University of Florida
Department of Electrical and Computer Engineering

EEL 5666

Intelligent M achines Design L abor atory

Toby the Toy-bot
Final Written Report
4/22/2003

Mike Collins

TA: Uriel Rodriguez and Jason Plew

Instructor: A. A Arroyo

Table of Contents

FINAL WRITTEN REPOR T . ettt ettt e e e et et e e e et e e e e e e e eeeeaeaeanaaanennns 1
TABLE OF CONTENT S ettt ettt e et et e e e e e e e e e e e e eeemee e eeaeanannn 2
A =13 I 72 O U 3
EXECUTIVE SUMM A RY ottt et et et e e e et et e e e e e e e e e e e e e eeeaeananaaaaannn 4
INTRODUCT ION .ottt et e et et e e e e e e e e e e e e e e e e e e e s e e e e e nenaeeaeananann 5
M OB LE PL AT O RM e e e e et e e e et e e e e e e e e e et e e e e eeeeaaeanenens 5
[2SS TS I =7 (VT = 5
N O 1 7N I 1 7
[2SS N TS I =7 V] = N 8
LY N = Ty] = 9
S VSO 10
L AN Y O 13
CON CLUSION ettt e et ettt ettt e e e e e e e e e e e s sameen e eanananenenenannnnnans 14
FUTURE WORK ...ttt et ettt ettt e e et et et et et e e e et et et e ettt et e e e e e e e et e b et et eses e aaaenenen 14
DOCUMENT AT ION .. ettt et ettt et e e e e e e e e e e e e e eeeeneeeeaeanameanenn 15
N d =1 N1 1 O U 16
(O] = 16
F N N DR = N T = S = = 26
IS0 N E I 7Y V1 o 28

Abstract

Toby iswandering seek and acquire robot. His mission isto find toys and pick them up.
Children at early ages are unable or unwilling to pick their toys. “Toby the Toy-bot” isa
self-propelled mobile robot that wanders the floor in the dark and searches for toys or
other small objects to pick up. While this may seem like a silly application of technology,
these same behaviors do have application in seeking and manipulating objects in other
contexts. | am using this as a sample of material handling, open pit mining or of debris
removal.

Executive Summary

Toby the Toy-bot is mobile toy box. He is designed to wander aroom at night looking for
small toys and pick them up. I built his brains on the Atmel mega323 micro controller. |
use IR and bump switches to sense the world around Toby. He uses three top mounted IR
sensors for collision avoidance. He uses afourth IR sensor for toy detection. In front, |
added a scoop and grabbing finger that pick up the toys. The scoop is actuated by a brass,

lifting arm mounted to a gear reducer. | implemented Toby’s behaviorsin c.

Introduction

Toby the Toy-bot is mobile toy box. He is designed to wander aroom at night looking for
small toys and pick them up. He uses three top mounted IR sensors for collision
avoidance. He uses a fourth IR sensor for toy detection. | will explain each subsystems

hardware and the code that goes along with it.

Mobile Platform

Toby’s platform is athree point of contact chassis. His body and most of hisframe are
1/8" 5 ply aircraft plywood. He was designed in AutoCAD and cut form sheet stock on
the IMDL’s T-Tech CNC router. | made additional pieces for the mounting hardware and

cover by hand or from stock hardware components.

The platform houses the brains, power (13 AA batteries in banks of 8 and 5 cells) and
sensors. The platform serves to both hold in place and provide any positioning required
of the sensors. The platform will also provide the base link for the manipulator. The
platform is able to carry a payload of 4 pounds of toys.

L essons L ear ned

While building the platform, | realized that the parts don’t have to be perfect, they have to
work. It's better to prototype several designs badly and to find parts that work well
together than to build beautiful parts that don’t work. | also discovered that foamed PVC
plastic is a very easily worked material. It can be cut and drilled like wood but can aso

be bent and twisted with the heat of aheat gun. It isalso very light for its strength.

