University of Florida Department of Electrical and Computer Engineering EEL 5666 Intelligent Machines Design Laboratory Final Report

SPARtan

Bryan Arkins

TA: Louis Brandy Max Koessick William Dubel Instructor: A. A. Arroyo

Table of Contents

Abstract	3
Executive Summary	4
Introduction	5
Integrated System	6
Mobile Platform	8
Actuation	10
Sensors	11
Behaviors	19
Conclusion	20
Documentation	21
Appendices	
Appendix A: Vendor Information	22
Appendix B: Assorted Code	23

Abstract

SPARtan is a Sonar Positioning Autonomous Robot. I chose this concept because it really hadn't been done before and requires a lot of mathematical concepts. I like a challenge and enjoy mathematical applications thoroughly. It is my goal to build an interesting and original robot and see how feasible this sonar technique will really be. I think working with sonar is interesting and attempting a unique concept is enjoyable. Because this type of sonar system is not readily available to purchase, the sonar would be built by me. Building such a sensor proves to be a huge challenge and gathering the right information is crucial.

Executive Summary

SPARtan attempts to follow a sonar transmitter providing a 40 kHz pulse every 1.5 ms. This transmitter is placed a fair distance across the room from SPARtan. Between the two are some obstacles in which it must try to avoid. Once the transmitter and SPARtan are set up in the room far from each other with obstacles in between, both the transmitter and SPARtan are turned on. At this point, SPARtan goes through its initialization process and waits for the appropriate switch to be pressed. Now SPARtan goes through his behaviors. The first is sonar position where it attempts to line up with the transmitter. The second behavior is to avoid obstacles. SPARtan uses IR sensors to detect where obstacles lie. The final behavior is to display the current status of SPARtan on the LCD. As a last resort, SPARtan has a bump switch panel on the front to allow him to stop when it has been hit. Once this occurs, SPARtan is then done.

Introduction

The concept of my robot is one that deals with positioning. I wanted to choose a unique way of finding one's way to some place. Sonar has always seemed to intrigue me so this is what I have chosen. I plan to use 3 sonar receivers and 1 sonar transmitter which will allow the robot to triangulate its position according to a beacon (sonar transmitter). I find this interesting because I like the mission that my robot must perform. Its concept is it starts out lost and tries to find home while avoiding the obstacles that remain in its way. Throughout this paper, I will discuss SPARtan thought process and what things make him work the way he does.

Integrated System

SPARtan's logical process is one which is not very difficult to comprehend.

Currently SPARtan cannot receive a sonar pulse and therefore align itself towards the sonar beacon. SPARtan's functions as of now are Obstacle Avoidance and displaying the current status on the LCD display.

SPARtan uses an Atmel STK 500 processor board with an ATmega32 microprocessor.

Mobile Platform

The most logical arrangement of the sonar receivers is to line them up in the shape of a triangle. This will allow all directions in the horizontal plane to be covered. Also, the receivers must be spread out so that accurate reading can be read making the robot more efficient at finding its target. So a triangular shaped platform would be the best decision.

To cut down on wood consumption, I decided to go with a T-shaped design allowing me to save wood while maintaining a sleek design.

Here is a top view of the final design:

I designed the platform in AutoCAD. I made all the appropriate pieces fit into place the first time which really surprised me. Although the platform isn't that complex, I was very happy with the way it turned out. One tricky part was making the platform level. With the servos in the front and a ball castor in the back, the correct heights had to be accounted for.

Actuation

Actuation is provided by two servos on the front two corners of SPARtan.

Each of these servos is hacked allowing continuous nonstop movement for turning wheels. I would highly recommend these servos. They work properly every time and are easy control through a PWM signal. The PWM signal required does not have to be exactly what is suggested which is nice.

Hacking this servo is very easy. Performing this action requires the use of a Dremel tool on one tab and then the removal of another tab which slides off the potentiometer.

For back support, SPARtan rested on a ball castor. This ball castor was definitely heavy duty and was a little large for most applications. In my case, it fit perfectly into the back. I used this because I needed multi-directional movement in the back.

Sensor Selection:

Basic Sensors:

Bump Switches – Used in obstacle avoidance, these bump switches are a last resort in case my IR sensors fail. These bump switches should really not be used unless I'm trying to avoid a skinny object and my IR sensors fail to see anything in front of me.

Sharp GP2D12 Detector Package – Used in obstacle avoidance, these sensors detect large objects such as walls in front. This sensor uses infrared to detect objects and returns distance information to the microprocessor.

