | out _del ay 500

#define LIGHTON 200

#defi ne UPDATE_LEDS *(unsi gned char *)(0x7000) = |edmask

#pragna interrupt_handl er sci_hand;

the same use this to

R R R R L

*kk |

/* FUNCTI ON PROTOTYPES */
void blink(void);
void init_systens(void);

Page 25 of 30

voi d init_servos(void);
void init_constants(void);
voi d scan_sensors(void);
void action(int);

voi d positionCandy(void);
int getColor(void);

void sort(void);

voi d programi(void);

/* GLOBALS */

int avoid = 0;

int sortnode = 0;

unsigned int arnpw = arm.nit_pw,
unsigned int platpw = plat_init_pw
unsi gned int pushpw = push_init_pw

int room.is_dark;
int sciflag;

char scibuffer;
int leftCDS_init;

int rightCDS_init;

int |eftCDS_reading;

int rightCDS_reading;

i nt bunp_reading;

int program select;

int color;

int rand;

int | edmask = 0x00;

int arnPosition = 1;

int color;

int noLight;

int white,blue,red,green; // led colors

JrRERE K KKK K KA KKK R IR X F AR KK I AR IR AKX IRk

rhxxkxkkxkrkx AN PROGRAM ** % % % % %% & %o & 4 % & & % %

T
void main(void) {
init_systens();

blink();
printf("System Reset\n");

while (BUWPER < 10) {
wait(1);
program sel ect = BUMPER;

if (programselect < 30) {
room.is_dark = 0;
progrant();

else {
room.is_dark = 1;
progrant();

} /% End Main */

A Blink ------cmcmmomaao */
voi d blink(void) {
int i;
for(i; i<10; i++) {
| edmask = | edmask * cdsl ed;
UPDATE_LEDS;
wai t (50);
}
}
[% e INIT SYSTEMS -----mmmoaaaammn */

void init_systems (void){
init_anal og();
init_notortjp();
init_clocktjp();
init_servotjp();
init_serial();
wai t (500) ;
[lprintf("Starting\n");

J* e PROGRAM 1 - - ---cemmmmnaman *

voi d progrant(void) {
init_servos();
init_constants();

while (1){
/1 TURN ON SENSOR LEDS
| edmask = lednmask | irled;
if(roomis_dark) |edmask = | edmask | cdsled;
el se | edmask = | edmask & ~(cdsl ed);
UPDATE_LEDS;

Page 26 of 30

avoid = 0;
armPosition = 1;
f or war ds(speed) ;
wai t (150) ;
while (avoid == 0) {
scan_sensors();
wai t (sanpl edel ay) ;
} // End Wile

if (avoid != 0) action(avoid);
avoid = 0O;
} /1 Infinate Loop
}
[* e INI T CONSTANTS ------nmmmmn-- */

void init_constants(void) {

| edmask = ledmask | irled;

if(roomis_dark) |edmask = | edmask | cdsled;
el se | edmask = | edmask & ~(cdsl ed);
UPDATE_LEDS;

ri ght CDS_i ni t = RI GHT_CDS;

leftCDS_init = LEFT_CDS;

wai t (50);

ri ght CDS_i ni t = (rightCDS_init + R GHT_CDS)/2;
leftCDS_init = (leftCDS_init + LEFT_CDS)/2;

wai t (50);

rightCDS_init = (rightCDS_init + R GHT_CDS)/ 2;
leftCDS_init = (leftCDS_init + LEFT_CDS)/2;
wai t (50);

ri ght CDS_i ni t = (rightCDS_init + RI GHT_CDS)/ 2;
leftCDS_init = (leftCDS_init + LEFT_CDS)/2;
Ilprintf("Left CDS Init: %

A R T INIT SERVOS -------mmmmmmimio oo
void init_servos(void) {
servo(push, push_i nit _pw);

wai t (500);
servo(plat,plat_init_pw);
wai t (500);
servo(armarm.init_pw);
wai t (500) ;

servo(arm0);
servo(plat, 0);
servo(push, 0);

Right CDS Init: %\n",leftCDS_init,rightCDS_init);

