

Mop ‘n Bot

Michael Hall

April 23rd, 2003
University of Florida

Department of Electrical and Computer Engineering
EEL5666

Intelligent Machines Design Laboratory

 M. Hall 1/30/03

 2

Table of Contents

Abstract …………………………………………………………………....3

Executive Summary …………………………………………………….....4

Introduction ……………………………………………………………......5

Integrated System ……………………………………………………….....5

Mobile Platform …………………………………………………………...7

Actuation …………………………………………………………………..7

Sensors …………………………………………………………………….8

Behaviors ………………………………………………………………......9

Experimental Layout and Results …………………………………………10

Conclusion ………………………………………………………………...11

Documentation …………………………………………………………….12

Appendices ………………………………………………………………...13

Pictures …………………………………………………………………….20

 M. Hall 1/30/03

 3

Abstract

The purpose of my robot is to clean a tile or linoleum floor while staying off any

adjacent carpet as well as avoiding objects. The robot starts by finding a wall or the edge
of the carpet; it then follows the wall and eventually traverses the entire surface in a spiral
pattern. A cleaning solution is deposited on the surface and an absorbent cloth on the rear
of the robot cleans the floor.

 M. Hall 1/30/03

 4

Executive Summary

 The Mop ‘n Bot went through a number of steps of development. First a platform

had to be conceived that would house a mop. The actual attaching of the cleaning units

would be the final step however.

Once I mounted the servos and actuation was on the horizon, IR transmitters and

detectors were mounted. After extensive testing of the IR sensors, and a quick

modification to the servos, the development of behaviors could begin. Obstacle

avoidance was soon realized in a simplistic manner.

 The next step was to add bumpers which would handle any physical encounters

with the Mop ‘n Bot, like walls and the like. Using bump switches, the robots avoidance

of obstacles was greatly improved. Actually coding this behavior turned out to be the

most challenging part of the entire project.

 I next tackled the problem of detecting the carpet so as to avoid trying to clean

carpet with the mop. I found vertical whisker on the front of the robot were very

effective. Using this system, the robot could now avoid obstacles and stay within the

confines of what would be its world.

 I next had to develop a pump system for depositing cleaning solution on the

surface to be cleaned. I found a small, low voltage piston pump to be the most

appropriate. After integrating this into my software, the robot could deposit solution only

when moving forward.

 The final stage in the project was to attach the cleaning cloth, or mop. This was

positioned in the rear. Thus by depositing cleaning solution and going over it with a

cleaning cloth, clean floors can obtained using the Mop ‘n Bot.

 M. Hall 1/30/03

 5

Introduction

Household chores have long plagued the home owner. With the growth of

technology, automating these tasks has become a possibility. Cleaning floors is a

bothersome chore. The Mop ‘n Bot accomplishes the job of cleaning tile or linoleum

floors with no effort required of the user. This paper describes the development of the

Mop ‘n Bot.

Integrated System

The Mop ‘n Bot consists of six independent systems working in conjunction;

actuation, bumpers, proximity detectors, carpet detectors, cleaning solution dispenser,

and cleaning cloth. They are all controlled by an Atmel AtMega323 microcontroller

development board.

Actuation is the primary component in all the behaviors implemented, it is

accomplished using two standard servos. The proximity of objects is determined using IR

transmitter/detector pairs, GP2D120. The servos, IRs, and bumpers are used in

conjunction to achieve obstacle avoidance. I used three IR sensors, aimed forward, left,

and right. The bumpers are on the front with some side impact capabilities. Figure 1

shows the exact placement of the sensors.

 M. Hall 1/30/03

 6

Figure 1: Layout of platform

The whiskers are forward positioned, as shown in Figure 1. Once I integrating

these into the software, the robot was capable of treating the division between the tile and

the carpet as another wall. This enabled Mop ‘n Bot to stay in the kitchen or bathroom,

which is vital for a tile cleaning system.

The final subsystem in the project was that of the actual cleaning system. The

cleaning cloth to be pulled over the surface was quite simple. The pump system also

proved to be simpler than I had anticipated. The cloth was taken from a Clorox

ReadyMop® and attached to the rear of the unit. I experimented with a number of pumps

that required far more complex controllers than the pump I settled on. I used a small, low

voltage piston pump to achieve the desired pulsating dispensing of cleaning solution.

