

StalkerBot

Karl Dockendorf

EEL5666C

Intelligent Machine Design Laboratory

TAs: Jason Plew, Uriel Rodriguez

Instructor: A. A. Arroyo

 2

TTAABBLLEE OOFF CCOONNTTEENNTTSS

Abstract 3

Executive Summary 4

Introduction 5

Integrated System 5

Mobile Platform 6

Actuation 7

Sensors 8

Behaviors 15

Experimental Layout and Results 16

Conclusion 18

Documentation 19

Appendices 20

 3

AABBSSTTRRAACCTT
 The StalkerBot is an autonomous mobile robot that exhibits behaviors of an
animal stalking prey. The robot is based on infrared sensors, bump detection switches, a
digital compass, a photoreflector, a CMU-Cam, and radio frequency data transmission.
These sensors would be incorporated together to allow the robot to track moving objects
and calculate their relative position. However, the photoreflector was damaged and
unable to be replaced.
 While the StalkerBot is not following its prey, it remains still waiting for an
object to move. An Atmel ATmega103 microcontroller controls the robot motion and
behavior. The ATmega103 header board is tested and functional, as are the sensors. The
entire robot has been integrated to satisfaction (aside from the photoreflector).

 4

EEXXEECCUUTTIIVVEE SSUUMMMMAARRYY

 The StalkerBot project encompasses multiple difficulties. There are many sensors

integrated into the project as are there behaviors. The sensors employed include bump

switches, infrared rangers, digital compass, photoreflector, CMUcam, and radio

frequency communication modules. Each sensor plays a unique role. The most critical

of which is the CMUcam module that provides “vision” for the robot. In addition, the RF

communication hardware provides a link for data transfer.

 The behaviors the StalkerBot can exhibit are unique to several of these sensors.

The ability to navigate with a digital compass provides extra functionality to the robot.

The CMUcam provides imaging capabilities to the robot. The camera module furnishes

statistical data on image windows such as mean and standard deviation. These values can

be used to detect image disturbances (i.e. movement).

 Recognizing moving objects and tracking them is a primary mission of this

project, along with navigation. The synthesis of the sensors and behaviors allows the

StalkerBot to perform its specified objectives.

 5

IINNTTRROODDUUCCTTIIOONN

 The StalkerBot mobile autonomous robot is developed to track moving objects.

For this to work, the StalkerBot must identify a change in its surroundings then pursue

this disturbance. Aside from this functionality, the StalkerBot will calculate its distance

and bearing along with that of the target in reference from StalkerBot’s starting position.

 This document provides detailed information on the sensors, behavior, mobile

platform, and movement of the StalkerBot. Each section contains detailed information

regard the operation of the component and its integration into the robot.

IINNTTEEGGRRAATTEEDD SSYYSSTTEEMM

 The StalkerBot is based on the Atmel ATmega103 microcontroller. The

microcontroller comes as part of the Olimex ATmega103 header board (See Figure

##########). The header board is attached to the sensors via wirewrap and soldering on

a perf-board. The robot is based on infrared sensors, bump detection switches, a digital

compass, a photoreflector, and a CMU-Cam. In addition, the StalkerBot contains an

onboard radio frequency (433.92 MHz) transmitter. The StalkerBot is intended to exhibit

behaviors of an animal stalking prey.

 6

Figure 1: Block Diagram

 Each sensor type is integrated into robot to gather a particular piece of data. The

bump switches provide the robot with a means to detect collisions. The infrared ranging

modules detect objects before the robot collides with the object. The compass module

and photoreflector generate information regarding speed and trajectory. The CMUcam is

the most crucial sensor to the behavior of the robot; the camera processes images and can

track “blobs” of color.

MMOOBBIILLEE PPLLAATTFFOORRMM

 The platform design for the StalkerBot is based on a toy radio controlled car.

This platform was chosen for several reasons. First, the toy car platform is relatively

sturdy (as compared with an airplane wood platform). Second, the toy car comes with

 7

motors which can drive the car forward at significant speed. Quick pursuit is one of the

design goals.

 The RC car has been modified to fit a new steering servo. The original steering

servo was removed and a standard servo was used to replace it. Additional grooves and

slots were cut into the body of the radio controlled car. The remainder of the steering

system was left unchanged.