A R T SCAN SENSORS - --------mmmmmmmcaao o */
voi d scan_sensors(void) {

| eft CDS_reading = abs(leftCDS_init - LEFT_CDS);
right CDS reading = abs(rightCDS_init - R GHT_CDS);
bunp_r eadi ng = BUWPER;
11 printf("rightCDS_readi ng: %\ n
ri ght CDS_readi ng, | ef t CDS_r eadi ng) ;

i f (BREAK_BEAM == 1)

wait(25); //allows m&@mto get closer to sorting arm
i f (BREAK_BEAM == 1) avoid = 3;

}
else if (
(rightCDS_readi ng >= CDS_THRESHOLD D && room.is_dark == 1) ||
(rightCDS_readi ng >= CDS_THRESHOLD L && room.is_dark == 0)
)
{ .
wait(2);
if (
(rightCDS_reading >= CDS_THRESHOLD_D && room.is_dark == 1) ||
(rightCDS_reading >= CDS_THRESHOLD L && room.is_dark == 0)
)
{
avoid = 1;
printf("Ri ghtCDS Triggered: %\ n", rightCDS_reading);
else if (
(left CDS_readi ng >= CDS_THRESHOLD D && room.is_dark == 1) ||
(leftCDS reading >= CDS_THRESHOLD L && room.is_dark == 0)
)
{ .
wait(2);
if

(left CDS_readi ng >= CDS_THRESHOLD D && room.is_dark == 1) ||
(I eft CDS_readi ng >= CDS_THRESHOLD_L && room.is_dark == 0)
)

avoid = 2;
printf("LeftCDS Triggered: %\ n", |eftCDS_reading);

}
else if (RIGHT_IR > | R_THRESHOLD && RI GHT_IR < 175)
{
wai t (doubl echeck) ;
if (RGHT_IR > | R THRESHOLD && RIGHT_IR < 175)
{
avoid = 2;
printf("Right IR Triggered: %\n", RIGHT_IR);

}
else if (LEFT_IR > | R THRESHOLD && LEFT_IR < 175)

wai t (doubl echeck) ;
if (LEFT_IR > | R_THRESHOLD && LEFT_IR < 175)

avoid = 1;
printf("Left IR Triggered: %\ n", LEFT_IR);

| ef t CDS_r eadi ng:

%",

Page 27 of 30

}
else if (bunp_reading > 10) avoid = (TCNT % 2) + 1; void sort(void) {
} // END FUNCTI ON while (arnPosition < 6)

swi t ch(arnPosi ti on)

{
/1 GRAB THE M&M BRI NG THE ARM TO A POSI TI ON SO THAT WE CAN BEG N COLOR DETECTI ON
case 1:

/1 PUSH ARMS
/*
for (pushpw, pushpw >= push_in_pw, pushpw = pushpw - push_change) {
wai t (servodel ay) ;

A R ACTION ------mmmmmmmm oo o */ servo(push, pushpw) ;
void action(int n) { }
switch(n) { wai t (300);
for (pushpw, pushpw <= push_init_pw, pushpw = pushpw + push_change) {
case 1: // SOVETH NG TO THE RI GHT wai t (servodel ay) ;

servo(push, pushpw) ;
rand = (TCNT % MAXTURNDELAY) ;

stop(); *1
backwar ds(speed) ;
wai t (backwar dsdel ay) ; /'l SORT ARM
stop(); for (arnmpw; arnpw <= sortPosl; arnpw = arnpw + arm change)
if (rand < MAXTURNDELAY/ 4)
rand = MAXTURNDELAY/ 4; wai t (servodel ay) ;
servo(arm arnpw);
| ef t (speed); }
wai t (rand); wai t (750);
br eak; for (armpw;, arnpw >= sortPos2; arnpw = arnpw - arm change)
{
case 2: // SOMETH NG TO THE LEFT wai t (servodel ay) ;
rand = (TCNT % MAXTURNDELAY) ; servo(arm arnpw);
stop(); }

backwar ds(speed);
wai t (backwar dsdel ay) ;

stop(); wai t (candy_settle); /1 Allow m&mto settle
if (rand < MAXTURNDELAY/ 4) noLi ght = 0;
rand = MAXTURNDELAY/ 4; LEDS_OFF;
whi | e(noLi ght < 230) {
ri ght (speed); noLi ght = COLOR_CDS; /1 Obtain a zero reading
wai t (rand); Ilprintf("No Light: %\n", noLight);
br eak; }
case 3: // BREAK BEAM
stop(); GREEN_ON;
sort(); wai t (LI GHTON) ;
br eak; green = (noLight - COLOR CDS);
LEDS_OFF;
defaul t:
br eak;
}
VHI TE_ON;
} /1 End function wai t (LI GHTON) ;
white = (noLight - COLOR _CDS);
LEDS_OFF;
BLUE_QN,
wai t (LI GHTON) ;
blue = (noLi ght - COLOR CDS);
LEDS_CFF;
RED_ON;
wai t (LI GHTON) ;
red = (noLight - COLORCDS);
LEDS_OFF;