I designed the structure of the Mop ‘n Bot to house the Clorox ReadyMop® as

well as ease the cleaning of floors. Thus, I made a platform slightly wider that the mop

and as short and thin as possible, this allows for less encumbered spinning and

maneuvering.

 M. Hall 1/30/03

 7

Mobile Platform

The platform is roughly rectangular with two forward mounted wheels. The rear

of the unit rests on the cleaning clo th. The whiskers are mounted such that the distance

between them is greater than the width of the cleaning cloth, and they are positioned in

front of the wheel. This will ensure that the robot will not go over any carpet. The bottle

containing the solution is positioned above the cleaning cloth; this increases the overall

stability of the robot and increasing pressure on the cloth increases cleaning ability. The

structure of the robot can be seen in Figure 1.

In a second prototype of the Mop ‘n Bot I would build an encasement to house the

circuitry and sensors of the system. The current Mop ‘n Bot is prone to the environment,

also it is not as ascetically pleasing as it could be.

Actuation

The primary actuation of the robot is accomplished using two servos, operating

the two forward mounted wheels. These are controlled using two of the pulse width

modulation channels on the AtMega323 microcontroller.

A piston pump is used to control the output of the bottle containing the cleaning

solution. I chose this type of pump because I wanted to pulsate the output; the piston

pump automatically does this. Thus the pump needs only be turned on and off to start and

stop a pulsating stream of cleaning solution. The circuit in figure 2 shows the electronic

switch I used to turn the pump on and off from the AtMega323.

 M. Hall 1/30/03

 8

Figure 2: Pump control circuit

Sensors

Bump Sensors:

Four bump switches are positioned on the lower front of the robot. The bumper

wraps around the sides slightly, to detect side impacts. These will stop the robot from

trying to go through walls. One end of each switch is fed into an output port, port C. The

other end is sent to an input port, port B. The internal pull-up resisters of port B are

enabled and 0x00 is written to port C. Thus port B remains pulled-up, to a logic one until

the switch is triggered, when the signal becomes that of port C, i.e. zero volts.

Whisker Sensors:

Two whisker sensors are placed on the front of the robot to detect carpet

collisions. They are positioned in front of the wheels so as to keep the robot from going

over the carpet. Each whisker was realized using a spring with a straight wire through its

middle. When the spring collides with an object it makes contact with the center wire.

These sensors were fed into the microcontroller in the same fashion as the bump sensors.

 M. Hall 1/30/03

 9

The center wire is puller-up using the internal pull-up resisters on port B, and the spring

held at a logic one from port C. If port B goes to a logic zero, there has been a collision.

IR Sensors:

Three IR sensors alert the “Mop ‘n Bot” of obstacles to its sides and front. The

sensors are comprised of an emitter and a detector, powered by a 40 KHz signal

generated by the built in circuitry of the GP2D120. Each sensor has three connectors,

power, approximately 6.5V, ground, and an analogue output. The output is fed directly

into the analogue to digital port of the microcontroller, port A. Through experimentation

analogue values equating to distances from the sensors were found. Using this system,

obstacles within certain proximity can be detected.

Behaviors

The robot is capable of four behaviors; random wandering, left wall- following,

depositing cleaning solution, and cleaning. Avoiding obstacles is an inherent behavior in

this design.

When wandering randomly, the Mop ‘n Bot will move forward until it encounters

an obstacle, then it will turn appropriately. Moving across the floor in lines allows the

robot to cover a large percentage of the surface. Encounters with carpet are treated much

the same as encounters with other objects that are not sensed by IR.

The wall- following behavior operates in conjunction with the random wandering

behavior. If the robot finds that there has been a wall on it’s left side for an amount of

time, it will enter the appropriate wall- following behavior. When it encounters something

 M. Hall 1/30/03

 10

other than that wall it will go back to random wandering. By combining these behaviors,

the robot can clean a surface without missing the edges.