Figure 1 The platform in progress (ruler in lower left is6” long)

Figure 2 Thefina platform (ruler is6” long)

Actuation

Toby’s platform consists of two forward drive wheels and a rear omni-ball roller (Figure

3). Steering will be accomplished by driving the forward wheels at different rates. A

mated pair of hacked servomotors directly drives the forward wheels.

Figure 3 Rear omni-ball roller wheel

Toby moves with use of two hacked, 6-volt servomotors. The manipulator is driven with
servos. The primary (shoulder) linkage uses a 6-volt, 42 oz.-in. servo. This servo has an

extra4:1 gear reducer on it (Figure 4). Attached to the final gear is large potentiometer

that serves as both the shaft of the servo and position sense.

Figure 4 4.1 Gear reducer

The secondary (wrist) linkage uses a 4.8-volt, 23 oz.-in. servo. A 4.8-volt, 23 oz.-in.

servo, actuates the finger.

L essons L ear ned

| learned the hard way that servos function if they have less than their rated power. They
function ERATICALLY however.

| also learned that the best way to calibrate a servo isto cut asmall groovein to the
potentiometer of the servo. Thisway | can insert a screwdriver through the drive gear
(This can even be done with many wheels still on.) and set the potentiometer to give the
desired speed at a set frequency. (see Figure 5)

| also kept learning to keep it smple . My original design used afour bar linkage to lift
toys. The gear reducer did a better job. | had even intended to put counterweight on the

arm but that proved to be unnecessary.

Figure 5 How to calibrate a servo without opening

Power

Toby will be battery powered. He currently carries 13 AA cellsin two banks of five and
eight cells. Thisallows for a group for motor power and a group of cells for brainpower.
It also allows for isolation of the servo motors from the sensors and microcontroller.

Time permitting a recharging system would have been added.

Manipulator

The manipulator is able to pick up half pound, non-rolling objects and lift them into the
hopper. These objects must have a center of mass less than two inches from the object’s
edge. The manipulator is based on a high torque servo and a reducing gear train. |
attached a set screw collar to the external potentiometer of the shoulder. Moving down

the manipulator arm, | then added a brass frame that holds the scoop and the wrist servo.

This small servo allows the scoop to have an additional rotational degree of freedom.
With thiswrist servo, | am able to tilt the scoop and dump the contents of the scoop into
the hopper and to change the angle of attack when it is picking objects up. Additionally |
can tilt the scoop for angling the IR sensor mounted on the top of the scoop for sensing
toys. A second small servo actuates the finger attached to the scoop. The finger keeps
lighter objects from being pushed away from Toby when he moves in to pick them up.
The finger itself is made from an extension spring and piece of formed PV C piece that

actsas areturn spring. (see Figure 16.)

Sensors

The sensors will alow Toby to find out what isin the world around him. Toby’s world
consists of toys and obstacles. A toy is any half-pound, non-rolling object. An obstacleis
every other thing. Sensor use:

IR proximity detectors: (4 Sharp GP2D120) to find obstacles and toys. Used also to tell
the difference based on height and width. I mounted three sensors on top of Toby for
collision avoidance. These sensors are mounted at 0°, 25°, and 335° off of the forward
line of travel. | mounted a fourth sensor on the scoop to detect toys within the grasping
range of the finger. This sensor is mounted looking 10° down and to 15° to the right. It
also helps me to detect toys that are further away if | tilt the scoop up.

| used a multiplexed analog to digital converter to read the data from these sensors. | read
once and discard the data (to let the ADC settle down), read again and store the datain an
array and switch to the next sensor on the ADC. If the values fall out side the range of the

IR sensor, | ignore the new value. | repeat this cycle 16 times for each of the IR sensors.

