

Shooter

EEL 5666
Intelligent Machines Design Laboratory

Written Report

Jason Metzenthin

April 15, 2003

 2

Table of Contents

Abstract 3

Executive Summary 4

Introduction 5

Integrated System 6

Mobile Platform 7

Actuation 9

Sensors 12
 IR beacon 13
 IR beacon Detector 14
 Sonar 14
 Sharp IR 15
 Bump 16

Behaviors 17

Experimental Layout and Results 18

Conclusion 19

Documentation 20

Appendices 21

 3

Abstract
Shooter’s purpose is to provide entertainment for spectators as they watch him

attempt to shoot three balls successfully into his basket. One ball is loaded and then
shoot at a time and it gets repeated. Afterwards Shooter wonders off disinterested
avoiding bumping into anything.

 4

Executive Summary

 Shooter’s intelligence is the ATEML mega 323 chip on a Progressive board. The

programming was written in C++. With this intelligence Shooter locates his basketball

hoops, lines up with it, then loads a ball, shoots the ball, loads a second ball, shoots, loads

a third ball and then avoids obstacles while he is wondering around disinterested.

 Shooter has two high torque servo-powered wheels that are both controlled by

PWM channels. They are set close to the center of Shooter so that he would have a tight

turn radius. Three rubber casters are placed on the bottom of the back-end that Shooter

rests on.

 The key sensors for guiding the movement of Shooter are the three IR sensors

located in the right, center and left. They reliably give good results and near similar

values from one to another.

 The basketball hoop has an IR beacon consisting of a circuit that oscillates 3 IR

LEDs near 56.8kHz. This signal is detected by a IR 56.8kHz detector. Shooter rotates in

place till he sees the hoop then starts loading and shooting.

 A set of extension springs is what propels the ball towards the basketball hoop.

The springs are pulled back by a grouping of two servos. One that blocks the shooting

arm and another that pulls back the shooting arm holding in back till the blocking lever is

removed. A lock system is used to make sure that one and only one ball drop into the

shooting arm’s basket. The shooting arm is blocked at approximately a 60-degree angle

to ensure the shoot ball has an arch to it. Shooter’s typical range for making baskets is

around 3 feet, varying due to a couple of factors. Spring wear and tear, servo wear and

tear and amount of charge on the batteries.

 5

Introduction

Shooter works in tandem with his basketball hoop. Shooter finds his hoop and

then attempts to score. To accomplish this the robot uses six servos and four sensors.

The robot’s movement is done using its two wheels. Only using two wheels allows for a

simplified design and tighter turn radius. Since the robot is using IR, it is important to

limit the robot’s exposure to IR so it is best to be used only indoors where it is sheltered

from the sun’s rays.

 6

MAIN BODY

Integrated System

 The robot design is centered around the ATMEL micro-controller on the

progressive board, which controls all the functionality of the robot. Below is a flowchart

of the program of Shooter.

Figure 1 – Flowchart of Actions

Robot is turned ON

Beacon detectors turned ON

Shooter spins looking for beacon, centers on hoop

Servos pull back the shooting arm, then
the two servos in the ball lock load a ball.
Ball is shoot at the hoop

 Repeats

Out of Balls

Robot turns around in celebration

Robot wonders off randomly.
Avoiding obsticales

 7

Mobile Platform

The objective of the platform was to be as lightweight as possible since it was

going to be large but still powered by servos and not motors. To this end the platform is

mainly composed of wood with the exception of the PVC pipe for the ball loader and the

metal L-brackets used to reinforce the structure. The wooden levers that control the lock

system are also made out of wood. The shooting arm was designed to be strong so that it

would not bend or break when being pulled back. The spring holder that the spring was

stretched from was designed in a manner that the whole platform would reinforce it. At

the end of the shooting arm a wooden basket was constructed to hold the ball perfectly.

A set of springs is attached to the shooting arm, which propels the shooting arm forward

so that the ball is shoot at the basketball. Parts for platform were found at Injection

Molded Wheels $6.00 from Mark III Robot Store, Wood from lab and PVC pipe for

$4.98 from Lowe’s Hardware Store.

