

Kyle Tripician
Sensor Report

Intelligent Machines Design Laboratory
CMU Camera

Introduction

 The Aluminator is an autonomous robot that searches an area for a red aluminum

can and retrieves it to dispense it in a trash area. The robot utilizes many sensors in order

to do this, the most important of which is the CMU camera. It uses the camera to find and

track objects to then approach them. The CMU camera is a “smart camera” meaning, it is

able to perform many specialized tasks. The feature I used on the camera was the “Track

Color” command which enabled me to input different color coordinates, and it would

return the middle mass coordinates of an object of that color range specified is found.

Interfacing the camera with a computer proves to be simple and the GUI is quite user

friendly. The problem at hand was interfacing it with a microprocessor.

CMU Camera

 Configuring the CMU camera with an Atmel ATMega323 processor proved to be

quite a feat. However, it was neither the Camera, nor the processor that gave me

problems. The board I was using, the progressive MegaAVR development board seemed

to be wired incorrectly. On the board, there is a male header that is supposedly connected

to the transmit, receive and ground pin of the board. I was using this header to interface

my hardware together, and I could get the processor to transmit to the board, but I could

not get the camera to transmit to the camera. After weeks of agony I realized that the

board was faulty, and the receive pin on the male header was not connected to the actual

receive pin of the USART. By making a cable that connected straight to the DB9 port I

was able to fix my problem and the board transmitted and received properly with the

camera.

 The CMU camera track color command sends back a packet of information of the

coordinates of an object that it is tracking. The most used packet, the M-type packet

sends back a packet similar to: M|middlex|middley|x1|y1|x2|y2|pixels|confidence.

When tracking a color I was most concerned with the middle x coordinate.

 One disadvantage to the CMU camera is that it sends everything back in ASCII

format. In order to avoid nasty ASCII to Hex conversions, you need to enable Raw Mode,

which gives you the option to send data back from the camera in “raw” format. This

makes it easier for the processor to read the data. In raw mode, the M packet is begun

with a 255 byte followed by an M, then the data. Code for integrating the camera with an

ATMega323 chip can be found at the end of this report.

Figure 1. Progressive board schematic. Receive header not tied to receive pin.

Had it not been for the board that I was using to interface the chip and the camera

with, I wouldn’t have had as many problems as I did. Overall I find that the camera is a

very simple to use piece of hardware, that can be very effective.

***********Code**
Kyle Tripician
EEL5666
Mega AVR Development board w/
Atmel ATMega323 Processor
UART Initialization for the CMU Camera
@ 38400 Kbps, 8 databits, 1 stop bit, no parity
The following code can be used and modified for educational purposes
With proper acknowledgement
**

#include <io.h>
#include <string.h>
#include <stdlib.h>
#include <progmem.h>
#include <interrupt.h>
#include <sig-avr.h>

//Initialize UART
void uartinit(void)
{
 outp(0x98,UCSRB); //enable transmit, receive, and receive complete interrupt
 outp(0x86,UCSRC);
 outp(0x00,UBRRH);
 outp(0x09,UBRRL);
}

//Send a single byte of data
void uarttransmit(unsigned char data)
{
 // Wait for empty transmit buffer
 while (!(UCSRA & (1<<UDRE))){}
 // Put data into buffer, sends the data
 outp(data,UDR);
}

//Send a given CR terminated string
void uartstring(unsigned char * myStringIn)
{
 unsigned char *myString = myStringIn;
 unsigned char ch1;
 unsigned char gotNULL = 0;
 ch1= *myString++;
 while(!gotNULL){
 uarttransmit(ch1);

 ch1 = *myString++;
 if(ch1 == '\r'){
 gotNULL = 1;
 uarttransmit(ch1);
 }

 }
}
*************cmu.c*****************
/*
Kyle Tripician
UART code.
...YET ANOTHER TRY*/

#include <io.h>
#include <sig-avr.h>
#include <stdlib.h>
#include <interrupt.h>
#include <progmem.h>
typedef unsigned char u08;
typedef unsigned int u8;
typedef char s08;
typedef unsigned short u16;
typedef short s16;
#include "delay.h"
volatile u8 temp;
volatile u8 i=0;
volatile u8 cmudat[9];

SIGNAL(SIG_UART_RECV){
 temp=inp(UDR);
 if(temp != 0x3A){
 if(temp == 0x20 || i==9){
 i=0;
 }
 else if(i==0){
 if(temp == 0xFF){
 cmudat[i]=temp;
 i++;
 }
 }
 else if(temp !=0x20 && i<9){
 cmudat[i]=temp;
 i++;
 }

 }

}
void blink(void){
 uartstring("L1 1\r");
 delay(1500);
 delay(1500);
 delay(15000);
 uartstring("L1 0\r");
 delay(15000);
 delay(1500);
 delay(1500);

 }
int main(void){
 outp(0xFF,DDRC);
 delay(10000);
 uartinit();
 delay(10000);
 uartstring("PM 1\r");
 delay(1000);
 uartstring("RM 3\r");
 delay(1000);
 sei();
 delay(1000);

 while(1){
 uartstring("TC 150 250 16 16 16 16\r");
 outp(cmudat[8],PORTC);
 delay(20000);
 }
}