10

To find the distance from this sensor, | take the average of these values at the time | need

it. (see appendix for more information on these sensors)

Bump switches: (3+1) to find obstacles and toys. | use three of the bump switchesto
detect obstacles. | mounted these on single voltage divider. Each of the bump switches
has skirt or swivel that is attached to the platform. I use the other contact switchesto find
out if thereis anything in the scoop. (these are mounted on a separate voltage divider

because | had an error in my code and this solved the problem)

Figure 6 Bumper

11

Analig Signal

Figure 7 Voltage divider interface

Light detector: (1 CdS) used to senseif itis“day.” | used this light sensor to detect light,

if itislight enough, Toby stops working.

Figure 8 CdS Light detector

12

T

45
1 A Cazl
.i fnalog Sigral

Figure9 Light detector interface

Behaviors

Toby’ s brains are instantiated in a Progressive Resources, LLC, MegaAVR developers
board with an on board ATmega323 microcontroller. His mind is written in ¢ and allows
him to have useful behaviors that will include:

Pick up /store toys (but not anything so heavy it can't lift it) If atoy is detected, pick it
up, put it in the hopper.

Wander: If there is nothing to do wander around.

Sleep during the day. If bright light is detected it must be “day,” stop and wait for night.
Seek toys: use sensor to look for toys.

Avoid walls/obstacles (anything taller than atoy or too heavy to lift) maneuver around

anything that can’t be picked up.

13

Figure 10 Tilt sensor for further experimentation

Conclusion

As atest bed for sensors and control behaviors, | find that Toby serveswell. | think that
he can be use for expansion of his current capabilities too. | shortchanged Toby’s higher
level behaviors by taking so long to build his platform and implement his collision

avoidance. Toy seeking leaves much to be desired.

Futurework

If 1 were to continue working on Toby, I'd like to add more bump switches and a tilt
switch to the scoop. (see Figure 10) I'd aso like to build a homing routine with the light
sensors and a light source on a charging station. If 1 were just doing this for fun I’d be
adding many more behaviors. | am very interested in trying a more modular arbitrator. If

| were starting over, | would definitely get more ideas (i.e. code and circuits) from my

14

classmates. It seems to be much easier to buy, beg, borrow or steal (code anyway) things
than to “roll your own.”

That said, I must now thank those whose help | should have asked for sooner:

Professors Arroyo and Schwartz. Teaching Assistants Uriel Rodriguez and Jason Plew
The former students of IMDL for their understanding of the Atmel microcontroller and
the code they shared with us. Specifically, C. Andrew Davis and Amit Jayakaran. Ashish
Jain whose support and interest kept me going when all seemed |ost.

My classmates. Steve Vanderploeg, Jordan Wood, Kyle Tripician, Brian Ruck, Danny
Kent and Roberto Montane.

Documentation

Progressive Resources, LLC http://www.prllc.com

Acroname http://www.acroname.com

Mark 111 Robot Store http://www.junun.ora/Markl|1/Store.jSp

Servo City http://www.servocity.com

Z€ell’s Ace Hardware 3727 W. University Ave. (phone 352-378-4650)

Much more useful for small parts than the home improvement stores

Budget Robotics http://www.budgetrobotics.com/

Robot Builder's Sourcebook http://www.robotoid.com/

by Gordon McComb

15

http://www.prllc.com
http://www.acroname.com
http://www.junun.org/MarkIII/Store.jsp
http://www.servocity.com
http://www.budgetrobotics.com/
http://www.robotoid.com/

Appendices

Code

/1 Toby the Toy Bot

// Coll avoid and armaction on ir4
#i ncl ude <i o. h>

#i nclude <interrupt.h>

#i ncl ude <mat h. h>

#i ncl ude <SI G AVR h>

#define irLeft sanpl e[0x00]
#define irR ght sanpl e[0x01]
#define irMd sanpl e[0x02]

#define close 0x22 // 10
#define very_close 0x38 // 40

#define irScoop sanpl e[0x03]

