StalkerBot

Karl Dockendorf
EEL5666C
Intelligent Machine Design Laboratory
TAs. Jason Plew, Uriel Rodriguez

Instructor: A. A. Arroyo

TABLE OF CONTENTS

Abstract

Executive Summary
Introduction
Integrated System
Mobile Platform
Actuation

Sensors

Behaviors
Experimental Layout and Results
Conclusion
Documentation

Appendices

15

16

18

19

20

ABSTRACT

The StalkerBot is an autonomous mobile robot that exhibits behaviors of an
animal stalking prey. The robot is based on infrared sensors, bump detection switches, a
digital compass, a photoreflector, a CMU-Cam, and radio frequency data transmission.
These sensors would be incorporated together to allow the robot to track moving objects
and calculate their relative position. However, the photoreflector was damaged and
unable to be replaced.

While the StalkerBot is not following its prey, it remains still waiting for an
object to move. An Atmel ATmegalO3 microcontroller controls the robot motion and
behavior. The ATmegal03 header board is tested and functional, as are the sensors. The
entire robot has been integrated to satisfaction (aside from the photoreflector).

EXECUTIVE SUMMARY

The StalkerBot project encompasses multiple difficulties. There are many sensors
integrated into the project as are there behaviors. The sensors employed include bump
switches, infrared rangers, digital compass, photoreflector, CMUcam, and radio
frequency communication modules. Each sensor plays a unique role. The most critical
of which is the CMUcam module that provides “vision” for the robot. In addition, the RF
communication hardware provides alink for data transfer.

The behaviors the StalkerBot can exhibit are unique to severa of these sensors.
The ability to navigate with a digital compass provides extra functionality to the robot.
The CMUcam provides imaging capabilities to the robot. The camera module furnishes
statistical data on image windows such as mean and standard deviation. These values can
be used to detect image disturbances (i.e. movement).

Recognizing moving objects and tracking them is a primary mission of this
project, along with navigation. The synthesis of the sensors and behaviors allows the

StalkerBot to perform its specified objectives.

INTRODUCTION

The StalkerBot mobile autonomous robot is developed to track moving objects.
For this to work, the StalkerBot must identify a change in its surroundings then pursue
this disturbance. Aside from this functionality, the StalkerBot will calculate its distance
and bearing along with that of the target in reference from StalkerBot’ s starting position.

This document provides detailed information on the sensors, behavior, mobile
platform, and movement of the StalkerBot. Each section contains detailed information

regard the operation of the component and its integration into the robot.

INTEGRATED SYSTEM

The StalkerBot is based on the Atmel ATmegalO3 microcontroller. The
microcontroller comes as part of the Olimex ATmegalO3 header board (See Figure
HHHHHHHHAH). The header board is attached to the sensors via wirewrap and soldering on
a perf-board. The robot is based on infrared sensors, bump detection switches, a digital
compass, a photoreflector, and a CMU-Cam. In addition, the StalkerBot contains an
onboard radio frequency (433.92 MHZz) transmitter. The StalkerBot is intended to exhibit

behaviors of an animal stalking prey.

Compass
K Motor
Control
Fhotoreflectory ‘l’
Servos
%,
Atmel ATmegalls DC motor
Infrared
Rangers N
ClUcam Felative
IMawigation
Bumyp
Switches
EF Link

Figure 1: Block Diagram
Each sensor type is integrated into robot to gather a particular piece of data. The
bump switches provide the robot with a means to detect collisons. The infrared ranging
modules detect objects before the robot collides with the object. The compass module
and photoreflector generate information regarding speed and trgjectory. The CMUcam is
the most crucia sensor to the behavior of the robot; the camera processes images and can

track “blobs’ of color.

MOBILE PLATFORM

The platform design for the StalkerBot is based on a toy radio controlled car.
This platform was chosen for severa reasons. First, the toy car platform is relatively

sturdy (as compared with an airplane wood platform). Second, the toy car comes with

motors which can drive the car forward at significant speed. Quick pursuit is one of the
design goals.

The RC car has been modified to fit a new steering servo. The origina steering
servo was removed and a standard servo was used to replace it. Additional grooves and
dots were cut into the body of the radio controlled car. The remainder of the steering
system was left unchanged.

The finished product has produced a toy car which has been overloaded with
instrumentation and batteries. Thus, the RC car has been weighted down and moves
significantly slower than originally planned. Weight has had a dramatic impact on
acceleration.

The original RC car was purchased at Toys ‘R’ Usin Gainesville, FL on February

9, 2003. Theradio controller car (* Super Tret’) was manufactured by FastLane R/C, Inc.