 The finished product has produced a toy car which has been overloaded with

instrumentation and batteries. Thus, the RC car has been weighted down and moves

significantly slower than originally planned. Weight has had a dramatic impact on

acceleration.

 The original RC car was purchased at Toys ‘R’ Us in Gainesville, FL on February

9, 2003. The radio controller car (‘Super Tret’) was manufactured by FastLane R/C, Inc.

AACCTTUUAATTIIOONN

 The actuation of the robot platform is the same as a radio controlled car. The car

is able to turn the front wheels left and right to steer. A high-speed motor drives the car

forward and backward. Actuation is controlled by the behavior algorithms detailed later

in this report.

 A standard servo is used to control steering. The MX-400 servo is distributed by

Maxx Products, Inc. and resold through Acroname, Inc. (4894 Sterling Drive, Boulder

CO, 80301-2350, phone: 720-564-0373) via their website (http://www.acroname.com).

The servo specifications are in the table below.

 8

Size LxHxW
(in)

Weight (oz) Torque (in-oz.) Speed (sec / 60
degrees)

Ball Bearing

1.60x0.79x1.50 1.66 44 0.15 Oilite

 The DC motor, which drives the RC car in forward and reverse, is unknown. This

motor is optoisolated from the microcontroller board. The isolated signals are used to

activate pins on the original RC car controller board.

SSEENNSSOORRSS

 The StalkerBot operates based on information gathered by its sensors. Bump

sensors, infrared sensors, a digital compass, a photoreflector, and a CMU-Cam provide

the information required.

Bump Sensors

 Bump switches are used to detect when the robot bumps into an object. The

bump sensors are mounted around the outside of the robot. The triggering of these

sensors indicates contact with an object. These sensors are simple switches which are

polled by the microprocessor before it evaluates its behavior.

Infrared Sensors

 IR range finders provide approximate distance to target values. Two of these

components will be mounted on the front of the robot. The devices being used are Sharp

GP2D12 infrared rangers. These components were purchased from Acroname, Inc.

(4894 Sterling Drive, Boulder CO, 80301-2350, phone: 720-564-0373) via their website

(http://www.acroname.com).

 9

 Figure 2: Sharp GP2D12 photo

 Figure 3: Sharp GP2D12 details

 The infrared rangers are also polled before each evaluation of the robot’s

behavior. These components act as an early warning system for collision detection.

Digital Compass

 The compass provides bearing information. Along with the speed measurements,

this device enables crude calculation of relative position. The device being employed is

the Devantech CMPS03 magnetic compass module. The vendor for this compass is

 10

Acroname, Inc. (4894 Sterling Drive, Boulder CO, 80301-2350, phone: 720-564-0373);

the purchase was made via their website (http://www.acroname.com).

 Figure 4: Devantech CMPS03 photo

 Figure 5: Devantech CMPS03 details

 11

 Figure ####: Devantech circuit design

Photoreflector

 The photoreflector is used in conjunction with a white and black disc attached to

the rear axle of the robot. This setup generates a shaft encoder. The pulses of the

photoreflector are counted, which over time provide speed data. The photoreflector

incorporated is the Hamamastu P5587 photoreflector. The vendor for this photoreflector

is Acroname, Inc. (4894 Sterling Drive, Boulder CO, 80301-2350, phone: 720-564-

0373); the purchase was made via their website (http://www.acroname.com).

 Figure 6: Hamamatsu P5587 photo

 12

 Figure 7: Hamamastu P5587 details

 Figure 8: Hamamastu P5587 circuit diagram

 The information provided by the photoreflector is unavailable in the final design

due to hardware limitations. In an attempt to connect oscilloscope leads while the board

was powered, the photoreflector (along with a microcontroller and voltage regulator)

suffered static discharge. Unfortunately, no backup photoreflector was purchased.

CMU-Cam

 The CMU-Cam is used for rudimentary image processing to track moving objects.

This component enables StalkerBot to follow objects. The vendor for the camera is

Seattle Robotics, Inc. (1621 South Central Avenue, Suite K, Kent, WA 98032, phone

 13

253-630-9836); the purchase was made via their website

(http://www.seattlerobotics.com).