The cleaning behavior is a continuous process. The pump is turned on whenever

the robot is progressing forward. The rear mounted cleaning cloth is always in operation,

so even when it is moving backwards, it is still cleaning.

Experimental Layout and Results

The IR sensors were tested by viewing a digital representation of the analogue

output at many distances. The following graph represents its functionality.

`

IR Behavior

0

20

40

60

80

100

120

0 5 10 15 20 25 30

cm

A
na

lo
gu

e
O

ut

The distances of 7cm and 15cm were set as ‘near’ and ‘far’ respectively. As can

be seen in the graph, these correspond to analogue values of 0x30 and 0x47.

The bump sensors and the whiskers were tested by connecting them as described

above and viewing the value of port B. It could easily be determined when they were

working.

 M. Hall 1/30/03

 11

Conclusion

The Mop ‘n Bot displays the simplicity of designing an automated tile cleaning

agent. This implementation is an effective solution to the problem addressed, but many

improvements could be made. I had to overcome many limitations during the course of

the development of the Mop ‘n Bot.

Money was my largest limitation and it hindered the quality of my robot more

than anything else. With more funding, better quality IR sensors would improve obstacle

avoidance. The whiskers could work much better if I had not bought the cheapest springs

at the hardware store. The mounting of the cleaning cloth would also be much more

effective if it could swivel slightly.

These improvements required money, tools and time that I did not have at my

disposal. The result was a cheaply implemented prototype that provides a viable solution

for dirty tile floors. However, the Mop ‘n Bot will not clean a thousand floors. It is a

prototype and it is not built for extensive use.

An encasement would greatly increase the robot’s life. In the next phase of the

Mop ‘n Bot, enclosing the entire system in a streamlined case would be crucial. Adding

more bumpers would also improve the obstacle avoidance behavior. By adding an

encasement that had full coverage of bumper, obstacle avoidance would be flawless.

 M. Hall 1/30/03

 12

Documentation

Parts/Part Price:

GP2D120 www.arrow.com 3 x $7.92 =
 $23.76
 shipping $13.66

NiCads www.digikey.com 17 x $1.49 =
 $25.33
 shipping $5.81

Servos www.junun.org/MarkIII/ 2 x $10.25 =
 $20.50
 shipping $2.00

Wheels www.junun.org/MarkIII/ 2 x $6.00 =
 $12.00
 shipping $1.85

AtMega232 www.prllc.com $56.00
 Shipping $6.00

Piston Pump www.herbach.com $3.75

Electrical Tape Lowes 2 x $0.85 =
 $1.70

Springs Lowes $3.50

Epoxy Lowes $3.85

 Total: $166.91

Advice/Suggestions:

-Spring 2003 IMDL class
-Prof. A. Antonio Arroyo
-Prof. Eric Schwartz
-Uriel Rodriguez
-Jason Plew

 M. Hall 1/30/03

 13

Appendix

/****************************

Auther: Michael Hall
Date: 4-23-03
Course: EEL6841
Robot: Mop 'n Bot

 This file implements behaviors
for a stimulus-response unit
equiped with IR, bump sensors,
servos for actuation, and a pump.

****************************/

#include <io.h>

/******** CONSTANTS ********/

//#define IR_far_F 0x23
#define IR_far_F 0x21
#define IR_far_L 0x33
#define IR_far_R 0x33

#define IR_close_L 0x49
#define IR_close_R 0x49
#define IR_close_F 0x49

#define IR_RIGHT 2
#define IR_FRONT 4
#define IR_LEFT 1

#define SURFACE_LEFT 5
#define SURFACE_RIGHT 6
#define CARPET 0xF7

#define Bumped_LL 0xFE
#define Bumped_LC 0xFB
#define Bumped_Left 0xFA

#define Bumped_RR 0xEF
#define Bumped_RC 0xFD
#define Bumped_Right 0xED

#define R_FOR -1000
#define L_FOR 1000
#define R_BACK 1000
#define L_BACK -1000

#define L_BACKh -610
#define R_BACKh 610

#define L_FORh 600
#define R_FORh -600

#define LEFT_SERVO 0
#define RIGHT_SERVO 1

#define K 0
#define WALL_COUNT 3

/******** GLOBAL VARS ********/

typedef unsigned short u16;
typedef volatile unsigned char u08;