Special Sensors:

Sonar Transmitter – Built by hand, this sensor will be separate from the robot and will act as a beacon emanated a 40 kHz pulse.

Sonar Receiver – Also built by hand, this sensor will receive the pulse given from the transmitter and will relay this to the microprocessor. These will be used to give my position depending on where the transmitter is located.

Bump Switches:

Schematic:

Experimental Setup:

Once the schematic was built, I connect the Vin to one of my port pins on my microprocessor board. I've chosen not to hook it up to one of my A/D channel because I don't really find it necessary and programming is much easier when it's digitally connected to a port pin.

Here's the code I used to test my bump switches:

start:	sbic rjmp	PINA, 0x07 start	; Don't Start until Switch is pressed
•			
	It would	then let me skip out of this loop and	d proceed to the rest of the program.

Data:

The data received was either a logical 0 or 1. Using the port pins makes this much easier to do.

Conclusion:

The bump switches are very reliable and simple to use. Every time they are hit, there's always a change in value that the microprocessor can pick up.

Sharp GP2D12 Detector Package:

Schematic:

Experimental Setup:

To test this sensor, I connected it to one of my A/D converter channels on my microprocessor. I then laid out a measurement system in front of the sensor ranging from 0 cm to 80 cm. I then tested the analog voltage and binary value given by the analog output Vo from the sensor. I obtained the analog voltage from a voltmeter. I obtained the binary value of the analog output by the LEDs on my microprocessor board. As an obstacle, I used a thin, 8.5" x 11", piece of metal with a piece of white computer paper covering it. I then took measurements starting at 10 cm with a step size of 5 cm.

Distance (cm)	Analog Voltage	Binary Value
10	2.56	1000000
15	1.82	10100000
20	1.40	10111000
25	1.12	11000100
30	0.96	11001111
35	0.83	11010100
40	0.73	11011010
45	0.66	11011110
50	0.60	11100001
55	0.56	11100011
60	0.50	11100110
65	0.47	11101001
70	0.44	11101001
75	0.42	11101011
80	0.39	11101100
>> 80	0.23	11110000

Data:

Note: The binary values shown are from the LED display on the board, therefore these values are active low. Complement these values to get real actual values.

Graphs:

Predicted Detector Values

Conclusion on Sharp GP2D12 Detector Package:

The actual values received from the analog voltage out pin were pretty close to the predicted values given. The range was surprisingly further than I expected. Sharp gave a range of up to 80 cm but one could use this sensor for probably up to 120 cm and still have somewhat accurate readings.

The obstacle's position according to the direction in which the sensor faced is very important. The obstacle had to almost be in a straight line for the sensor to detect that something was in front of it.

Sonar Transmitter:

Schematic:

Sonar Receiver:

Schematic:

Experimental Setup:

I used an oscilloscope to measure the filter pulse that this receiver would obtain. The values obtain were not correct. I don't think the schematic was setup properly. With numerous attempts at trying to get this to work, I did try an RCK filter to try and get a signal. This actually did work but both transducers had to be about an inch away from each other. Therefore the transmitter did work but the receivers were faulty.

Behaviors

Acquiring Direction:

This behavior determines in which direction the sonar beacon is. SPARtan continues to receive the pulse in each of its three sonar receivers. Based on when the pulse get to each receiver, I can then determine which direction SPARtan must turn in order to be aligned with the target.

For example:

Back Receiver much sooner than Front 1 and Front 2 => Facing opposite Front 1 sooner than Front 2 and back => Turn left slightly until Front 1 = Front 2 Front 2 sooner than Front 1 and back => Turn right slightly until Front 1 = Front 2

Once this is achieved, this behavior is done.

Obstacle Avoidance:

Bump Switch Panel: Anytime the panel is hit, SPARtan stops and is done.

IR detection: When the IR reaches tolerance because of an obstacle, SPARtan stops,

backs one wheel and then presses onward.

LCD Display:

This behavior shows the current status of SPARtan when it is either going forward or

reaching an obstacle and avoiding.

Conclusion

In summary, I was able to get obstacle avoidance to work well. SPARtan reacts very fast to obstacles at a close distance and moves out of the way. During all of his actions, the LCD displays describes his current actions as he moves.

My work is limited because the sonar system didn't perform. Building these schematics proves to be time consuming and the equipment always isn't the best when assembling these on a board. Because of this problem, I wasn't able to perform the main functions of my program.