 Figure 9: CMUcam photo

(See also schematic in Appendix B.)

 The CMUcam is imployed for its GM (Get Mean) and TW (Track Window)

functions. The first, GM, returns the RGB color averages; when there is a dramatic

change in the averages, there must be movement in the image. Based on whether or not

movement is detected, the TW function is called. The TW function tracks the average

color of the center frame of the camera.

 14

RF Transmitter / Receiver

 The RF transmitter and receiver modules provide a communications link to a base

station. The base station will receive navigational data from the mobile robot. The

devices being employed are the Reynolds Electronics TWS-434A and RWS-434 433.92

MHz radio frequency transmitter and reciever. The vendor for these components is

Reynolds Electronics (3101 Eastridge Lane Canon City, Co. 81212; Voice: (719) 269-

3469; Fax: (719) 276-2853) the purchase was made via their website

(http://www.rentron.com).

 Figure #####: TWS-434A and RWS-434

 15

 Figure #####: RF transmitter / receiver details

 The RF transmitter is mounted on the StalkerBot. The StalkerBot transmits

navigation data back to the base station. The receiver module is interfaced to a serial port

on a computer through a MAX232 chip and DB9 header. Using an application such as

HyperTerminal, allows the used to see the navigation information.

BBEEHHAAVVIIOORRSS

 The StalkerBot exhibits several behaviors. At the lowest level, the StalkerBot

avoids contact with any objects via a bump detection network. The bump detection

switches notify the system of the collision. This contact will be dealt with before

continuing higher level behaviors.

 16

 The StalkerBot also attempts to avoid collisions before they happen by detecting

approaching objects with infrared rangers. The IR rangers are set to only take action if

the objects are very close.

 The StalkerBot’s higher level behaviors included waiting and stalking. While

waiting, the robot will scan for movement in front of him. If movement is detected, the

robot enters into a stalking state. The stalking state is marked by the pursuit of an object.

The StalkerBot will pursue the same object until it stops or the tracking is lost. If the

object attempts to remain still, the StalkerBot will ram it a few times before leaving it

alone.

EEXXPPEERRIIMMEENNTTAALL LLAAYYOOUUTT AANNDD RREESSUULLTTSS

 Experimentation began with the testing of the Atmel ATmega103 microcontroller.

The board is required to be powered minimally by 7V. After powering the header board

(See Figure 1), the I/O ports drove LEDs demonstrating the functional state of the board.

The onboard regulator provides at most 100 mA, thus additional regulators are used for

the other components.

 17

Figure 1: Olimex ATmega103 header board

 Below is a chart of progress of component integration:

Components Testing Interfaced

Bump Switches Complete Complete

Infrared Rangers Complete Complete

Photoreflector Complete Complete / Destroyed

Compass Complete Complete

Camera Complete Complete

Radio Frequency
Transmitter / Receiver

Complete Complete

 I learned that oscilloscope leads should be attached while power is disconnected.

While interfacing the photoreflector with the microcontroller, the oscilloscope was

attached to help debug problems. However, a spark arced across from a Vcc pin to the

oscilloscope input lead. This not only ruined the photoreflector, but also ruined the

voltage regulator and the microcontroller.

 18

 After the voltage regulator and microcontroller were replaced, the final project

was finished without a photoreflector (a replacement was not available). All other

objectives were achieved.

 Although the robot was originally intended to be programmed in assembly, the

final software is written in C code.

CCOONNCCLLUUSSIIOONN

 The ATmega103 microcontroller has been tested and found to be functional. The

sensors have been tested to a sufficient degree. All sensors were then interfaced with

processor. Most design goals were achieved with the possible exclusion of those based

on the photoreflector.

 In beginning this project anew, I would have started programming in C instead of

assembly. In addition, I would not have put as many sensors into the project as I did. I

would have concentrated more fully on the functional behavior of the interface with the

CMUcam. Better processor selection would also be important; having the right port for

each type of sensor makes interfacing then significantly easier.

 Due to unforeseen destruction of the photoreflector, the possibilities of relative

navigation could not be explored. If a part is cheap, one should always buy a backup or

replacement with the original purchase.