I was worried about stress and strain on the structure of Shooter that I made the

mistake to make the internal workings completely enclosed. This made getting to the

reset button and connections a hassle that could have been easily avoided. Another near

mistake I almost made was making my robot too heavy. Shooter no longer moves much

on carpet, but still moves on title.

 8

Figure 2 - Platform

Servo =

IR

IR IR

Beacon Det

IR
Beacon
Detector

IR
Beacon
Detector

Caster

Ball
Loader

Batteries

Caster

 9

Actuation

Shooter has six servos that are used. There are three applications for these servos:

movement via its wheels, the loading mechanism and lastly the shooting mechanism.

GWS servos were used and purchased from Mark III Robot Store. High torque (S03

TXF) for $10.50 each and normal servos (S03N) for $10.50 each were used.

Item Size (mm) Weight (g/oz) Speed (sec/60) Torque (kg*cm/cz*in

S03N 39.5x20.0x39.6 41/1.44 0.23 2.40/47

S03 TXF 39.5x20.0x39.6 46/1.62 0.21 5.00/69

The wheels are driven by two hacked TXF servos. This allows for a simplistic

design in comparison to using a DC motor. This was also the suggested course of action

for driving any IMDL robot’s wheels at the start of the course. A PWM pin controls each

of these hacked servos. Servos are easy to deal with and do not take too much effort to

get working and programmed, which is why they were chosen.

The arming mechanism employs two servos. The first servo is a TXF and pulls

back the shooting arm, which stretches the extension springs. This servo operates in a

90-degree range of motion, so a servo was ideal. Extension springs were employed since

they provided the most force for launching balls. A compression spring has a narrower

range of motion, is typically harder to compress then an extension is to pull and is more

difficult to position for a ball shooting design. The second is a S03N servo that is used in

releasing the shooting arm. It blocks and then slides away to let free the shooting arm. A

single inexpensive servo would not be powerful enough to through a ball, so that design

 10

concept was disregarded early on in the course. A single shoot robot could have used a

string spool and/or gear system to pull back the shooting arm. Or an even more simple

means would to have the arm manually loaded before the robot would be turned on and

the robot should having to release the mechanism. A single timer controls these two and

the two servos used in the ball loader. This code is based on what Michael Collins had

written to run all the servos on his robot.

Figure 3 – Shooting arm

 Pulling back the arm Releasing the arm

The last two servos are used in the loading process. They create a lock system

making sure that only one ball gets loaded at a time. A more clever design that only

needed one servo could have been constructed, but would have had other issues

incorporated with it. Most of the concepts I came up with would have required more

space and weight then I desired to place on my robot. How the lock system works is that

both levers are closed. Then the bottom servo opens up the bottom lever allowing a ball

to drop. It then closes. After that is done the top lever is opened and another ball falls

through. After waiting for the balls to refill the top lever closes pushing up any extra

 11

balls so that only one ball remains below it. The bottom lever is powered by a TXF servo

and the top lever is powered by a S03N servo.

Figure 4 – Ball Lock System

When I initially ordered my servos I ordered two extra ones figuring something

might well go wrong. Early on I burned out one servo when my power supply stopped

producing 5 V and instead produced 12 V. Another servo I wore out by straining it too

much in the tasks I gave it to operate.

 12

Sensors

There are electronics on both on the basketball hoop and on the robot that will

work together to accomplish the overall goal of the robot’s design. There is an IR beacon

on the basketball hoop that generates an IR signal at a frequency of 55kHz allowing

Shooter to find it.

 13

IR beacon (basketball hoop)

The IR beacon oscillates near 56k so as not to interfere with the obstacle

avoidance system. A 555 timer has been used to generate the frequency. The output was

then hooked up to a Darlington transistor and then to three IR LEDs with shrink-wrap

around them to focus their signal, which allows for only one detector to be needed. All

the parts were from the lab except the Darlington transistor that was purchased at

Radioshack for a few dollars. Below is the circuit the timer circuit I used, which was

figured out with the help from Kyle Tripician and Steven Vanderploeg.

Figure 5 - 555 Timer Circuit

To achieve the above circuit took a large amount of time and effort. I looked at various

websites and tried to use a couple of formulas. My suggestion to any student reading this

is to reuse an already completed circuit since they are possibilities in past reports already

that are known to work.