#defi ne Toy _Gi pC ose Ox3F
/1 This is only wuseful if scoop is tilted aft
#defi ne Toy Ho 0x30

#def i ne phaseLength 0x74 //116*1024/6MHz = 20mns
#defi ne Servo_Mn 0x03

#defi ne Servo_Max 0x0d

#defi ne Servo_DutyOn (((Servo_Max-

Servo_M n) *ServoDut yCycl e/ Servo_Max) +Servo_M n)
#define Servo _DutyOrf (phaselLengt h-Servo_Dut yOn)

/] #define drivers
#def i ne nunBervos 0x05

#define DrivePort 0x00
#define DriveStar 0x01
#define LiftServo 0x02
#define TiltServo 0x03
#defi ne Finger Servo 0x04

#defi ne DriveAheadFul | Servo_Max
#define DriveReverseFul | Servo_Mn
#defi ne DriveAheadHal f 0x09
#define DriveReverseHal f 0x06
#define DriveStop 0x00
#defi ne speediax 0x06

#def i ne speedM d 0x07

t ypedef signed char s08;
t ypedef unsigned char u08;
t ypedef unsi gned short ulé6;

t ypedef unsigned |ong u32;

/1 dobals for servo control

vol atil e u0O8 Phase= 0; //where am| in a Servo phase

vol atil e u0O8 segnent = O;

vol atil e u08 ServoDutyCycl e[nunServos]; //Servo_Mn 0x03 to Servo_Max
0x0c

vol atil e u08 coneBackl n;

vol atile u08 resetAll = 0;

vol atil e u08 curr Speed[nuntervos];

vol atil e u08 servoState, beenServi ced[hunervos], ti neUsed,;
u08 testcount;

void init_notors(u08 num
{ /'/ make sure that you power with full six volts or this code is crap
u08 cnt;

[/1nit tiner O

out p(OxFF, DDRB) ; //set portb as output

out p(0x02, Tl M5K) ; //set COE bit=1 for interrupt enable at
out put conpare

out p(0x0d, TCCRO) ; //set CTC0=1 to clear at compare and
CSQ2: 1: 0=001 prescal e at ck speed/ 1024

out p(0x75, OCRO) ; //set value in OCRO reg to 117=0x75 servo
peri od

/llnitialise the notors

Phase= 0;

segnment = O;

ti meUsed = O;

conmeBackl n = phaselLengt h;

resetAll = 0;

servoState = 0x00

out p(servoState, PORTB); // set |ow
for (cnt=0; cnt<=num cnt ++)

{
ServoDut yCycl e[cnt] =0;
cur r Speed[cnt] =0;
beenServi ced[cnt] = O;
}

}

SI GNAL(SI G_ OQUTPUT_COWPAREQ){ // This tinmmer controls all the servos
used i n Toby

u08 pin = 0;
if (resetAll == 1) {
resetAll = 0;
Phase = 0;
out p(1, OCRO) ; //set value in OCRO reg to duty pulses to

count
} else if (Phase > 0 && Phase < phaselLength) {
segnent = coneBackl n;
ti mneUsed = Phase;
for (pin = 0; pin < nunBervos; pin++){

17

if((beenServiced[pin] !'= 1) && (Phase ==

currSpeed[pin])){
chbi (servoSt at e, pin);
beenServiced[pin] =1

}

coneBackl n = phaselLength - tineUsed;
for (pin = 0; pin < nunServos; pin++){
if ((comeBackln > (currSpeed[pin]
(beenServiced[pin] = 1)){

coneBackl n = (curr Speed[pi n]
}

}

out p(coneBackl n, OCRO) ; //set value in OCRO reg to

duty pul ses to count
Phase += comeBackl n;

i f (Phase == phaselLength) resetAl = 1;
} else if (Phase > phaselLength) {

resetAll = 0;

Phase = 0;

}
if (Phase == 0){
segnment = O;
ti meUsed 0;
for (pin 0; pin < nunBervos; pin++){