 M. Hall 1/30/03

 14

int rv, lv, prev_right_speed, prev_left_speed, LorR, wall_follow_R, wall_follow_L;

u08 bumpers;
u08 rval;
u08 lval;
u08 fval;
int i, countR, countL, countWFL, countWFR, countP;

/******** BEGIN ROUTINES ********/

// DELAY \\
// does nothing for given number of miliseconds
void delay(u16 delay_time)
{
 do
 {
 u08 i=0;
 do
 {
 asm volatile("nop\n\t"
 "nop\n\t"
 "nop\n\t"
 "nop\n\t"
 ::);
 } while(--i);
 } while(--delay_time);
}

// ADC_GETREADING \\
// retuns analogue value on A/D channel
u08 ADC_getreading(u08 channel)
{
 u08 temp_valueH;
 outp((1<<REFS0)|(1<<REFS1)|(1<<ADLAR),ADMUX); //use 2.56V as reference voltage

 if (channel == SURFACE_LEFT || channel == SURFACE_RIGHT)
 outp((1<<REFS0)|(0<<REFS1)|(1<<ADLAR),ADMUX);
 //use 5V as reference voltage

 ADMUX=ADMUX | channel;

 sbi(ADMUX,ADLAR); /* result is left adjusted */

 sbi(ADCSR, ADSC);
 loop_until_bit_is_set(ADCSR, ADIF);
 //wait till conversion is complete
 temp_valueH = inp(ADCH);
 sbi(ADCSR, ADIF);
 ADMUX=0;
 return temp_valueH;
}

// ADC_INIT \\
// initializes A/D system
void ADC_init(void)
{
 int i;
 u08 f, r, l;

 DDRA=0;
 outp((1<<ADEN) | (1<<ADPS2) | (ADPS1),ADCSR);
 //Initialize to use 8bit resolution for all channels
}

// MOTOR_INIT \\
// initializes PWM channels
void motor_init(void)
{

 M. Hall 1/30/03

 15

 prev_right_speed = R_FOR;
 prev_left_speed = L_FOR;

 outp((1<<COM1A1) | (1<<COM1B1) | (1<<PWM10) | (1<<PWM11), TCCR1A);
 outp((1<<CS11), TCCR1B);
 sbi(DDRD, PD4); // port D pin 4 is servo1
 sbi(DDRD, PD5); // port D pin 5 is servo2
}

// SERVO \\
// new speed is averaged into the previous speed of servo s
void servo(int s, int new_speed)
{
 int speed;

 if (s == RIGHT_SERVO) {
 speed = ((K * prev_right_speed) + new_speed) / (K + 1);
 outw(OCR1AL, speed);
 prev_right_speed = speed;
 }
 else {
 speed = ((K * prev_left_speed) + new_speed) / (K + 1);
 outw(OCR1BL, speed);
 prev_left_speed = speed;
 }
}

// WALL_FOLLOW \\
void wall_follow_left(void)
{
 if (countL >= WALL_COUNT || countR >= WALL_COUNT) {

 countWFL = countWFL + 1; // how long have we been wall following?

 // back left obstacle
 if (fval < IR_far_F && rval < IR_far_R && lval > IR_far_L) {
 pump_on();
 lv = 610;
 rv = R_FOR;
 servo(RIGHT_SERVO, rv);
 servo(LEFT_SERVO, lv);
 delay(50);
 }
 // forward left obstacle
 if (fval < IR_far_F && rval > IR_far_R && lval < IR_far_L) {
 pump_on();
 lv = L_FOR;
 rv = -600;
 servo(RIGHT_SERVO, rv);
 servo(LEFT_SERVO, lv);
 delay(50);
 }
 // forward and back left obstacle
 if (fval < IR_far_F && rval > IR_far_R && lval > IR_far_L) {
 pump_on();
 lv = L_FOR;
 rv = -600;
 servo(RIGHT_SERVO, rv);
 servo(LEFT_SERVO, lv);
 delay(50);
 }
 // nothing there
 if (fval < IR_far_F && rval < IR_far_R && lval < IR_far_L) {
 pump_on();
 lv = 600;
 rv = R_FOR;
 servo(RIGHT_SERVO, rv);
 servo(LEFT_SERVO, lv);
 delay(50);
 }
 // front and left obstacle