100 pF

15k ohm

GND V+

/Trigger Disconnect

Output Thresh

/Reset Control +5V

+5V

100k ohm

 14

IR detector for the beacon (robot)

 Shooter uses a hacked IR detector to find and then center on the basketball hoop. It

was hacked following the instructions given by Michael Hattermann

http://www.mil.ufl.edu/imdl/papers/IMDL_Report_Spring_02/michael_hatterman/hacked

_ir.pdf. Shooter knows that he is centered on the hoop, because the IR’s are in a directed

cone that keeps the signal to a small area, so it is a matter of finding the analog voltage

spike. The detector was purchased from Jameco for $1.95 its Mfg Ref is

#LITEONLTM9034-2. Hacking and using these was simple enough, but I did run into

problems because of my Analog to Digital conversion code.

Sonar receiver/transmitter combination (robot)

The sonar receiver/transmitter combination was to be used for finding the range to

the basketball hoop. This would have been done by a sonar signal being bounced of the

large base of the basketball hoop and finding the time it takes to return back. From this

distance the position of the shooting arm is going to be determined. The sonar I tried to

get working with my robot was purchased from Acroname for $33. I was unable to

achieve a desired result from the sonar sensor and moved on to other alternatives,

especially since the sonar was a redundant system.

Beam detection is roughly a 30 degree cone
Minimal Detection Range = 30 cm
Maximal Detection Range = 3 m

Figure 6 – Sonar

Input

Output

Standard Delay Time Relates to the Distance

 15

IR range detectors for obstacle avoidance (robot)

 Three IR detectors and emitters are used to avoid bumping into obstacles in the

front or side of the robot. The IR signal sent out will be detected on its return and from

that a distance will be determined. When an obstacle gets to close the robot will turn to

avoid it. Purchased from digikey for $10.58 each.

Figure 7 – Sharp IR

Table 1 – Sharp IR Range Finders
Inches IR value
 0.50 80
 1.00 120
 1.25 140
 1.50 160
 2.00 140
 2.50 120
 2.75 100
 3.25 80
 4.00 60
 6.50 40
12.00 20

 The sharp detectors is linear to about 1.5 inches, then it is no longer linear. Either

region can be used to detect obstacles. Also the detector does not have a very wide

detection cone.

IR Sensors

0
25
50
75

100
125
150
175

0 1 2 3 4 5 6 7 8 9 10 11 12

Inches Away

A
/D

 V
al

ue

Covers about a 30 degree arc

 16

Bump switches for obstacle avoidance (robot)

 Four bump switches were used, one on each side of the robot. The purpose of

these sensors is to act like a backup encase the IR does not see an obstacle. Depending

on the voltage inputted the robot will determine which switch(s) are pressed. I ran out of

time to reattach my bump switches, but they work similar to all the other A/D sensors.

Figure 8 – Bump Switches

 10k 20k 47k 100k

 Analog Signal

10k

10k (Left) 20k (Center) 47k (Right) 100k (Back)
10k (Left) 115 135-140 125-130 115-120

20k (Center) 135-140 76 95-100 90-95
47k (Right) 125-130 95-100 40 50-55
100k (Back) 115-120 90-95 50-55 20

 17

Behaviors

The robot will have the following behaviors:

• The first behavior is that the basketball hoop is located. The robot spins around till it

is centered on the basketball hoop.

• Shooter pulls back his shooting arm.

• Shooter drops a single ball into the basket.

• Shooter then releases the shooting arm, which flings the ball at the hoop.

• This is repeated a set number of times

• Afterwards Shooter wonders off in a random direction

• While wondering the robot will avoid obstacles.

The success of most robots depend on how well the A/D code is written since there

are so many analog inputs from various sensors. Building a sub behavior, then building

another sub behavior, then combining the two and repeating this process worked really

well. It allowed me to quickly find bugs and problems, along with giving me a place to

restart if something went wrong later on.