- tineUsed)) &&

- tineUsed);

curr Speed[pin] = ServobDutyCycl e[pin];

i f(currSpeed[pin]>0) {
sbhi (servoState, pin);
beenServi ced[pin] = O;

} else {
chi (servoSt at e, pi n);
beenServiced[pin] =1
}

coneBackl n = phaselLengt h;
for (pin = 0; pin < nunBServos; pin++){
if ((comeBackln > (currSpeed[pin]
(beenServiced[pin] = 1)){
coneBackl n = (curr Speed[pi n]
}
}

out p(coneBackl n, OCRO) ; /lset val ue
duty pul ses to count
Phase += coneBackl n;

i f (Phase == phaseLength) resetAl = 1;
}
out p(servoSt at e, PORTB) ;
return;
}
voi d Set Port Mot or (u0O8 speed) {
/1 Port:forward high --- backward | ow

if (speed == 0) {
ServoDut yCycl e[DrivePort] = O;
} else {
if (speed < Servo_Mn) {

- tineUsed)) &&

- tineUsed);

in OCRO reg to

ServoDut yCycl e[DrivePort] = Servo_M n;

18

} else if (speed > Servo_Max) {
ServoDut yCycl e[DrivePort] = Servo_Max;
} el se ServoDutyCycl e[DrivePort] = speed;
}

return;

}

voi d Set St ar boar dMot or (u08 speed) {
/] Starboard Mdtor has LOWvalues for forward
if (speed == 0) {
ServoDutyCycl e[DriveStar] = 0
} else {
if (Servo_Max-speed < Servo_Mn) { // OK since "0" case
al ready done

}
ServoDut yCycl e[DriveStar] = Servo_Max - speed + Servo_M n;

speed = Servo_Max - Servo_M n;

}

return;

void setDrives(u08 | eftSpeed, u08 right Speed) {
Set Port Mot or (| ef t Speed) ;
Set St ar boar dMvbt or (ri ght Speed) ;
return;

/1 Definitions for ADC | ong sanmple IR

#def i ne sanpl eMax OxOF

#def i ne sanpl eBeforeSwitch 4

#def i ne nmaxAnal ogChannel s 0x06 // shall be 0 based -i.e. 0 neans one
ana chana

#defi ne baseChannel Cnt 0x20

#def i ne | Rvax O0xAQ0

#define | RM n 0x02

#def i ne | eft 1 RChannel 0x00

#def i ne ri ghtl RChannel 0x01

#def i ne m dl RChannel 0x02

#def i ne scoopl RChannel 0x03

#def i ne |i ght Sense 0x04

#def i ne bunpChannel 1 0x05

#defi ne bunpChannel 2 0x06

#define | mABunp(inp) ((inp==bunpChannel 1) || (i np==bunpChannel 2))

/1 d obals for ADC
vol atil e u08 sanpl e[maxAnal ogChannel s];
vol atil e u08 hol di ng, t oss;

vol atil e u08 channel = baseChannel Cnt;
vol atil e u08 of fset Chan = baseChannel Cnt +1
/1 channel sanpl eN

vol atil e u08 wi deSanpl e[maxAnal ogChannel s] [sanpl eMax] ;
vol atile u08 switchlndex = 0;// 0-4 sanpl eBeforeSwitch
vol atil e u08 sanpl el ndex = 0;// 0-0xO0F sanpl eMax