 M. Hall 1/30/03

 16

 if (fval > IR_far_F && rval > IR_far_R && lval > IR_far_L) {
 pump_off();
 lv = L_FOR;
 rv = R_BACK;
 servo(RIGHT_SERVO, rv);
 servo(LEFT_SERVO, lv);
 delay(150);
 countL = 0; // stop wall following
 countR = 0;
 countWFL = 0;
 }
 // front obstacle
 if (fval > IR_far_F && rval < IR_far_R && lval < IR_far_L) {
 pump_off();
 lv = L_FOR;
 rv = R_BACK;
 servo(RIGHT_SERVO, rv);
 servo(LEFT_SERVO, lv);
 delay(150);
 countL = 0; // stop wall following
 countR = 0;
 countWFL = 0;
 }
 }

}

// COLLISION \\
// handles bumpers and carpet collision
void collision(void)
{
 // carpet!
 if (bumpers == CARPET)
 {
 countR = 0; // stop all wall following
 countWFR = 0;
 countL = 0;
 countWFL = 0;

 pump_off();
 lv = L_BACK;
 rv = R_BACK;
 for (i=0; i<30; i++) {
 servo(RIGHT_SERVO, rv);
 servo(LEFT_SERVO, lv);
 delay(110);
 }
 lv = L_BACK;
 rv = R_FOR;
 if (LorR == 1) {
 lv = L_BACK;
 rv = R_FOR;
 }
 for (i=0; i<40; i++) {
 servo(RIGHT_SERVO, rv);
 servo(LEFT_SERVO, lv);
 delay(50);
 }
 }
 // bump on the left side
 if (bumpers == Bumped_LL || bumpers == Bumped_LC) {
 countR = 0; // stop all wall following
 countWFR = 0;
 countL = 0;
 countWFL = 0;

 pump_off();
 lv = L_BACKh;
 rv = R_BACK;
 servo(RIGHT_SERVO, rv);
 servo(LEFT_SERVO, lv);

 M. Hall 1/30/03

 17

 delay(3000);
 lv = L_FOR;
 rv = R_BACK;
 for (i=0; i<30; i++) {
 servo(RIGHT_SERVO, rv);
 servo(LEFT_SERVO, lv);
 delay(50);
 }

 }
 // bump on the right side
 if (bumpers == Bumped_RR || bumpers == Bumped_RC) {
 countR = 0; // stop all wall following
 countWFR = 0;
 countL = 0;
 countWFL = 0;

 pump_off();
 lv = L_BACK;
 rv = R_BACKh;
 servo(RIGHT_SERVO, rv);
 servo(LEFT_SERVO, lv);
 delay(3000);
 lv = L_BACK;
 rv = R_FOR;
 for (i=0; i<40; i++) {
 servo(RIGHT_SERVO, rv);
 servo(LEFT_SERVO, lv);
 delay(50);
 }

 }
}

// PUMP_OFF \\
// turns off the pump
void pump_off(void)
{
 outp(0x00, PORTC);
}

// PUMP_ON \\
//turns on the pump
void pump_on(void)
{
 outp(0x80, PORTC);
 countP = countP + 1;
 if (countP >= 4) {
 outp(0x00, PORTC);
 if (countP == 8) countP = 0;
 }
}

// WANDER \\
// random wandering subroutine
void wander(void)
{
 // nothing there
 if (fval < IR_far_F && rval < IR_far_R && lval < IR_far_L) {
 pump_on();
 lv = L_FOR;
 rv = R_FOR;
 servo(RIGHT_SERVO, rv);
 servo(LEFT_SERVO, lv);
 delay(150);
 }
 // front obstacle
 if (fval > IR_far_F && rval < IR_close_R && lval < IR_close_L) {
 pump_off();
 lv = L_FOR;
 rv = R_BACK;