 18

Experimental Layout and Results

Range of Basketball Shooting

Unworn Servo & freashly charged batteries Approximately 4 feet
Worn Servo & used batteries Approximately 3 feet

Beacon Detector

Distance Voltage Out
infinite 1.57
Next to 2.63
1.5 inches 2.61
2.0 inches 2.55

Sharp IR Range Finders

Inches IR value
 0.50 80
 1.00 120
 1.25 140
 1.50 160
 2.00 140
 2.50 120
 2.75 100
 3.25 80
 4.00 60
 6.50 40
12.00 20

Bump Switches

10k (Left) 20k (Center) 47k (Right) 100k (Back)
10k (Left) 115 135-140 125-130 115-120

20k (Center) 135-140 76 95-100 90-95
47k (Right) 125-130 95-100 40 50-55
100k (Back) 115-120 90-95 50-55 20

 19

CLOSING

Conclusion

Due to Shooter’s various revisions during the semester I am not surprised that I

did not need to have all the sensors I originally planned on. I was surprised at how fast

the semester went after Obstacle avoidance was due, even with all the warnings given

beforehand that this would be the case. To that end I was unable to accomplish exactly

what I desired to early on. Getting the ball loading and shooting mechanism working

turned out to be a lot more difficult then I expect so I am very pleased with it being

functioning. Adding in the ability to locate the hoop and then avoid obstacles means that

I do have an intelligent autonomous robot, which means all the work did pay off while

teaching me tons of things.

The cheapness of the servos was the biggest constraint on my robot. First it

prevented me from using stronger springs which would have allowed me to launch the

paddleball easily over 10 feet. The lack of strength also means my robot now has

problems moving on carpet due to Shooter’s weight. Second they do not seem to be able

to take a lot of wear and tire since it appears I need to replace one that has been only used

in the last two weeks.

Limiting myself to a robot that could have all the parts made on the T-tech

machine meant that I ran out of space on the top of the robot where I had the vast

majority of sensors and actuation. More space would have allowed me to have a longer

shooting arm allowing for more force to through the ball at the hoop. The additional

space would also allow me to drop the ball loader down and to the side instead of being

high up in the air.

 20

The ability for one IR beacon detector to be needed was unexpected. Shrink-wrap

does allow for a very focus beam. My expectations for the shooting and loading were

surpassed, because I was never sure if it would all come together or not.

If I were to start this project over I would have started before finals week last

semester. Gotten my final design approved first day of class and start building then. I

would aim for a less mechanical intensive design, since I am an electrical engineer. I

would also make sure to have a more open platform so that I could get to my wiring and

board a lot easier then the closed design I have now. There are better ways to support

and reinforce your robot then using all four of your sides in a box type design.

I would stick to a circular design, since the ability to turn and not have to worry

about corners is wonderful. The major change I would make would be to go with motors

instead of servos. The added strength would allow for a more impressive demostration.

Probably over the summer I will work on adding in the sonar and tweaking the design,

after spending so much time on Shooter there is no way I am going to just leave it alone.

Documentation

http://www.mil.ufl.edu/imdl/

http://www.atmel.com/dyn/resources/prod_documents/DOC1457.PDF

http://www.avrfreaks.com/

http://www.prllc.com/

http://dkc3.digikey.com/pdf/T032/1085.pdf

http://www.sharp.co.jp/products/device/ctlg/jsite22_10/table/pdf/osd/optical_sd/gp2d120_j.pdf

http://www.jameco.com/jameco/Products/ProdDS/176541.pdf

http://www.google.com/

 21

Appendices

//Demo2.c by Jason Metzenthin
//Shooter turns till he finds the IR beacon
//Then loads and shoots three shoots
//Then goes into the obsticale avoidance

//Launching program uses Timer0
//Movement uses Timer1 as PWM channels

#include <io.h>
#include <interrupt.h>
#include <sig-avr.h>
#include <inttypes.h>

typedef unsigned char u08;
u08 channel;

u08 avgSpeed;

u08 centerIR;
u08 leftIR;
u08 rightIR;

u08 cIRarray[9]={0,0,0,0,0,0,0,0,0};
u08 rIRarray[9]={0,0,0,0,0,0,0,0,0};
u08 lIRarray[9]={0,0,0,0,0,0,0,0,0};

u08 rSpeed[9]={0,0,0,0,0,0,0,0,0};
u08 lSpeed[9]={0,0,0,0,0,0,0,0,0};

u08 bArray[9]={0,0,0,0,0,0,0,0,0};

u08 centerIRtotal;
u08 rightIRtotal;
u08 leftIRtotal;

u08 avgBump;

int ic=1;
int ir=1;
int il=1;
int ib=1;
int j=1;
int k=1;