19

vol atil e u08 channel I ndex = 0;// 0-7 maxAnal ogChannel s

/1 dobal values for sensors
/1 for bumpChannel 1

#def i ne bunmpFi nger 0x05
#def i ne bunmpScoop 0x06

#def i ne bunmpBot t om 0x07

/1 for bunpChannel 2

#def i ne bunpLeft 0x08

#def i ne bunmpRi ght 0x09

#def i ne bunpBack O0x0A

vol atil e u08 sensorState[11];// 4 IR 343 bunps; CdS

SI GNAL(SI G_ADC) {
/1 when the ADC is finished reading value this interupt

sanpl e array and average it with the total array
/1 far cl ose

is called
/1 read each channel "sanpleBeforeSwitch" tines then add it to the

/1 legitimate voltage range is .35 to 2.75V so legit values for the ADC

are 0x02| | xx to OxAQ| | xx

u08 hol dADC;
u08 i ncLi st;

i f (1 mABunmp(channel Index)) {// this is for bunmps changi ng

toss = inp(ADCL); // get low 8 bits
hol dADC = i np(ADCH);// get high bits

/! sanple in legit range increment and average el se inc
if (switchindex '= 0) {// discard first sanple of ADC

wi deSanpl e[channel I ndex] [0] = hol dADC,

swi t chl ndex++;

if (switchlndex > sanpleBeforeSwitch) {
swi tchl ndex = 0;
channel | ndex++;

i f (channel I ndex> (maxAnal ogChannel s)) channel | ndex

= O'
}
} else {// thisis for IR s
toss = inp(ADCL); // get low 8 bits
hol dADC = i np(ADCH);// get high bits
/1 sanple in legit range i ncrement and average el se inc
if (switchindex !'=0) {// discard first sanple of ADC
i f((hol dADC < | Rvax) && (hol dADC > IRM n)) {
wi deSanpl e[channel | ndex] [sanpl el ndex]
hol dADC;

sanmpl el ndex++;

i f (sanpl el ndex > sanpl eMax) sanpl el ndex

}

swi t chl ndex++;
if (switchlndex > sanpl eBeforeSwitch) {
swi tchl ndex = 0;

0;

20

channel | ndex++;
i f (channel I ndex> (nmaxAnal ogChannel s)) channel | ndex

/1 select channel via ADMJX

out p((baseChannel Cnt +channel | ndex), ADMUJX);// baseChannel Cnt sets
the apropriate control bit

return,

}
void init_ADC(void)
{
out p(0x00, DDRA) ; //set port a as input
channel =baseChannel Cnt ;
out p(baseChannel Cnt , ADMUX) ;
out p((1<<ADEN) | (1<<ADSC) | (1<<ADI E) | (1<<ADFR) | (1<<ADPS2) | (1<<ADPS1
) | (0<<ADPS0), ADCSR);
swi t chl ndex = O;
sanpl el ndex = O0;
channel I ndex = 0;

return;
}
u08 get ADC(u08 channel)
{

u08 get ADCCY ;

ulé runni ngTotal = O;

i f (1 mABump(channel)){
runni ngTotal = wi deSanpl e[channel][0];
} else {// I"'man IR
for (get ADCCt = 0; get ADCCt <=sanpl eMax; get ADCCt ++) {
if ((w deSanpl e[channel][get ADCCt]>I RM n) &&
(wi deSanpl e[channel][get ADCCt] <I Rvax)) { // valid val ue
runni ngTot al += w deSanpl e[channel] [get ADCCt | ;
} else {
runni ngTotal += sanpl e[channel];// add prevous
val ue to the runni ng average
}
}
runni ngTotal = runni ngTot al / sanpl eMax;

}
get ADCCt = runni ngTot al ;
sanpl e[channel] = runni ngTot al ;

return get ADCCt;// wi deSanpl e[channel][0x01]
}
voi d updat eADCChannel s(voi d)
{

u08 chanl nc;
u08 chanVal ue;
u08 t oss=0x0;

for (chanlnc = 0; chanl nc<=naxAnal ogChannel s; chanl nc++) {

chanVal ue = get ADC(chanl nc);
switch (chanlnc) {

21

case | eftl RChannel

case rightl RChannel

case mi dl RChannel

case scoopl RChannel

case |ight Sense
sensor St at e[chanl nc] = chanVal ue;
br eak;

case bunpChannel 1:
i f (chanVal ue>0xA9) {
sensor St at e[bunpFi nger] =0x01
chanVal ue - =0xA9;

i f((chanVal ue>0x7F) &&(chanVal ue<0x88)) ({
sensor St at e[bunpScoop] =0x01
chanVal ue -=0x7f;