 19

DDOOCCUUMMEENNTTAATTIIOONN

Arroyo, A.A.

Olimex, Ltd. http://www.olimex.com/dev/images/avr-h103b-sch.gif, 2002. Header board

schematic for Atmel ATmega103.

Plew, Jason. Assistance with optoisolators. 2003.

Rathinasamy, Palani. Servo controlling code. 2003.

Rodriguez, Uriel. Assistance with power problems. 2003.

Tripican, Kyle. CMU camera code. 2003.

 20

AAPPPPEENNDDIIXX AA

Olimex ATmega103 header board schematic

 21

AAPPPPEENNDDIIXX BB

 CMU-cam schematic

 22

AAPPPPEENNDDIIXX CC

#include <io.h>
#include <sig-avr.h>
#include <stdlib.h>
#include <interrupt.h>
//#include <progmem.h>
#include <string-avr.h>
typedef unsigned char u08;
typedef unsigned int u8;
typedef char s08;
typedef unsigned short u16;
typedef short s16;
volatile u8 recvtemp;
volatile u8 recvi=0;
volatile u8 cmudat[20];

#define FORWARD 0x04
#define BACKWARD 0x08
#define STOP 0x00

#define LEFT 0x50
#define RIGHT 0x24
#define CENTER 0x3D

u16 risingedge;
volatile u16 compasswidth;

#define MAXTICKS 0x64
u8 clockticks;
volatile u8 clockreset;

u8 currspeed;
volatile u8 lastspeed;
u8 currlevel;

#define RFBITTIME 39
#define SIGBUFFSIZE 0x40
volatile u08 RFsignal[SIGBUFFSIZE];
volatile int rfindex;
volatile u8 rfbitnum;

void move(u8 mask){
 u8 gg = 0xF3 & inp(PORTE);
 outp(mask | gg, PORTE);
}

void turn(u8 pwmvalue){
 outp(pwmvalue, OCR2);
}

void initports(void) {
 outp(0xC0,DDRB);
 outp(0x00,DDRD);

 23

 outp(0x0E,DDRE);
}

void initmotors(void) {
 outp(0x6B, TCCR2);
 turn(CENTER);
}

//Initialize UART
//'baud' is the baud register divider
void inituart(void)
{
 /* Set baud rate */
 outp(0x98, UCR);
 outp(0x09, UBRR);
 /* Enable Receiver and Transmitter */

 // 1 stop bit
}

//Send a single byte of data
//'data' is the byte sent
void uarttransmit(unsigned char data)
{
 /* Wait for empty transmit buffer */
 while (!(USR & (1<<UDRE))){}
 /* Put data into buffer, sends the data */
 outp(data,UDR);
}

//Send a given EOS terminated string
void uartstring(unsigned char * myStringIn)
{
 unsigned char *myString = myStringIn;
 unsigned char ch1;
 unsigned char gotNULL = 0;
 // ch1= *myString++;
 while(!gotNULL){
 // uarttransmit(ch1);
 ch1 = *myString++;
 if(ch1 == '\r'){
 gotNULL = 1;
 }
 uarttransmit(ch1);
 // }

 }
}

void delay(u16 time){
 do{
 u08 i=10;
 do{
 asm volatile("nop\n\t"
 "nop\n\t"

 24

 "nop\n\t"
 "nop\n\t"
 ::);
 }while(--i);
 }while(--time);
}

void rfstring(unsigned char * myStringIn)
{
 u8 length = 0;
 while (rfindex != -1) {}
 while ((myStringIn[length] != '\r') && (length < 49)) {
 RFsignal[length] = myStringIn[length];
 length++;
 }
 outp(length, PORTC);
 RFsignal[length] = '\r';
 rfbitnum = 0;
 rfindex = 0;
}

SIGNAL(SIG_UART_RECV){
 recvtemp=inp(UDR);
 if(recvtemp != 0x3A){
 if(recvtemp == 0x20 || recvi==9){ //9
 recvi=0;
 }
 else if(recvi==0){
 if(recvtemp == 0xFF){
 cmudat[recvi]=recvtemp;
 recvi++;
 }
 }
 else if(recvtemp !=0x20 && recvi<9){ //9
 cmudat[recvi]=recvtemp;
 recvi++;
 }
 }