 22

#define phaseLength 0x74 //116*1024/6MHz = 20ms
#define Servo_Min 0x03
#define Servo_Max 0x0c
#define Servo_DutyOn (((Servo_Max-
Servo_Min)*ServoDutyCycle/Servo_Max)+Servo_Min)
#define Servo_DutyOff (phaseLength-Servo_DutyOn)

// #define drivers
#define numServos 0x05

#define DrivePort 0x00 //Pulling back arm
#define DriveStar 0x01 //Relasing mechanism
#define LiftServo 0x02 //Bottom gate in loader
#define TiltServo 0x03 //Top gate in loader
#define GrabServo 0x04

#define DriveAheadFull Servo_Max
#define DriveReverseFull Servo_Min
#define DriveAheadHalf 0x09
#define DriveReverseHalf 0x06
#define DriveStop 0x00

typedef unsigned short u16;
typedef unsigned long u32;
// Globals for servo control
volatile u08 Phase= 0; //where am I in a Servo phase
volatile u08 segment = 0;
volatile u08 ServoDutyCycle[numServos]; //Servo_Min 0x03 to Servo_Max 0x0c
volatile u08 comeBackIn;
volatile u08 resetAll = 0;
volatile u08 currSpeed[numServos];
volatile u08 servoState,beenServiced[numServos],timeUsed;
u08 testcount;

u08 Det;

u08 detArray[9]={0,0,0,0,0,0,0,0,0};

int di=1;

volatile int flag;

SIGNAL(SIG_ADC)
{

 23

 if (channel==0x20)
 {
 channel=0x21;
 detArray[di]=inp(ADCH);
 di++;
 if(di>9)
 {
 di=1;
 }
 Det = avgArray(detArray);
 if (Det>120)
 {
 flag=1;
 }
 }
 else if (channel==0x21)
 { //centerIR
 channel=0x22;
 cIRarray[ic]=inp(ADCH);
 ic++;
 if(ic>9)
 {
 ic=1;
 }
 centerIR = avgArray(cIRarray);
 }
 else if (channel==0x22)
 { //rightIR
 channel=0x23;
 rIRarray[ir]=inp(ADCH);
 ir++;
 if(ir>9)
 {
 ir=1;
 }
 rightIR = avgArray(rIRarray);
 }
 else if (channel==0x23)
 { //leftIR
 channel=0x20;
 lIRarray[il]=inp(ADCH);
 il++;
 if(il>9)
 {
 il=1;
 }

 24

 leftIR = avgArray(lIRarray);
 }

 else
 { //Bump Sensors
 channel=0x20;
 bArray[ib]=inp(ADCH);
 ib++;
 if(ib>9)
 {
 ib=1;
 }
 avgBump = avgArray(bArray);
 }
 outp(channel,ADMUX);
}

void init_motors(u08 num)
{ // make sure that you power with full six volts or this code is crap
 u08 cnt;
 //Init timer 0
 outp(0xFF,DDRB); //set portb as output
 outp(0x02,TIMSK); //set COIE bit=1 for interrupt enable at output compare
 outp(0x0d,TCCR0); //set CTC0=1 to clear at compare and CSO2:1:0=001
prescale at ck speed/1024
 outp(0x75,OCR0); //set value in OCR0 reg to 117=0x75 servo period

 //Initialise the motors
 Phase= 0;
 segment = 0;
 timeUsed = 0;
 comeBackIn = phaseLength;
 resetAll = 0;
 servoState = 0x00;
 outp(servoState,PORTB); // set low
 for (cnt=0;cnt<=num;cnt++)
 {
 ServoDutyCycle[cnt]=0;
 currSpeed[cnt]=0;
 beenServiced[cnt] = 0;
 }
}

void off_motors()

 25

{//Turn off the motors for shooting
 outp(0x00,TIMSK);
 outp(0x00,TCCR0);
 outp(0x00,OCR0);
}