ACTUATION

The actuation of the robot platform is the same as a radio controlled car. The car
is able to turn the front wheels left and right to steer. A high- speed motor drives the car
forward and backward. Actuation is controlled by the behavior agorithms detailed later
in this report.

A standard servo is used to control steering. The MX-400 servo is distributed by
Maxx Products, Inc. and resold through Acroname, Inc. (4894 Sterling Drive, Boulder
CO, 80301-2350, phone: 720-564-0373) via their website (http://www.acroname.com).

The servo specifications are in the table below.

Size LxHxW | Weight (0z) Torgue (inroz.) | Speed (sec / 60 | Ball Bearing
(in) degrees)

1.60x0.79x1.50 | 1.66 44 0.15 Oilite

The DC motor, which drives the RC car in forward and reverse, is unknown. This
motor is optoisolated from the microcontroller board. The isolated signals are used to

activate pins on the original RC car controller board.

SENSORS

The StalkerBot operates based on information gathered by its sensors. Bump
sensors, infrared sensors, a digital compass, a photoreflector, and a CMU-Cam provide
the information required.

Bump Sensors

Bump switches are used to detect when the robot bumps into an object. The
bump sensors are mounted around the outside of the robot. The triggering of these
sensors indicates contact with an object. These sensors are simple switches which are

polled by the microprocessor before it evaluates its behavior.

Infrared Sensors

IR range finders provide approximate distance to trget values. Two of these
components will be mounted on the front of the robot. The devices being used are Sharp
GP2D12 infrared rangers. These components were purchased from Acroname, Inc.
(4894 Sterling Drive, Boulder CO, 80301-2350, phone: 720-564-0373) via their website

(http://www.acroname.com).

Figure 2: Sharp GP2D12 photo

B Specifications B Output pattern
GP2D12 {Ta=23"C} Output
Parameter Symbol Rating (3.1V)
Supply voltage Vee 4580 5.5V :
Dissipation current le MAX 35mA |
Measuring range L 10t &0em !
0.6v) — ~—

Qutpul type — Analog outpul I I
Operating temperature| Topr -1 ta +60°C u;.: ' Drtance

Figure 3: Sharp GP2D12 details
The infrared rangers are aso polled before each evaluation of the robot’s

behavior. These components act as an early warning system for collision detection

Digital Compass
The compass provides bearing information. Along with the speed measurements,
this device enables crude calculation of relative position. The device being employed is

the Devantech CMPS03 magnetic compass module. The vendor for this compass is

10

Acroname, Inc. (4894 Sterling Drive, Boulder CO, 80301-2350, phone: 720-564-0373);

the purchase was made via their website (http://www.acroname.com).

Fin g - 0v Ground
Fin & - Mo Connect
Fin 7 - ali60Hz
Fin & - Calibr ate
Fin 4 - Mo Connect
Fin 4 - Py

Fin 3 - SDA

Fin 2 - SCL
Fin 1 - +&

Figure 4: Devantech CM PS03 photo

|1-Toltage |5v
Current | 20ma Typ.
|Resolut:ion |D. 1 Degree

|ﬁu:|:urat:§.r |3-4 Degrees approx (after calibration)

Output 1 |Timing Pulse 1mS to 37mS in 0. 1mS increments
Output 2 [12C Tnterface, 0-255 and 0-3599

SCL Speed up to 1MHz

Weight |0.03 oz

Size 32mm x 35mm

Figure5: Devartech CMPS03 details

11

- :\/\/&jmw Pulup1 -

-fl 47K Puliup2 :

%g_ CLED L ol . o S
) L A =
ME. L
i)

Figure ####. Devantech circuit design

Photor eflector

The photoreflector is used in conjunction with a white and black disc attached to
the rear axle o the robot. This setup generates a shaft encoder. The pulses of the
photoreflector are counted, which over time provide speed data. The photoreflector
incorporated is the Hamamastu P5587 photoreflector. The vendor for this photoreflector
is Acroname, Inc. (4894 Sterling Drive, Boulder CO, 80301-2350, phone: 720-564-

0373); the purchase was made via their website (http://www.acroname.com).