}

SIGNAL(SIG_INPUT_CAPTURE1){
 if(TCCR1B & (1<<ICES1))
 risingedge = ICR1;
 else
 compasswidth = ICR1 - risingedge;
 outp(TCCR1B ^ (1<<ICES1), TCCR1B);
}
SIGNAL(SIG_OUTPUT_COMPARE1B){
 u16 rftemp2 = OCR1B+RFBITTIME;
 u8 rftemp;
 OCR1B = rftemp2;
 if(rfindex == -1) {
 rftemp = inp(TCCR1A) | (1<<COM1B0);
 outp(rftemp, TCCR1A);
 } else {
 if(rfbitnum == 0) {

 25

 rftemp = inp(TCCR1A) & ~(1<<COM1B0);
 outp(rftemp, TCCR1A);
 rfbitnum++;
 }
 else if (rfbitnum > 8) {
 rftemp = inp(TCCR1A) | (1<<COM1B0);
 outp(rftemp, TCCR1A);
 rfbitnum++;
 if (rfbitnum > 9) {
 rfbitnum = 0;
 if (RFsignal[rfindex] == '\r')
 rfindex = -1;
 else
 rfindex++;
 }
 }
 else {
 if (RFsignal[rfindex] & (1<<(rfbitnum-1))) {
 rftemp = inp(TCCR1A) | (1<<COM1B0);
 outp(rftemp, TCCR1A);
 } else {
 rftemp = inp(TCCR1A) & ~(1<<COM1B0);
 outp(rftemp, TCCR1A);
 }
 rfbitnum++;
 }
 }

}
SIGNAL(SIG_OUTPUT_COMPARE0){
 clockticks = clockticks + 1;
 if (clockticks == MAXTICKS) {
 clockreset = 1;
 clockticks = 0;
 lastspeed = currspeed;
 }

 u8 nowlevel = inp(PORTD) & (1<<PD5);
 if(nowlevel ^ currlevel) {
 currlevel = nowlevel;
 currspeed = currspeed + 1;
 }
}
void blink(void){
 uartstring("L1 1\r");
 delay(1500);
 delay(1500);
 delay(15000);
 uartstring("L1 0\r");
 delay(15000);
 delay(1500);
 delay(1500);
}
void blink2(void){
 u08 junk[10] = "";
 junk[0] = 'L';
 junk[1] = '1';

 26

 junk[2] = 1;
 junk[3] = 1;
 junk[4] = '\r';
 junk[5] = 0;
 uartstring(junk);
 delay(1500);
 delay(1500);
 delay(15000);
 junk[3] = 0;
 uartstring(junk);
 delay(15000);
 delay(1500);
 delay(1500);
 junk[3] = 2;
 uartstring(junk);
 delay(1000);
}
void initcam(void){
// uartstring("CR 18 44\r");
// delay(1000);
 uartstring("PM 0\r");
 delay(1000);
 uartstring("SW\r");
 delay(1000);
// uartstring("MM 1\r");
// delay(1000);
 blink();
 uartstring("L1 2\r");
 delay(1000);
 uartstring("RM 3\r"); //7
 delay(1000);
// blink2();
 delay(20000);
 delay(20000);
 delay(20000);
 delay(20000);
 delay(20000);
 delay(20000);
 delay(20000);
 delay(20000);
 delay(20000);
 delay(20000);
 delay(20000);
 delay(20000);
 blink();
 uartstring("L1 2\r");
 delay(1000);
 uartstring("CR 19 32\r");
 delay(1000);
// uartstring("CR 18 40\r");
// delay(1000);
 outp(0x0F, PORTC);
}

void inittimers(void) {
 outp(0x2A, TIMSK); // interrupts for timer0 match, timer1b
match, timer1 ic