Page 28 of 30

col or = detect Col or (white,red, bl ue, green);

printf("Wite: % Red: % Blue: % Geen: % \n", white,red, bl ue, green);
/****k****k***k
** prown: 1 **
** bl ue: 2 **
** green: 3 **
** red: 4 **
** yellow 5 **
** orange: 6 **
** error: 0 **
**************/
switch(color) {
case 1:
servo(pl at, brownpos) ;
br eak;
case 2:
servo(pl at, bl uepos);
break;
case 3:
servo(pl at, greenpos);
br eak;
case 4:
servo(pl at, redpos);
br eak;
case 5:
servo(pl at, yel | owpos);
br eak;
case 6:
servo(pl at, orangepos) ;
br eak;
defaul t:
servo(pl at, badpos);
break; /*
*x
} /* END SWTCH */ >
wai t (500) ; >
arnPosition = 2; *x
br eak; * %

* %k

* %k

* %

/1 COLOR DETECTION IS FI NI SHED AND THE ARM | S FACI NG THE CORRECT BIN, DROP M&Mt o**

BOTTOM OF CHAMBER >
case 2: i

for (arnmpw; arnpw >= sortPos3; arnpw = arnpw - arm change){ *x

wai t (servodel ay) ; *x

servo(arm arnpw); >
}

wai t (200) ;
arnPosition = 3;
br eak;

/1 ROTATE ARM UNTIL M&M FALLS OUT
case 3:
for (arnpw, arnpw <= sortPos4; arnpw = arnpw + arm change){
wai t (servodel ay) ;
servo(arm arnpw);

wai t (fallout_del ay);
arnPosition = 4;
break;

case 4:
for (armpw;, arnmpw >= sort Pos5;

arnpw = arnpw - arm change) {

int detectColor(int white,

wai t (servodel ay) ;
servo(arm arnpw);

}
arnPosition = 5;
br eak;
/1 PUT PLATFORM AND ARM BACK TO I N I NI TI AL POSI TI ONS
case 5:

arnPosition = 6;
platpw = plat_init_pw
arnmpw = arm.init_pw,
pushpw = push_init_pw,
init_servos();
break;

defaul t:
arnPosition = 6;
platpw = plat_init_pw
arnmpw = arm.init_pw,
pushpw = push_init_pw,
init_servos();
break;

}/* End switch(arnPosition) */
} /*END WHI LE*/
} /* END FUNCTION */

Fok ok ok ok ok ok ok kk ok ok ok ok ok ok ok k ok ok ok k ok ok ok k ok ok ok kk ok ok kK

* COLOR DETECTI ON ALGORI THV
* AUTHOR: VI NH TRI NH
* FOR USE BY: EM
COLOR CODES:
white: 7
br own:
bl ue:
green:
red:
yel | ow
or ange:

error:
HEK KKK KKK KKK KKK KKK KKK AR KK KA [

*x

*x

*k

*k

*x

*x

*k

*

*k

*

* %k

**

COUNWNE

int red, int blue, int green) {
if ((white + red + blue + green) <= 260) {
/* Brown, Perhaps Blue */

if ((green + white + blue - red) <=

else return 2; // blue

116) return 1; // brown

}

else if ((red <=78)) {

/* Blue, Perhaps Green */
if ((green + white + blue + red) <=
el se return 3; // green

367) return 2; // blue

else if ((green + blue - red) >= 55) {

/* GREEN, Perhaps Yellow */
if ((white + red - green - blue) <= 110) return 3;
else return 5; // yellow

/1 green

}
else if ((green+white+blue) >= 308) return 5; // yellow

Page 29 of 30

else if ((green + white + blue + red) >= 372) return 6; // orange
/* RED, Perhaps Brown */

else if ((red >= 115)) return 4; // red

else return 1;

Page 30 of 30