 M. Hall 1/30/03

 18

 servo(RIGHT_SERVO, rv);
 servo(LEFT_SERVO, lv);
 delay(300);
 countL = 0; // stop all wall following
 countWFL = 0;
 countR = 0;
 countWFR = 0;
 }
 // right obstacle
 if (fval < IR_far_F && rval > IR_far_R && lval < IR_close_L) {
 pump_on();
 lv = L_FOR;
 rv = 0;
 servo(RIGHT_SERVO, rv);
 servo(LEFT_SERVO, lv);
 delay(50);
// countL = 0; // stop left wall following
// countWFL = 0;
 countR = countR + 1;
 }
 // left obstacle
 if (fval < IR_far_F && rval < IR_far_R && lval > IR_far_L) {
 pump_on();
 lv = L_FOR;
 rv = -550;
 servo(RIGHT_SERVO, rv);
 servo(LEFT_SERVO, lv);
 delay(50);
// countR = 0; // stop right wall following
// countWFR = 0;
 countL = countL + 1;
 }
 // right and left obstacle
 if (fval < IR_far_F && rval > IR_far_R && lval > IR_far_L) {
 pump_on();
 lv = L_FOR;
 rv = -550;
 servo(RIGHT_SERVO, rv);
 servo(LEFT_SERVO, lv);
 delay(50);
 }
 // front and right obstacle
 if (fval > IR_far_F && rval > IR_far_R && lval < IR_far_L) {
 pump_off();
 lv = L_BACKh;
 rv = R_BACK;
 servo(RIGHT_SERVO, rv);
 servo(LEFT_SERVO, lv);
 delay(800);
 }
 // front and left obstacle
 if (fval > IR_far_F && rval < IR_far_R && lval > IR_far_L) {
 outp(0x00, PORTC);
 lv = L_BACK;
 rv = R_BACK;
 servo(RIGHT_SERVO, rv);
 servo(LEFT_SERVO, lv);
 delay(1000);
 lv = L_FOR;
 rv = R_BACK;
 servo(RIGHT_SERVO, rv);
 servo(LEFT_SERVO, lv);
 delay(500);
 countR = 0; // stop all wall following
 countWFR = 0;
 countL = 0;
 countWFL = 0;
 }
 // i'm surrounded!
 if (fval > IR_far_F && rval > IR_far_R && lval > IR_far_L) {
 pump_off();

 M. Hall 1/30/03

 19

 lv = L_BACK;
 rv = R_BACK;
 servo(RIGHT_SERVO, rv);
 servo(LEFT_SERVO, lv);
 delay(1000);
 lv = L_FOR;
 rv = R_BACK;
 servo(RIGHT_SERVO, rv);
 servo(LEFT_SERVO, lv);
 delay(500);
 countR = 0; // stop all wall following
 countWFR = 0;
 countL = 0;
 countWFL = 0;
 }
}

// MAIN \\
// loops forever... achieves behaviors based on environment
int main(void)
{
 countR = 0;
 countL = 0;
 countWFR = 0;
 countWFL = 0;
 countP = 0;
 wall_follow_L = 0;
 wall_follow_R = 0;

 DDRC=0xff; // set C as output
 DDRB=0x00; // set B as input
 DDRD=0xff; // set D as output
 DDRA=0x00; // set A as input
 PORTB=0xFF; // enable portB pull-ups

 // init timer0
 TCCR0=0x05;
 TCNT0=0x00;
 OCR0=0x00;

 LorR = 0;
 rval = 0x00;
 fval = 0x00;
 lval = 0x00;

 motor_init();
 ADC_init();

 outp(0x80, PORTC);

 while(1)
 {
 fval = ADC_getreading(IR_FRONT);
 rval = ADC_getreading(IR_RIGHT);
 lval = ADC_getreading(IR_LEFT);
 bumpers = inp(PINB);

 delay(250);

 if(rand() > 0.5) //create random number to decide if left or right...
 LorR = 1;

 collision();
 if (countR < WALL_COUNT && countL < WALL_COUNT) wander();
 wall_follow_left();
 }

}

/******** END ROUTINES ********/

 M. Hall 1/30/03

 20

Pictures