}

i f((chanVal ue>0x4E) &&(chanVal ue<0x58)) {
sensor St at e[bunpBot t om =0x01
chanVal ue -=0x4e;

}

br eak;
case bunpChannel 2:
/I sensor St at e[bunpChannel 2] = chanVal ue;
i f (chanVal ue>0xA9) {
sensor St at e[bunpLeft] =0x01
chanVal ue =chanVal ue - 0xA9;
toss += 0x01;

}

i f((chanVal ue>0x7F) &&(chanVal ue<0x88)) ({
sensor St at e[bunpRi ght] =0x02;
chanVal ue -=0x7f;
toss += 0x02;

}

i f((chanVal ue>0x4E) &&(chanVal ue<0x58)) {
sensor St at e[bunpBack] =0x04;
chanVal ue -=0x4e;
toss += 0x04;

/1 sensor St at e[bunpLeft] = toss;
sensor St at e[bunpRi ght] = toss;
sensor St at e[bunpBack] = t oss;

br eak;

}

void Wait _opt(int time) {
volatile int a, b, c, d;

for (a =0; a<tinm, ++a) {

22

for (b =0; b < 10; ++b) {
for (¢ =0; ¢ < 66; ++c) {

d =a+ 1;
}
}

}

return;
}
/1 lifting
#defi ne Servo_Nuetral 0x00
[Tift

#define Lift_Down 0x09
/1 nomal with no others running 0x07
#define Lift_Half OxOa
#define Lift_Up 0OxO0d
/1 nomal with no others running 0x0d
#define Lift_Nuetral 0x00
[Tilt
#define Tilt_For 0OxO0a
#define Tilt_Aft 0x08
#define Tilt_Nuetral 0x00
/1 finger
#def i ne Fi nger _Open 0x03
#def i ne Fi nger _Cl osed 0x07
#def i ne Fi nger Nuetral 0x00
u08 | ed = 0x00;

void liftUp(void)
{ ServoDut yCycl e[LiftServo] = Lift_Up
Wait _opt (Oxff);
Wait _opt (Oxff);
Wait _opt (Oxff);
Wait _opt (Oxff);
ServoDut yCycl e[Li ft Servo] = Servo_Nuetral

}
void liftDown(void)

{
/1 Shoul der _Down
ServoDut yCycl e[Li ft Servo] = 0x07
Wait _opt (Oxff);
Wait _opt (Oxff);
Wait _opt (Oxff);
ServoDut yCycl e[Li ft Servo] = Servo_Nuetral
}

void tiltFor(void)

{
/1 Tilt_For
ServoDutyCycle[TiltServo] = Tilt_For
Wait _opt (Oxff);
ServoDut yCycl e[Til t Servo] = Servo_Nuetral
}

void tiltAft(void)
{

1 Tilt_Aft
ServoDut yCycl e[Ti | t Servo]
Wait _opt (Oxff);
Wait _opt (Oxff);
Wait _opt (Oxff);
ServoDut yCycl e[Ti | t Servo]

Tilt_Aft;

Servo_Nuetral ;

}
void grab(void)
{

/1 Finger_d osed
Servobut yCycl e[Fi nger Servo] = Fi nger _C osed,;
Wait _opt (Oxff);
Wait _opt (Oxff);
Wait _opt (Oxff);
ServoDut yCycl e[Fi nger Ser vo]

Servo_Nuetral ;

}

void rel ease(void)

{
/1 Finger_Open
ServoDut yCycl e[Fi nger Servo] = Fi nger _QOpen;
Wait _opt (Oxff);
Wait _opt (Oxff);
Wait _opt (Oxff);
Wait _opt (Oxff);
Wait _opt (Oxff);
Ser vobDut yCycl e[Fi nger Ser vo]