If I were to do this all over, I would not have chosen sonar in this manner. Companies don't make sonar for this type of case and the resources to build your own are not very accurate.

Documentation

Sonar Transmitter and Receiver Schematics and Information: Megan Grimm Alph and Ralph Fall 1998

Appendix A: Vendor Information

Item	<u>Qty</u>	Price
ATMEL ATSTK500 Board Starter Kit • www.digikey.com		\$79.00 plus \$10.00 shipping
ATMEL ATmega32-16PC-ND MCU • www.digikey.com		\$9.89 plus \$5.00 shipping
LCD DisplayEEL 4744: Microprocessor Applications		Free
Sharp GP2D12 Detector Package www.acroname.com 	(4)	\$11.50/each plus \$12.00 shipping
HS-425BB Hitec Servo • <u>www.servocity.com</u>	(2)	\$14.99/each plus \$7.00 shipping
 5730 Treaded Lite Wheel 3" www.towerhobbies.com 	(2)	\$5.49 together plus \$7.00 shipping
MAX266 Filter Chip	(2) (1)	Free samples \$19.50/each plus \$10.00 shipping
• <u>www.maxim-ic.com</u>		
LM339 Analog Comparator 40 kHz Transducer Pair • <u>www.jameco.com</u>	(3) (5)	\$0.21/each \$6.95/each plus \$7.00 shipping
Resistors, Capacitors, Transistors, Potentiometers, etc.		\$18.00
Anti-Static Kit	(1)	\$24.99
1kct/80hm Audio-transformer	(1)	\$2.99
PC board mount RadioShack 	(1)	\$2.99
Flange-mount Ball Castor www.mcmaster.com 	(1)	\$3.13 plus \$3.75 shipping
30 Minute AA Battery Charger (includes 4 batts)	(1)	\$41.99
Rechargable NiMH Batteries (4 pack)	(1)	\$13.99
AA Batteries (8 pack) • Best Buy	(1)	\$3.99
	Total:	\$404.55

Appendix B: Assorted Code

;***** L ;** Port / ;** PC0 = ;** PC1 = ;** PC3 = ;** PC4 = ;** PC5 = ;** PC6 = ;** PC7 = ;** GND ;** GND ;** VTG .include '	CD Interfac A is our acc = DB0 = DB1 = DB2 = DB3 = E = RS = Nothing = = = VDD 'm32def.inc	ve ***** (pn7) (pn8) (pn9) (pn10) (pn6) (pn4) VSS R/W (pn2)	.CD: (pn1) (pn5)
.def .def .def .def .def .def .def	del1 del2 a b Temp DReg1 DReg2	=r16 =r17 =r18 =r19 =r20 =r21 =r22	; X Reg ; Y Reg ; A Reg ; B Reg ; Temp Reg ; Delay Reg 1 ; Delay Reg 2
;**** Ma	icros		
.macro le ldi out sbi rcall ldi out sbi rcall .endmacr	tter a,@0 PORTC,a PORTC,5 Latch a,@1 PORTC,5 Latch Delay o	1 5 5	; 80 * 1 * 0.5us = 40us
ser out	Temp DDRC,Te	emp	; Set PortC to output only (LCD)
ldi out ldi out	Temp,lov SPL,Tem Temp, hig SPH, Ten	v(RAMEN p gh(RAME) np	D) ; Set stackptr to ram end ND)
;** Com	nand Mode		
clr out ;** Initia	Temp PORTC,7 lize 4-bit m	ſemp ode	
ldi ldi rcall	DReg1,1: DReg2,10 Delay	50 00	; Delay 1 number (; Delay 2 number (multiple) ; 150 * 100 * 1us = 15ms
ldi out rcall	a,3 PORTC,a Latch	L	