Figure 6: Hamamatsu P5587 photo

12

B Elecirical and optical characteristics (Ta=25 °C, Vee=5 V, unless otherwise noted

Forward voltage WF 1F=20 mA - 1.23 | 145 . 1.23 [1.45 v
i'['g;t] Reverse current Ik |ve=5V -~ 10| - | - |10 |eA
[Terminal capacitance Ct W=0W, =1 MHz - 30 . . 30 - pF

Supply voltage Ve 2.2 - T 22 - 7 W

Output JLow level output voltage VoL loL=4 mA *' - 0.1 04 . 0.1 0.4 W
(photo IC)High level output current IoH Vo=5 Vv ** - - 10 - - 10 T
[Current consumption loc - 1.3 3.0 . 1.3 3.0 miA
L—+H Threshold input currend] IrL E; -2 kL), d=3 mm 10 - - | ma

ecting surface:
. white paper

S H—L 'Ijh.reshnld |nput{:urren1] IFHL [reﬂedli:,\-'itrgﬂ % or more) : - - - : 10 mA,

charadaisics Hysterisis - - - 0.8 - - 0.8 - -
L—H Propagation delay time] teH =15 mA - E 20 - - a0 s

H—L Propagation delay time] teHL RL=1.2 k0 - 30 - 20 ys

Rise time tr d=3 mm : 0.07 - - 0.07 : T

Fall time tf - 0.03 - - 0.03 - ys

Figure 7: Hamamastu P5587 details

\—E E'J T & Graund

0.1
= X[« il W

’—E B,
Mty

4700

& Ut put

6.8k

L TN]

Figure 8: Hamamastu P5587 circuit diagram
The information provided by the photoreflector is unavailable in the final design
due to hardware limitations. In an attempt to connect oscilloscope leads while the board
was powered, the photoreflector (along with a microcontroller and voltage regulator)

suffered static discharge. Unfortunately, no backup photoreflector was purchased.

CMU-Cam
The CMU-Cam is used for rudimentary image processing to track moving objects.
This component enables StalkerBot to follow objects. The vendor for the camera is

Seattle Robotics, Inc. (1621 South Central Avenue, Suite K, Kent, WA 98032, phone

13

253-630-9836); the purchase was made via their website

(http://www.seattl erobotics.com).

Pl L e
PRrNEITEILE

il :
smpyriues b DERIOAREt ks s |

sem=eiid gy

Figure 9: CMUcam photo
(See also schematic in Appendix B.)

The CMUcam is imployed for its GM (Get Mean) and TW (Track Window)
functions. The first, GM, returns the RGB color averages, when there is a dramatic
change in the averages, there must be movement in the image. Based on whether or not
movement is detected, the TW function is caled. The TW function tracks the average

color of the center frame of the camera

14

RF Transmitter / Receiver

The RF transmitter and receiver modules provide a communications link to a base
station. The base station will receive navigational data from the mobile robot. The
devices being employed are the Reynolds Electronics TWS-434A and RWS-434 433.92
MHz radio frequency transmitter and reciever. The vendor for these components is
Reynolds Electronics (3101 Eastridge Lane Canon City, Co. 81212; Voice: (719) 269-
3469; Fax: (719) 276-2853)

the purchase was made via their website

(http://www. rentroncom).

i

Figure ####H#: TWS-434A and RWS-434

TWwiz-434n EF Transmitter

T | pin- 4 and
43

Il ¢ | Pin- 2 Data Input
=5 P - 3 e

1 2 3 4| pin- 4 RF Cutpd

111

Freguency: 433.92MHz
HModulation: &AM
Operating Yolage: 7 - 17 VG

Symbal Parameter Condition Min Typ Max Unit
‘oo Supply Voltage 20 - 12.0 W

Ip Pesk Current AU T 1.64 7194 mé
Wh Input High Woltage Idata = 100uA (High) | Vee-0.5 | Ve Wooe05 W

W Input Low Voltage Idata = O A, (Law) - 0.3 W
Fo Efﬂ'z':;n"‘gl, 42390 | 42202 433,94 MHz
Terte | Modulaben Rise ! External Cading - w0100 | us
TR - il - HH :
Dr Dats Rata External Cading 24K 3K Bps

E5-45% BF Feceiver

O35 e

L

103 l'lrl'-[

2 L]

2 1 B B
[T 1 e]
— ey,
Frequency: 43552 MHz
Fodulation: 4

imipee rating Wolkage: 45 - =5 W0o
Dtputs Crgitsl G Linsar

7

g

Piri =1 2o

Pin = 2 [yicad Dinba o pad

Pin = 2Lincar Dput

Pini — & Wit

Pifi — & Wi

Pini — B G

Pin = T Cned

Pin — A &nbsra (app o 31 — 35om)

Syl | Panamasar el W o (V7] Liait
Whae Sepoly Wolage 45 5 1]
It Dperating Cunssdi 5 45 mid
Chainisa | Width + [500 Hz
FRd Caita Raie = Eps
data = +200 uh High) | Weods | - i)
Wk Cata Ovet
dana = - B0 e [Low 03

Figure ####H#. RF transmitter / receiver details

The RF transmitter is mounted on the StalkerBot.