SIGNAL(SIG_OUTPUT_COMPARE0){ // This timmer controls all the servos used in
Toby
 u08 pin = 0;

 if (resetAll == 1) {
 resetAll = 0;
 Phase = 0;
 outp(1,OCR0); //set value in OCR0 reg to duty pulses to count
 } else if (Phase > 0 && Phase < phaseLength) {
 segment = comeBackIn;
 timeUsed = Phase;
 for (pin = 0; pin < numServos; pin++){
 if((beenServiced[pin] != 1) && (Phase == currSpeed[pin])){
 cbi(servoState,pin);
 beenServiced[pin] = 1;
 }
 }
 comeBackIn = phaseLength - timeUsed;
 for (pin = 0; pin < numServos; pin++){
 if ((comeBackIn > (currSpeed[pin] - timeUsed)) &&
(beenServiced[pin] != 1)){
 comeBackIn = (currSpeed[pin] - timeUsed);
 }
 }
 outp(comeBackIn,OCR0); //set value in OCR0 reg to duty pulses to
count
 Phase += comeBackIn;
 if (Phase == phaseLength) resetAll = 1;
 } else if (Phase > phaseLength) {
 resetAll = 0;
 Phase = 0;
 }
 if (Phase == 0){
 segment = 0;
 timeUsed = 0;
 for (pin = 0; pin < numServos; pin++){
 currSpeed[pin] = ServoDutyCycle[pin];
 if(currSpeed[pin]>0) {
 sbi(servoState,pin);
 beenServiced[pin] = 0;

 26

 } else {
 cbi(servoState,pin);
 beenServiced[pin] = 1;
 }
 }
 comeBackIn = phaseLength;
 for (pin = 0; pin < numServos; pin++){
 if ((comeBackIn > (currSpeed[pin] - timeUsed)) &&
(beenServiced[pin] != 1)){
 comeBackIn = (currSpeed[pin] - timeUsed);
 }
 }
 outp(comeBackIn,OCR0); //set value in OCR0 reg to duty pulses to
count
 Phase += comeBackIn;
 if (Phase == phaseLength) resetAll = 1;
 }
 outp(servoState,PORTB);
 return;
}

int main(void)
{

 u08 led;
 u08 test = 5;
 flag=0; //Beacon found 0 = NO
 int x;

 //A to D setup
 outp(0xff,DDRC);
 channel=0x20;
 outp(0x20,ADMUX);
 outp((1<<ADEN)|(1<<ADSC)|(1<<ADFR)|(1<<ADIE),ADCSR);
 outp(0xff,PORTC);

 sei();

 //PWM setup for wheels
 outp(0xFF,DDRD);
 outp(0xA1,TCCR1A);
 outp(0x04,TCCR1B);
 outp(0x00,TCNT1H);
 outp(0x00,TCNT1L);

 27

 sei();

 while(flag!=1)
 {
 rightwheel(0x20); //Hardright
 leftwheel(0x40);
 }

 //Found the Beacon STOP
 //rightwheel //stop before
 outp(0x00,OCR1AH);
 outp(0x00,OCR1AL);
 //lefftwheel //you go past beacon
 outp(0x00,OCR1BH);
 outp(0x00,OCR1BL);

 //Turn off PWM
 //outp(0x00,TCCR1A);
 //outp(0x00,TCCR1B);
 //outp(0x00,TCNT1H);
 //outp(0x00,TCNT1L);

 //Let's start shooting

 init_motors(numServos);

 outp(0xff,DDRC);

 ServoDutyCycle[DrivePort] = 0x00;
 ServoDutyCycle[DriveStar] = 0x00;

 x=0;
 while(x<3) //x<3 for demostration, x<1 for testing
 {
 x++;

 //Pulling Back

 ServoDutyCycle[0x01]=0x0F;
 wait(500);

 ServoDutyCycle[0x00]=0x0F; //Launch Arm up top
 wait(500);

 ServoDutyCycle[0x01]=0x07; //Releasing Latched On

 28

 outp(0xFE,PORTC);
 wait(500);

 ServoDutyCycle[0x01]=0x00; //Clearing PWM
 wait(500);

 ServoDutyCycle[0x00]=0x02; //Pulling back Arm
 wait(500);