 27

 outp(0x20, TCCR1A);
 outp(0xC3, TCCR1B);
 outp(0x08, ASSR);
 outp(0x09, TCCR0); //
 outp(0x20, OCR0); // every 1.007 ms
 clockticks = 0;
 clockreset = 0;
 currspeed = 0;
 lastspeed = 0;
 currlevel = 0;
 rfindex = -1;
 rfstring("INIT\r");
}
u16 adcsample(u8 pinnum)
{
 u16 result;
 outp(pinnum, ADMUX);
 outp(0xC6, ADCSR);
 while(!(ADCSR & (1<<ADIF))) {}
 result = ADCW;
 sbi(ADCSR,ADIF);
 outp(0xC6, ADCSR);
 while(!(ADCSR & (1<<ADIF))) {}
 result = ADCW;
 sbi(ADCSR,ADIF);
 return(result);
}
void avoid_behavior(void){
 u8 bump = inp(PORTE) & 0xF0;
 u8 rightir = (u8)(adcsample(0x00)>>2);
 u8 leftir = (u8)(adcsample(0x01)>>2);
 if (leftir < 40 && rightir < 40){
 move(FORWARD);
 turn(CENTER);
 } else if (leftir > 40 && rightir < 40){
 if (leftir > 60) {
 move(BACKWARD);
 turn(LEFT);
 } else {
 move(FORWARD);
 turn(RIGHT);
 }
 } else if (leftir < 40 && rightir > 40){
 if (rightir > 60) {
 move(BACKWARD);
 turn(RIGHT);
 } else {
 move(FORWARD);
 turn(LEFT);
 }

 } else {
 move(BACKWARD);
 turn(CENTER);
 }
}

 28

u8 current_state, next_state, statecounter, delaycounter;
u8 rmax, rmin, gmax, gmin, bmax, bmin;
u8 minx, midx, maxx, miny, midy, maxy;
u8 lastleftir, lastrightir, toleranceir, colortol;
u16 lastr, lastg, lastb;

u8 check_bump(void) {
 u8 bump = (inp(PINE) & 0xF0)>>4;
 switch(bump) {
 case 0:
 return 0;
 case 1:
 turn(RIGHT);
 move(BACKWARD);
 break;
 case 2:
 turn(CENTER);
 move(BACKWARD);
 break;
 case 4:
 turn(LEFT);
 move(BACKWARD);
 break;
 case 8:
 turn(CENTER);
 move(FORWARD);
 break;
 default:
 turn(CENTER);
 move(STOP);
 break;
 }
 return 1;
}
u8 lastlir, lastrir;

int check_ir(void){
 u8 rightir = (u8)(adcsample(0x00)>>2);
 u8 leftir = (u8)(adcsample(0x01)>>2);
 lastlir = (lastlir + leftir)>>1;
 lastrir = (lastrir + rightir)>>1;
 if (lastlir <= 100 && lastrir <= 100){
 return 0;
 } else if (lastlir > 100 && lastrir < 100){
 if (lastlir > 110) {
 move(BACKWARD);
 turn(LEFT);
 } else {
 return 0;
 }
 } else if (lastlir < 100 && lastrir > 100){
 if (lastrir > 110) {
 move(BACKWARD);
 turn(RIGHT);
 } else {
 return 0;
 }

 29

 } else {
 move(BACKWARD);
 turn(CENTER);
 }
 return 1;
}
void chase_behavior(void) {
 u16 currr, currg, currb;
 u8 conf, numpix;
// u08 uartstr[20] = "";

 if (check_bump()){
 delaycounter = 2 + (inp(TCNT1L) & 0x03);
 return;
 }
 if (check_ir()){
 delaycounter = 2 + (inp(TCNT1L) & 0x01);
 return;
 }
 if (delaycounter) {
 delaycounter--;
 return;
 }

 switch (current_state) {
 case 0:
 move(STOP);
 turn(CENTER);
 outp(0x00, PORTC);
 next_state = 1;
 break;

 case 1:
 move(STOP);
 turn(CENTER);
 uartstring("SW 30 54 50 90\r");

 // uartstring("SW 30 60 50 110\r");

 next_state = 2;
 break;

 case 2:
 move(STOP);
 turn(CENTER);
 next_state = 3;
 break;

 case 3:
 move(STOP);
 turn(CENTER);
 uartstring("GM\r");
// outp(cmudat[2], PORTC);

 next_state = 4;
 break;