ldi ldi rcall	DReg1,41 DReg2,100 Delay	; Delay 1 number ; ; 41 * 100 * 1us = 4.1ms
rcall ldi ldi rcall	Latch DReg1,100 DReg2,1 Delay	; Delay 1 number ; ; 100 * 1 * 1us = 100us
rcall ldi ldi rcall	Latch DReg1,41 DReg2,100 Delay	; Delay 1 number ; ; 41 * 100 * 1us = 4.1ms
ldi out rcall	a,2 PORTC,a Latch	
;** Enab	ble 2-line Mode	
ldi ldi rcall	DReg1,40 DReg2,1 Delay	; Delay 1 number ; ; 40 * 1 * 1us = 40us
rcall ldi out rcall	Latch a,12 PORTC,a Latch	
;** Disp	lay, Cursor, Blink	
ldi ldi rcall	DReg1,40 DReg2,1 Delay	; Delay 1 number ; ; 40 * 1 * 1us = 40us
ldi out rcall ldi out rcall ldi ldi rcall	a,0 PORTC,a Latch a,15 PORTC,a Latch DReg1,40 DReg2,1 Delay	; Delay 1 number ; ; 40 * 1 * 1us = 40us
;** Clea	r Home	
ldi out rcall ldi out rcall ldi ldi	a,0 PORTC,a Latch a,1 PORTC,a Latch DReg1,164 DReg2,10	; Delay 1 number
rcall	Delay	; 164 * 10 * 1us = 1.64ms

;** Initialization Complete

;*** Write Name ;** Set RS High for Data Mode

sbi	PORTC,5	
ldi	DReg1,40	; Delay 1 number
ldi	DReg2,1	;

;** My name

letter	4,2		; load "B"
letter	7,2		; load "r"
letter	7,9		; load "y"
letter	6,1		; load "a"
letter	6,14	; load "n"	
letter	2,0		; load " "
letter	4,1		; load "A"
letter	7,2		; load "r"
letter	6,11	; load "k"	
letter	6,9		; load "i"
letter	6,14	; load "n"	
letter	7,3		; load "s"
done:			
rjmp	done		

;**** Subroutines

Latch: sbi cbi ret	PORTC,4 PORTC,4	; set E=1 ; set E=0	
Delay: mov mov	del1,DReg1 del2,DReg2		; 0.5us delay
loop:			
nop			
dec	del1		
brne	loop		
mov	del1,DReg1		
dec	del2		
brne	loop		
ret			

;**** Servo Control **** ; ** Straight Line Forward ** ; Our clock is running at 8MHz, therefore we divide ; the clock by the 256 prescalar and let our top be \$FF. ; 1/8MHz = .125us * 256 * 256 = 8.2ms from bottom to top ; So it's 16.4ms for one period and that's as close to 20ms ; as we get. ; $\land \land \land < --$ \$FF ; $/ \setminus / \setminus /$; $/ \lor \lor < --$ \$00 ; 31 ---> Full Forward ; 27 ---> Half Forward ; 23 ---> Neutral ; 19 ---> Half Backward ; 15 ---> Full Backward

.include "m32def.inc"

.def .def .def	temp Lservo Rservo	=r16 =r17 =r18		; Temporary Reg 1 ; Left Servo Reg ; Right Servo Reg
	ldi out		Temp, 0b00001000 DDRB,Temp	; Set OC0 (PB3) to output
	ldi out		Temp, 0b10000000 DDRD,Temp	; Set OC2 (PD7) to output
	ldi out ldi out		Temp,low(RAMEND) SPL,Temp Temp, high(RAMEND) SPH, Temp	; Set stackptr to ram end
	ldi out ldi out		Temp, 0b11100100 TCCR0, Temp Temp, 0b11100110 TCCR2, Temp	; Output compare setup regs ; 6(WGM 00) = 1, 3(WGM 01) = 0 ; 5(COM 01) = 1, 4(COM 00) = 0 ; for TCCR0: 2:0(CS2:0) = 100 ; for TCCR2: 2:0(CS2:0) = 110
	ldi out out		Temp, \$00 TCNT0, Temp TCNT2, Temp	; Start TCNT's at \$00
	ldi ldi out out		Lservo, 31 Rservo, 15 OCR0, Lservo OCR2, Rservo	

loop:

rjmp loop

26

;**** AD Program **** .include "m32def.inc"

.def .def .def .def .def	Temp1 Temp2 Del1 Del2 Del3	=r16 =r17 =r18 =r19 =r20
	clr out	Temp1 DDRA, Temp1
	ser out	Temp1 DDRB, Temp1
	ldi out	Temp1, 0b11100000 ADMUX, Temp1
	ldi out	Temp1, 0b11100110 ADCSR, Temp1
	clr ldi	ZH ZL, SFIOR
	ld sbr st	Temp1, Z Temp1, 0b11110000 Z, Temp1
loop:		
•	in out	Temp1, ADCH PortB, Temp1
	ldi ldi ldi	Del1, 100 Del2, 100 Del3, 50
again:	nop nop nop nop nop	
	dec	Del1
	brne Idi	again Dell 100
	dec	Del2
	brne	again
	ldi	Del2, 100
	dec	Del3
	brne	again
	ւյաբ	loop

;**** Obstacle Avoidance Program ****

;** Bryan Arkins ;** EEL 5666 ;** Spring 2004

; ** Straight Line Forward ** ; Our clock is running at 8MHz, therefore we divide ; the clock by the 256 prescalar and let our top be \$FF.