 //Loading Ball

 ServoDutyCycle[0x03]=0x07; //Make sure top gate
 wait(300); //is closed

 ServoDutyCycle[0x03]=0x00;
 wait(500);

 ServoDutyCycle[0x02]=0x0F; //Open bottom gate
 wait(300);
 ServoDutyCycle[0x02]=0x0F; //Open bottom gate
 wait(300);

 ServoDutyCycle[0x02]=0x07; //Close bottome gate
 wait(500);

 ServoDutyCycle[0x02]=0x00;
 wait(500);

 ServoDutyCycle[0x03]=0x02; //Open top gate
 outp(0xF7,PORTC);
 wait(500);

 ServoDutyCycle[0x03]=0x07; //Close top gate
 outp(0xEF,PORTC);
 wait(300);
 ServoDutyCycle[0x03]=0x07; //Close top gate
 wait(300);

 ServoDutyCycle[0x03]=0x00;
 wait(500);
 outp(0xEF,PORTC);

 //Firing At long Last!

 ServoDutyCycle[0x01]=0x02; //Releasing Launch Arm

 29

 outp(0xF7,PORTC);
 wait(500);

 ServoDutyCycle[0x01]=0x00; //Clearing PWM
 outp(0xEF,PORTC);
 wait(500);

 }

 outp(0x00,PORTB);

 //Done shooting time to wonder off

 off_motors();

 //PWM setup for wheels
 outp(0xFF,DDRD);
 outp(0xA1,TCCR1A);
 outp(0x04,TCCR1B);
 outp(0x00,TCNT1H);
 outp(0x00,TCNT1L);

 for(;;)
 {

 if(centerIR>70)
 {
 rightwheel(0x00); //stop before
 leftwheel(0x00); //you hit something
 }
 else if(centerIR>55)
 {
 if(rightIR>leftIR)
 {
 rightwheel(0x02); //hardleft
 leftwheel(0x02);

 wait(20);
 rightwheel(0x02); //hardleft
 leftwheel(0x02);

 wait(20);
 rightwheel(0x02); //hardleft
 leftwheel(0x02);

 wait(20);

 30

 rightwheel(0x02); //hardleft
 leftwheel(0x02);
 }
 else
 {
 rightwheel(0x20); //Hardright
 leftwheel(0x40);

 wait(20);
 rightwheel(0x20); //Hardright
 leftwheel(0x40);

 wait(20);
 rightwheel(0x20); //Hardright
 leftwheel(0x40);

 wait(20);
 rightwheel(0x20); //Hardright
 leftwheel(0x40);
 }
 }
 else if(rightIR>20 && leftIR<rightIR)
 {
 // Turn Left
 rightwheel(0x02);
 leftwheel(0x00);
 outp(0xFB,PORTC);
 }
 else if(leftIR>20 && rightIR<leftIR)
 {
 rightwheel(0x00);
 leftwheel(0x40);
 outp(0xFE,PORTC);
 }
 else
 {
 //forward movement
 rightwheel(0x02);
 leftwheel(0x40);
 outp(0xF7,PORTC);
 }

 }
}

void rightwheel(u08 newSpeed)

 31

{
 rSpeed[j]=newSpeed;
 j++;
 if(j>9)
 {
 j=1;
 }
 avgSpeed=avgArray(rSpeed);
 outp(0x00,OCR1AH);
 outp(avgSpeed,OCR1AL);
 return;
}

void leftwheel(u08 newSpeed)
{
 lSpeed[k]=newSpeed;
 k++;
 if(k>9)
 {
 k=1;
 }
 avgSpeed=avgArray(lSpeed);
 outp(0x00,OCR1BH);
 outp(avgSpeed,OCR1BL);

 return;
}

void wait(double time)
{
 volatile int a,b,c,d;
 for(a=0;a<time;a++)
 {
 for(b=0;b<10;b++)
 {
 for(c=0;c<66;c++)
 {
 d=a+1;
 }
 }
 }
 return;
}

u08 avgArray(u08 array[9])
{

 32

 u08 value;
 value = (array[1] + array[2] + array[3] + array[4]
 + array[5] + array[6] + array[7] + array[8] + array[9])/9;
 return value;
}