15

The StakerBot transmits

navigation data back to the base station. The receiver module is interfaced to a serial port

on a computer through a MAX232 chip and DB9 header. Using an application such as

HyperTerminal, alows the used to see the navigation information.

BEHAVIORS

The StalkerBot exhibits several behaviors. At the lowest level, the StakerBot

avoids contact with any objects via a bump detection network. The bump detection

switches notify the system of the collision.

continuing higher level behaviors.

This contact will be dealt with before

16

The StalkerBot also attempts to avoid collisions before they happenby detecting
approaching objects with infrared rangers. The IR rangers are set to only take action if
the objects are very close.

The StalkerBot’'s higher evel behaviors included waiting and stalking. While
waiting, the robot will scan for movement in front of him. If movement is detected, the
robot entersinto a stalking state. The stalking state is marked by the pursuit of an object.
The StalkerBot will pursue the same object until it stops or the tracking is lost. If the
object attempts to remain ill, the StalkerBot will ram it a few times before leaving it

aone.

EXPERIMENTAL LAYOUT AND RESULTS

Experimentation began with the testing of the Atmel ATmegal03 microcontroller.
The board is required to be powered minimally by 7V. After powering the header board
(See Figure 1), the I/O ports drove LEDs demonstrating the functiona state of the board.
The onboard regulator provides at most 100 mA, thus additional regulators are used for

the other components.

17

Figure 1. Olimex ATmegal03 header board

Below is achart of progress of component integration:

Components Testing Interfaced

Bump Switches Complete Complete

Infrared Rangers Complete Complete
Photoreflector Complete Complete / Destroyed
Compass Complete Complete

Camera Complete Complete

Radio Frequency Complete Complete
Transmitter / Receiver

| learned that oscilloscope leads should be attached while power is disconnected.
While interfacing the photoreflector with the microcontroller, the oscilloscope was
attached to help debug problems. However, a spark arced across from a Vcc pin to the
oscilloscope input lead. This not only ruined the photoreflector, but also ruined the

voltage regulator and the microcontroller.

18

After the voltage regulator and microcontroller were replaced, the final project
was finished without a photoreflector (a replacement was not available). All other
objectives were achieved.

Although the robot was originally intended to be programmed in assembly, the

final software iswritten in C code.

CONCLUSION

The ATmegal03 microcontroller has been tested and found to be functional. The
sensors have been tested to a sufficient degree. All sensors were then interfaced with
processor. Most design goals were achieved with the possible exclusion of those based
on the photoreflector.

In beginning this project anew, | would have started programming in C instead of
assembly. In addition, |1 would not have put as many sensors into the project as | did. |
would have concentrated more fully on the functional behavior of the interface with the
CMUcam. Better processor selection would also be important; having the right port for
each type of sensor makes interfacing then significantly easier.

Due to unforeseen destruction of the photoreflector, the possibilities of relative
navigation could not be explored. If a part is cheap, one should always buy a backup or

replacement with the origina purchase.

19

DOCUMENTATION

Arroyo, AA.

Olimex, Ltd. http://www.olimex.com/dev/imagesavr-h103b-sch.qif, 2002. Header board

schematic for Atmel ATmegal03.
Plew, Jason. Assistance with optoisolators. 2003.
Rathinasamy, Palani. Servo controlling code. 2003.
Rodriguez, Uriel. Assistance with power problems. 2003.

Tripican, Kyle. CMU cameracode. 2003.