 30

 case 4:
 move(STOP);
 turn(CENTER);
 next_state = 5;
 break;

 case 5:
 // rmin = cmudat[2] - (cmudat[5]>>1);
 // rmax = cmudat[2] + (cmudat[5]>>1);
 // gmin = cmudat[3] - (cmudat[6]>>1);
 // gmax = cmudat[3] + (cmudat[6]>>1);
 // bmin = cmudat[4] - (cmudat[7]>>1);
 // bmax = cmudat[4] + (cmudat[7]>>1);
 lastr = (u16)cmudat[2];
 lastg = (u16)cmudat[3];
 lastb = (u16)cmudat[4];

 // outp(0xFF, PORTC);
 next_state = 6;
 break;

 case 6:
 turn(CENTER);
 move(STOP);
 currr = (u16)cmudat[2];
 currg = (u16)cmudat[3];
 currb = (u16)cmudat[4];

 lastr = (lastr + currr)>>1;
 lastg = (lastg + currg)>>1;
 lastb = (lastb + currb)>>1;

 if ((((lastr - currr) > colortol) || ((currr - lastr) >
colortol)) && (((lastg - currg) > colortol) || ((currg - lastg) >
colortol)) && (((lastb - currb) > colortol) || ((currb - lastb) >
colortol))) {
 outp(0xF0, PORTC);
 next_state = 7;
 } else {
 outp(0x0F, PORTC);
 next_state = 6;
 }
 break;

 case 7:
 uartstring("\r");
 next_state = 8;
 break;

 case 8:
 next_state = 9;
 break;

 case 9:
 uartstring("TW\r");
 next_state = 10;
 break;

 31

 case 10:
 move(STOP);
 next_state = 11;
 break;

 case 11:
 minx = cmudat[2];
 miny = cmudat[3];
 maxx = cmudat[4];
 maxy = cmudat[5];
 numpix = cmudat[6];
 conf = cmudat[7];
 midx = (minx+maxx)>>1;
 midy = (miny+maxy)>>1;

 if (conf > 50){
 statecounter = 0;
 if(midx < 25) {
 turn(LEFT);
 } else if (midx > 55) {
 turn(RIGHT);
 } else {
 turn(CENTER);
 }
 if(numpix < 60) {
 move(FORWARD);
 } else if (numpix > 100) {
 move(BACKWARD);
 } else {
 move(STOP);
 }
 } else {
 statecounter++;
 }
 outp(numpix, PORTC);
 if (statecounter > 20) {
 statecounter = 0;
 next_state = 0;
 } else {
 next_state = 12;
 }

 break;

 case 12:
 next_state = 11;
 break;

 default:
 move(STOP);
 turn(CENTER);
 next_state = 0;
 break;
 }
 current_state = next_state;
}

 32

int main(void){
 initports();
 initmotors();
 inituart();
 delay(10000);
 inittimers();
 initcam();
 u08 comstr[40];

 current_state = 0;
 next_state = 0;
 statecounter = 0;
 delaycounter = 0;

 lastleftir = (u8)(adcsample(0x01)>>2);
 lastrightir = (u8)(adcsample(0x00)>>2);
 toleranceir = 0x30;
 colortol = 0x19;
 u16 moo;
 move(STOP);
 turn(CENTER);
 sei();
 u8 i=0;
 while(1){
 while(!clockreset) {}
 clockreset = 0;
 i=i+1;
 // outp(i, PORTC);
 moo = compasswidth - 10;
 comstr[0] = 'c';
 comstr[1] = 'o';
 comstr[2] = 'm';
 comstr[3] = 'p';
 comstr[4] = 'a';
 comstr[5] = 's';
 comstr[6] = 's';
 comstr[7] = ' ';
 comstr[8] = '=';
 comstr[9] = ' ';
 comstr[10] = '0';
 comstr[11] = ((moo & 0x7000)>>12)+0x30;
 comstr[12] = ((moo & 0x0E00)>>9)+0x30;
 comstr[13] = ((moo & 0x01C0)>>6)+0x30;
 comstr[14] = ((moo & 0x0038)>>3)+0x30;
 comstr[15] = ((moo & 0x0007))+0x30;
 comstr[16] = '\r';
 comstr[17] = 0;
 rfstring(comstr);

 chase_behavior();

 }
 for(;;){}
}