; 1/8MHz = .125us * 256 * 256 = 8.2ms from bottom to top

; So it's 16.4ms for one period and that's as close to 20ms ; as we get.

- ; 31 ---> Full Forward ; 27 ---> Half Forward
- ; 23 ---> Neutral
- ; 19 ---> Half Backward ; 15 ---> Full Backward

.include "m32def.inc"

.def	Temp1	=r16
.def	Del1	=r17
.def	Del2	=r18
.def	DReg1	=r19
.def	DReg2	=r20
.def	Lservo	=r21
.def	Rservo	=r22
.def	Temp2	=r23
.def	ADval	=r24
.def	Tol	=r25

;**** Macros lat

.macro let	ter	
	ldi	Temp1,@0
	ldi	Temp2,@1
.endmacro	•	
	org	ADCCaddr
	rjmp	AD_ISR

.org \$0050 rjmp reset

reset:

;*** Setup of Ports and Stack Pointer ***

clr out	Temp1 DDRA, Temp1	; Set A/D and Initial Switch Bit7
ldi out	Temp1, 0b00001000 DDRB, Temp1	; Set OC0 (PB3) to output
ser	Temp1	

; Left Servo Reg ; Right Servo Reg

	out	DDRC, Temp1	; Set PortC to output only (LCD)
	ldi out	Temp1, 0b10000000 DDRD, Temp1	; Set OC2 (PD7) to output
	ldi out ldi out	Temp1,low(RAMEND) SPL,Temp1 Temp1, high(RAMEND) SPH, Temp1	; Set stackptr to ram end
	ldi	Tol, \$0b01000000	
;*** Initia	lization of LCD ***		
;** Comm	and Mode		
clr out ;** Initiali	Temp1 PORTC,Temp1 ize 4-bit mode		
ldi ldi rcall	DReg1,150 DReg2,10 DelayLCD		; Delay 1 number ; Delay 2 number (multiple) ; 150 * 100 * 1us = 15ms
ldi out rcall	Temp2,3 PORTC,Temp2 LatchLCD		
ldi ldi rcall	DReg1,41 DReg2,10 DelayLCD		; Delay 1 number ; 41 * 100 * 1us = 4.1ms
rcall ldi ldi rcall	LatchLCD DReg1,1 DReg2,10 DelayLCD		; Delay 1 number ; 100 * 1 * 1us = 100us
rcall ldi ldi rcall	LatchLCD DReg1,41 DReg2,10 DelayLCD		; Delay 1 number ; 41 * 100 * 1us = 4.1ms
ldi out rcall	Temp2,2 PORTC,Temp2 LatchLCD		
;** Enable	DD 1 10		
ldi ldi rcall	DReg1,10 DReg2,2 DelayLCD		; Delay 1 number ; 40 * 1 * 1us = 40us
rcall ldi out rcall	LatchLCD Temp2,12 PORTC,Temp2 LatchLCD		
;** Displa	y, Cursor, Blink		
ldi ldi rcall	DReg1,10 DReg2,2 DelayLCD		; Delay 1 number ; 40 * 1 * 1us = 40us

ldi	Temp2,0
out	PORTC,Temp2
rcall	LatchLCD
ldi	Temp2,15
out	PORTC,Temp2
rcall	LatchLCD
ldi	DReg1,10
ldi	DReg2,2
rcall	DelayLCD

; Delay 1 number	
; 40 * 1 * 1us = 40us	5

;** Clear Home

rcall ClearHomeLCD

;** Initialization Complete

;** Feel free to write ;** To clear and go again, call subroutine "ClearHomeLCD"

;** SPARtan's Name

letter	5,3	; load "S"
rcall	letterLCD	
letter	5,0	; load "P"
rcall	letterLCD	
letter	4,1	; load "A"
rcall	letterLCD	
letter	5,2	; load "R"
rcall	letterLCD	
letter	7,4	; load "t"
rcall	letterLCD	
letter	6,1	; load "a"
rcall	letterLCD	
letter	6,14 ; load	"n"
rcall	letterLCD	