20

APPENDIX A

Olimex ATmegal03 header board schematic

JPL
! Lz +5U
POWER M4 48 ~9LB5 ISR 1\
- IN ouT PEB 1 -
+5U 3 4
lé:E?n =Ll RESET 5 &
Rl FEL 7 a
— il 5] iz
Ut L
ZM3IIPcH 1rl Al
2 3 RESET 7@ e
UCC RESET = == RESET/
GND I
~ 22PF 1 24 xrau
J_ _’__‘ cz " HTAL2 ATALZ op-pae [EL_PAE
CONL 22DFGQ—E=, T ADL-pet [PAER Cona
—5pl FEd SZRHZ | TOsEz - FY-RTE P2 1
7 PEd@ PEE 2 AO3-PAZ Fo—r ot |
Moy BE—3| RXD-PEE AD4-pas 2 D8 B
Y FEr—| TXD-PEL AOE-PAG h R b
He 0 Bes g AC+_PE2 ADE-PAE fre—pre GND*“{
o Ber | AC-_PE3 f07-pa7 P2 DF?J{
Ho—r fer—a] INT4-PE4 -
H——— S - _ 25 pco PFe_ 7
R = INT5-PES A8-PCE R
H—0 BE 8 1nTs-PES po-pcy 28 PEL SENCY
. PE7_ 9 37 pce FF+ 5
:_ —| —
— INT7-PE7 A1B-PC2 ¢
4 T Ai-pc3 |26 T2 RN I
}h EE—231 POo-INTD alz-pos o8 POt Bz 111,
0 B0l 261 ppy-InT1 a13-pcs (12 FLE pre ol
|13 FEZ POz 27 41 pre PFE 13
s POZ-INT2 a14-pCe L —TEf S
|14 PB4 P03 28 47 pi7 FREF 14
:_ - — L =0 /= 11}
R For—22] PD3-INT3 #15-PC7 R 1
i 1s FBs P05 3@ Eg;—ml mj
% PD&-TI OC2-PEZ ﬁ —
CONZ e peeree fs e CONG
N fo_el mpco-rro OCo-pgs [t PE LR 1
13 PE3 RO 2
4 ENNIER AOCL—PFL MISO-PB3 |o— BD_ 21,
R FCo_ 3
H 4 RESET ADCZ-PFZ NOsI-PEZ p=———r -1y
+ RESET _ 11 FEl FCL 4
HEE ADC3-PF3 SCK-PBI fe—re =R b
i BT AOC4—PF 4 ss-pem 29 gy ke
H—s BOCS-PFS pmiﬁ{
HIre ADCE-PF& et e
pS ERRALTS ADC7—PF7 aLE 2 ALE ST b
N E P0G rOs BA RO Rz FCe 9],
Y }1@ Eglz AUCT YR SERLL 1K Fez_ 1o,
N TR pEns JLPEN AlE 111,
HiE— AUREF Il
H—— 1 @M prs 130,
3 14 POS AGHD &3 BEND PRZ 14 L ¢
o 1 GND Prt_ 15[
16 P07 =T o 1o
| ape e ATMEGALDZ Pio 1o [

Copyright ¢C> 28682, OLIMEY Ltd.
http: 4 ww. olimex, com/dew

21

APPENDIX B
'.'||'::| 1T N
®
S
LLiEE
CIT Iﬂ
FEER :
R
I I- £
I_r “‘B
S|
ek E ?qu‘
R rﬂﬁ
JE g1 ﬂ; -
& af - J_
%Ezsi 2 =l
k%
J.qull.l 15 _F =3 T
PEof B BES
VB LR
E:":":t'ﬁ' ﬁﬁt
I— .—_lgu
1 T IS
|
St

' CMU-cam schematic

APPENDIX C

#i ncl ude <io. h>

#i ncl ude <sig-avr. h>

#i ncl ude <stdlib. h>

#i ncl ude <interrupt.h>

/I #i ncl ude <prognmem h>
#include <string-avr. h>

t ypedef unsigned char u08;
t ypedef unsigned int u8;

t ypedef char s08;
t ypedef unsigned short ul6;
t ypedef short s16;

vol atile u8 recvtenp;
vol atile u8 recvi=0;
vol atil e u8 cnudat[20];

#defi ne FORWARD 0x04
#defi ne BACKWARD 0x08
#defi ne STOP 0x00

#defi ne LEFT 0x50
#defi ne RI GHT 0x24
#defi ne CENTER 0x3D

ulé ri singedge;
vol atile ul6é conpassw dt h;

#defi ne MAXTI CKS 0x64
u8 cl ockti cks;
vol atil e u8 cl ockreset;

u8 currspeed;
vol atile u8 | ast speed;
u8 currlevel;

#define RFBITTI ME 39

#def i ne SI GBUFFSI ZE 0x40

vol atil e u08 RFsi gnal [SI GBUFFSI ZE] ;
volatile int rfindex;

volatile u8 rfbitnum

voi d move(u8 mask){
u8 gg = OxF3 & i np(PORTE) ;
out p(mask | gg, PORTE);

}

void turn(u8 pwmwal ue){
out p(pwnval ue, OCR2);
}

void initports(void) {
out p(0xC0, DDRB) ;
out p(0x00, DDRD) ;

out p(Ox0OE, DDRE) ;
}

void initnotors(void) {
out p(0x6B, TCCR2);
t ur n(CENTER) ;

}

//lnitialize UART
/1" baud' is the baud register divider
void inituart(void)
{
/* Set baud rate */
out p(0x98, UCR)
out p(0x09, UBRR);
/* Enabl e Receiver and Transnmitter */

/1 1 stop bit
}

/1 Send a single byte of data
//"data' is the byte sent
void uarttransm t(unsi gned char data)
{
/* Wait for enpty transmit buffer */
while (!'(USR & (1<<UDRE))){}
/* Put data into buffer, sends the data */
out p(dat a, UDR) ;