Servo_Nuetral ;

}
voi d reset Arm(voi d)
{
rel ease();
tiltFor();
[iftDown();
}
voi d grabToy(voi d)
{
grab();
tiltAft();
[iftUp();
reset Arm();
}

int main(void)

{ u08 | ed;
uo8 test = 0;
u08 Servtes = 0;
u08 | eftl RTest = 0x00;
u08 rightl RTest = 0xO00;
u08 mi dl RTest = 0x00;

i nit_notors(nunmServos);

24

out p(OxFE, ADCSR) ;
out p(0x20, ADMUX) ;

out p(OxFF, DDRC) ; //set portc as output
out p(OxFF, PORTC) ; //set all leds at portc on
sei (); /1set global interrupt enable

sbi (ADCSR, ADSC);

ServoDut yCycl e[Dri vePort]
ServoDut yCycl e[Dri veSt ar]

0x00;
0x00;

reset Arm();

test = Oxff;
out p(~t est, PORTC) ;
while(1) {

test = 0;

Wait _opt (100);

updat eADCChannel s() ;

if (irLeft>0x1f){
| ef t | RTest
} else {
| eft | RTest
}

if (irR ght>0x1f){

rightl RTest = 0x01;
} else {

ri ghtl RTest = 0x00;

0x01;

0x00;

}
if (irMd>0x16){

m dl RTest = 0x01;
} else {

m dl RTest = 0x00;
}

test = (leftlRTest<<2)+(m dl RTest <<1)+(rightl RTest);

switch (test) {

case 0x00:// str fast
set Dri ves(0x0a, 0x0a) ;
br eak;

case 0x01:// left
set Dri ves(0x00, Ox0A) ;
out p(0x00, PORTC) ;
br eak;

case 0x02:// ???? slowrt *** not for final
set Dri ves(0x09, 0x00);
br eak;

case 0x03:// hard left
set Dri ves(0x06, 0x09) ;
br eak;

case 0x04:// right
set Dri ves(0x09, 0x00);
br eak;

case 0x05:// str slow
set Dri ves(0x08, 0x08) ;
br eak;

case 0x06:// hard right
set Dri ves(0x09, 0x06) ;
br eak;

case 0x07:// stop
set Drives(0x06, 0x06) ;
Wait _opt (Oxff);
Wait _opt (Oxff);
set Dri ves(0x00, 0x00) ;
Wait _opt (Oxff);
set Dri ves(0x06, 0x09);
Wai t _opt (0xA0);
br eak;

}/ ! end switch

i f(irScoop>Toy Gripd ose) {
set Dri ves(0x00, 0x00);
grabToy();

}

out p(~test, PORTC) ;

And sensor stuff

IR Object size detection voltage as target area and range change
Voltagesas Measured by ADC

Target Area[sg. in.]

Range[in.] 9 4 1
3 94 111 88
6 48 53 30

9 23 13 17

Figure 11 Top View of IR isometric voltages

e - s D e e e W e _— e — - - —r— —
TERL RS = a e s S D T r— e L S

Figure 12 Side View of IR isometric voltages

Black lines are | sometric voltages as measured by ADC
Red lines are angle references

Dashed red lines are parall€l to top and bottom of sensor casing

These IR sensors seem to be most sensitive afew degrees off of their center, sideto side

but are consistent top to bottom. (see Figure 11 & Figure 12)

27

L essons Learned

Here are some images taken of an IR sensor working. | wish I'd thought of using this
camerabefore | fiddled with everything else.

Figure 13 IR Beam on awhite sheet of paper (side)

Figure 14 IR Beam on awhite sheet of paper (front)

i ‘"'.El:“i': D s SRR S T gt R e ..';.'
Figure 16 Toby asseenin visible light

29

30