/1 Send a given ECS term nated string
voi d uartstring(unsigned char * nyStringln)
{
unsi gned char *nyString = nyStringln;
unsi gned char chl
unsi gned char got NULL = O;
/1 chl= *nyString++;
whi | e(! got NULL) {
/1 uarttransmt(chl);
chl = *nyString++
if(chl == "\r"){
got NULL = 1,
}
uarttransmt(chl);
I}

}

voi d delay(ul6 tine){
do{
u08 i=10;
do{
asmvol atile("nop\n\t"
"nop\n\t"

"nop\ n\t"
"nop\n\t"
D)
twhile(--i);
}while(--tine);
}

void rfstring(unsigned char * nmyStringln)
{
u8 length = 0;
while (rfindex I'= -1) {}
while ((nyStringln[length] !'="\r") && (length < 49)) {
RFsignal [l ength] = nyStringln[length];
| engt h++;
}
out p(l ength, PORTC);
RFsignal [l ength] = "\r";
rfbitnum= 0;
rfindex = 0;

}

S| GNAL(SI G_UART_RECV) {
recvt enp=i np(UDR)
if(recvtenp != 0x3A){
if(recvtenp == 0x20 || recvi==9){ [//9
recvi =0;
}

el se if(recvi==0){
if(recvtenp == OxFF){
cnudat [recvi] =recvt enp;
recvi ++;

}

else if(recvtenp !=0x20 && recvi<9){ //9
cnudat [recvi] =recvt enp;
recvi ++;

}

SI GNAL(SI G_I NPUT_CAPTUREL) {
i f(TCCR1B & (1<<ICESl))
ri singedge = | CR1;
el se
conmpasswidth = ICRL - risingedge;
out p(TCCR1B ~ (1<<I CES1), TCCR1B);

S| GNAL(SI G_OUTPUT_COVPARE1B) {

ulé rftenp2 = OCRLB+RFBI TTI ME;

ug8 rftenp;

OCR1B = rftenp2;

if(rfindex == -1) {
rftenp = i np(TCCR1LA) | (1<<COMLBO);
outp(rftenp, TCCRLA);

} else {
if(rfbitnum== 0) {

24

el se i

}

rftenp = i np(TCCR1A) & ~(1<<COMLBO);
outp(rftenp, TCCRLA);
rfbitnumt+;

rftenp
outp(rftenp, TCCRLA);

rfbitnum-+;
if (rfbitnum> 9) {

el se {

if (RFsignal[rfindex] & (1<<(rfbitnum11))) {

f (rfbitnum > 8) {

= inp(TCCR1A) | (1<<COMLBO);

rfbitnum= 0;

if (RFsignal[rfindex] == "\r")
rfindex = -1;

el se
rfindex++;

rftenp = i np(TCCR1A) | (1<<COMLBO);
outp(rftenp, TCCRLA);

} else {

}

rftenp = i np(TCCRLA) & ~(1<<COMLBO);
outp(rftenp, TCCRLA);

rfbitnumt+;

}

SI GNAL(SI G_OUTPUT_COVPAREQ) {
clockticks = clockticks + 1;
if (clocktick

cl ockreset
cl ockti cks
| ast speed =

}

u8 now evel =

i f(now eve

MAXTI CKS) {
1

0;
currspeed;

i np(PORTD) & (1<<PD5);

currlevel =
currspeed =

}

}

voi d blink(void){
uartstring("L1 1\r");
del ay(1500);
del ay(1500);
del ay(15000) ;
uartstring("L1 O\r");
del ay(15000) ;
del ay(1500) ;
del ay(1500);

}

void blink2(void){
u08 junk[10] =

j unk[0]
junk[1]

=L
=1

N ocurrlevel) {

now evel
currspeed + 1;

25

void i
/1
/1

/1
11

11

/1
/1

}
voi d i

mat ch,

junk[2] = 1,
junk[3] = 1;
junk[4] = "\r’
junk[5] = O;

uartstring(junk);
del ay(1500);
del ay(1500) ;
del ay(15000) ;
junk[3] = 0O;
uartstring(junk);
del ay(15000) ;
del ay(1500);
del ay(1500);
junk[3] = 2;
uartstring(junk);
del ay(1000) ;

ni t cam(voi d) {
uartstring("CR 18 44\r");
del ay(1000);
uartstring("PMO\r");

del ay(1000);
uartstring("SWr");

del ay(1000) ;
uartstring("MM 1\r");

del ay(1000);

bl i nk();

uartstring("L1 2\r");

del ay(1000);
uartstring("RM 3\r"); [/7
del ay(1000);

bl i nk2();

del ay(20000);

del ay(20000);

del ay(20000);

del ay(20000);

del ay(20000);

del ay(20000);

del ay(20000);

del ay(20000) ;

del ay(20000);

del ay(20000);

del ay(20000);

del ay(20000);

bl i nk();

uartstring("L1 2\r");

del ay(1000);
uartstring("CR 19 32\r");
del ay(1000);
uartstring("CR 18 40\r");
del ay(1000) ;

out p(0x0F, PORTC)

nittimers(void) {
out p(0x2A, Tl MSK); /1
timerl ic

interrupts

f or

timer0O match,

26

timerlb

out p(0x20, TCCR1A);
out p(0xC3, TCCR1B);
out p(0x08, ASSR);

out p(0x09, TCCRO); //
out p(0x20, OCRO); // every 1.007 s
cl ockticks = 0;

cl ockreset = 0;
currspeed 0;

| ast speed 0;
currlevel 0;
rfindex = -1;
rfstring("INIT\r");

}
ulé adcsanpl e(u8 pinnum

{
ulé result;
out p(pi nnum ADMJX) ;
out p(0xC6, ADCSR);
whil e(! (ADCSR & (1<<ADIF))) {}
result = ADCW
sbi (ADCSR, ADI F) ;
out p(0xC6, ADCSR) ;
whil e(! (ADCSR & (1<<ADIF))) {}
result = ADCW
sbi (ADCSR, ADI F) ;
return(result);
}
voi d avoi d_behavi or (voi d) {
u8 bunmp = i np(PORTE) & OxFO;
u8 rightir = (u8)(adcsanpl e(0x00)>>2);
u8 leftir = (u8)(adcsanpl e(0x01)>>2);
if (leftir < 40 & rightir < 40){
nove(FORWARD) ;
t ur n(CENTER) ;
} else if (leftir > 40 && rightir < 40){
if (leftir > 60) {
nove(BACKWARD) ;
turn(LEFT);
} else {
nmove(FORWARD) ;
turn(RI GHT) ;

}
} else if (leftir < 40 && rightir > 40){
if (rightir > 60) {
nov e(BACKWARD) ;
turn(RI GHT) ;
} else {
nove(FORWARD) ;
turn(LEFT) ;
}

} else {
nov e(BACKWARD) ;
t ur n(CENTER) ;

u8 current_state, next_state, statecounter, delaycounter;
u8 rmax, rmn, gmax, gmn, bmax, bm n;

u8 mnx, mdx, maxx, mny, mdy, nmaxy;

u8 lastleftir, lastrightir, toleranceir, colortol;

ulé lastr, lastg, lastb;

u8 check_bunp(void) {

u8 bunmp = (inp(PINE) & OxFO)>>4;

swi tch(bunp) {

case O:
return O;

case 1:
turn(RI GHT);
nov e(BACKWARD) ;
br eak;

case 2:
t ur n(CENTER) ;
nov e(BACKWARD) ;
br eak;

case 4:
turn(LEFT);
nmove(BACKWARD) ;
br eak;

case 8:
t ur n(CENTER) ;
nove(FORWARD) ;
br eak;

defaul t:
tur n(CENTER) ;
nove(STOP) ;
br eak;

}

return 1;

}

u8 lastlir, lastrir;

int check_ir(void){
u8 rightir = (u8)(adcsanpl e(0x00)>>2);
ug8 leftir = (u8)(adcsanpl e(0x01)>>2);
lastlir = (lastlir + leftir)>>1;
lastrir = (lastrir + rightir)>>1;
if (lastlir <= 100 && lastrir <= 100){
return O;
} else if (lastlir > 100 && lastrir < 100){
if (lastlir > 110) {
nov e(BACKWARD) ;
turn(LEFT);
} else {
return O,

}
} else if (lastlir < 100 && lastrir > 100){
if (lastrir > 110) {
nov e(BACKWARD) ;
turn(RI GHT) ;
} else {
return O,
}

} else {

}

nove(BACKWARD) ;
tur n(CENTER) ;

return 1;

}

voi d chase_behavi or (voi d) {
ul6é currr, currg, currb
u8 conf, nunpix;

/1 u08 uartstr[20] = "";

i f (check_bunp()){

}

del aycounter
return;

2 + (inp(TCNTLL)

if (check_ir()){

del aycounter = 2 + (inp(TCNT1L)
return;

if (delaycounter) {

}

del aycounter--;
return;

switch (current_state) {
case O:

nove(STOP) ;

t ur n(CENTER) ;

out p(0x00, PORTC);
next _state = 1,

br eak;

case 1:

11

nove(STOP) ;
t ur n(CENTER) ;
uartstring("SW30 54 50 90\r");

uartstring("SW30 60 50 110\r");

next _state = 2;
br eak;

case 2:

nove(STOP) ;

t ur n(CENTER) ;
next _state = 3;
br eak;

case 3:

11

nove(STOPR) ;

t ur n(CENTER) ;
uartstring("GMr");

out p(crudat[2], PORTC);

next _state = 4,
br eak;

& 0x03);

& 0x01);

29

30

case 4:
nmove(STOP) ;
t ur n(CENTER) ;
next _state = 5;

br eak;
case 5:
/1 rmn = cmudat[2] - (cnudat[5]>>1);
/1 rmax = cmudat[2] + (cnudat[5]>>1);
/1 gmn = crudat[3] - (crnudat[6] >>1);
/1 gmax = crudat[3] + (crnudat[6] >>1);
/1 bmin = cmudat[4] - (cnudat[7] >>1);
/1 bmax = cnudat[4] + (cnudat[7]>>1);

lastr = (ul6)cnudat|2];

lastg = (ul6)cnudat| 3];

lastb = (ul6)cnudat[4];

/1 out p(OxFF, PORTC);
next _state = 6;
br eak;

case 6:
t ur n(CENTER) ;
nove(STOP) ;
currr (ul6)crudat| 2];
currg (ul6) crudat [3];
currb (ulé) crudat [4] ;

| astr
| astg
| astb

(lastr + currr)>>1;
(lastg + currg)>>1;
(lastb + currb)>>1;

colortol))
colortol))
colortol))

(lastr - currr) > colortol) || ((currr - lastr) >
lastg - currg) > colortol) || ((currg - lastg) >
lastb - currb) > colortol) || ((currb - lastbh) >

) A
out p(0OxFO, PORTC);
next _state = 7;
} else {
out p(Ox0F, PORTC);
next _state = 6;
}

br eak;

case 7.
uartstring("\r");
next state = 8;
br eak;

case 8:
next _state = 9;
br eak;

case 9:
uartstring("TWr");
next _state = 10;
br eak;

case 10:
nove(STOP) ;
next _state = 11,
br eak;
case 11:
m nx = cnudat|[2] ;
mny = cnudat|[3];
maxx = cnudat[4];
maxy = cmnudat[5];
nunpi X = cnudat[6] ;
conf = crudat[7];
m dx = (m nx+maxx) >>1;
m dy = (mny+maxy) >>1;

if (conf > 50){

st atecounter = O;

if(mdx < 25) {
turn(LEFT);

} else if (mdx > 55) {
turn(RI GHT);

} else {
t ur n(CENTER) ;

}

i f(nunmpix < 60) {
nove(FORWARD) ;

} else if (nunpix > 100)
nmove(BACKWARD) ;

} else {
nmove(STOP) ;

}

} else {
st at ecount er ++;
}

out p(nunpi x, PORTC);

if (statecounter > 20) {
st at ecounter = O;
next _state = O,

} else {
next _state = 12;

}

br eak;

case 12:
next state = 11;
br eak;

defaul t:
nove(STOP) ;
t ur n(CENTER) ;
next _state = O;
br eak;

}

current_state = next_state;

31

i nt

mai n(vo

d) {

initports();
initnmotors();
inituart();

del ay(10000) ;

initti

mers();

i nitcam();
u08 constr[40];

current _state = 0;
next _state = O;

st at ecount er
del aycount er

0;
0;

= (u8) (adcsanpl e(0x01) >>2);
(u8) (adcsanpl e(0x00) >>2) ;

& 0x7000) >>12) +0x30;
& 0x0EO00) >>9) +0x30;
& 0x01C0) >>6) +0x30;
& 0x0038) >>3) +0x30;
& 0x0007)) +0x30;

| astleftir

lastrightir =

tol eranceir = 0x30;

colortol = 0x19;

ulé noo;

nove(STOP) ;

t ur n(CENTER)

sei ();

u8 i =0;

whi l e(1){
whi l e(!cl ockreset) {}
cl ockreset = 0;

i =i +1;

/1 outp(i, PORTC);
nmoo = compasswi dth - 10;
constr[0] = "'¢c';
constr[1] = 'o';
constr[2] = 'nl;
constr[3] = "'p';
constr[4] = "'a';
constr[5] ="'s';
constr[6] = "'s';
constr[7] ="' ';
comstr[8] ="'=";
constr[9] ="' ';
constr[10] = '0';
constr[11] = ((noo
constr[12] = ((nmoo
constr[13] = ((moo
constr[14] = ((moo
constr[15] = ((mpo
constr[16] = "\r';
comstr[17] = O;
rfstring(comstr);
chase_behavi or () ;

}

for(;;){}

32