;*** End of LCD ***

ldi

Temp1, \$00

;*** Setup of A/D Conversion **	**	
ldi	Temp1, 0b01100000	
out	ADMUX, Temp1	; Set up for A/D0
ldi	Temp1, 0b10001110	
out	ADCSR, Temp1	
clr	ZH	
ldi	ZL, SFIOR	
ld	Temp1, Z	
sbr	Temp1, 0b00010000	
cbr	Temp1, 0b11100000	
st	Z, Temp1	
:*** Setup of Servo Control ***		
ldi	Temp1, 0b11100100	; Output compare setup regs
out	TCCR0, Temp1	(6(WGM 00) = 1, 3(WGM 01) = 0)
ldi	Temp1, 0b11100110	5(COM 01) = 1, 4(COM 00) = 0
out	TCCR2, Temp1	; for TCCR0: 2:0(CS2:0) = 100 ; for TCCR2:
2:0(CS2:0) = 110		

; Start TCNT's at \$00

	out out	TCNT0, Temp1 TCNT2, Temp1	
	rcall	Stop	
;*** Star	t of Main sei	***	
start:	shic	PINA 0x07	· Don't Start until Switch 7 is pressed
	rjmp	start	, Don't Start und Switch 7 is pressed
	rcall rcall	Go OnwardLCD	
loopMaii	n:		
IRleft:			
	sbic rjmp	PINA, 0x06 EndProg	
	sbi	ADCSR, 7; disable ADEN	
	cbi sbi	ADMUX, 0 ; set A/D0 ADCSR 5 : enable ADEN	
	cbi sbi	ADCSR, 4; Clear Flag ADCSR, 6; Start Conversion	
wait1.			
watti.	sbis	ADCSR, 4	
	rjmp	waitl	
	in chi	ADval, ADCH	
	cbi	ADCSR, 7	
	cbi	ADCSR, 5	
	cp	ADval, Tol	
	brmi rcall	IRleft2	
	rjmp	IRright	
IRleft2:		-	
	rcall	Stop ObstacleI CD	
	ldi	DReg1. 50	
	ldi	DReg2, 150	
	rcall	DelayLCD	
	rcall	RetreatLCD	
	out	OCR2. Rservo	
	ldi	DReg1, 50	
	ldi	DReg2, 150	
	rcall	OnwardI CD	
	rcall	Go	
	rjmp	IRleft	
IR right.			
intrigint.	sbic	PINA, 0x06	
	rjmp	EndProg	
	sbi	ADCSR, 7; disable ADEN	
	sbi	ADMUX, 0 ; set A/D1	
	sbi chi	ADCSR, 5; enable ADEN	
	sbi	ADCSR, 6; Start Conversion	
wait2:			
	sbis	ADCSR, 4	
	rjmp ir	wait2 ADval ADCH	
		112 mi, 112 mi	

	cbi cbi cbi	ADCSR, 4 ADCSR, 7 ADCSR, 5	
	cp brmi rcall rjmp	ADval, Tol IRright2 Go IRleft	
IRright2:	rcall ldi ldi rcall ldi out ldi ldi rcall rcall rcall rjmp	Stop ObstacleLCD DReg1, 50 DReg2, 150 DelayLCD RetreatLCD Lservo, 21 OCR0, Lservo DReg1, 50 DReg2, 150 DelayLCD OnwardLCD Go IRright	
EndProg:	rcall	Stop	
En dDar of	rcall	RIPLCD	
EndProg	rjmp	EndProg1	
;*** Inter AD_ISR: front two	upt Service AD convs reti	Routines ***	
;*** Subr	outines ***		
00.	ldi	Lservo, 28	
	ldi	Rservo, 18 OCR0_L servo	
	out	OCR2, Rservo	
	ret		
Stop:	14:	Learnie 22	
	ldi	Rservo, 23	
	out	OCR0, Lservo	
	ret	OCK2, KSEIVO	
FinishTur	n:		
	andi	ADval, 0b01111111 ADval, Tol	
	brge ret	FinishTurn	
DelayLCl	D:		; 0.5us delay
		Del1,DReg1	
	mov	Del2 DReg2	
loopLCD	mov mov	Del2,DReg2	
loopLCD	mov mov : nop nop	Del2,DReg2	
loopLCD	mov mov : nop nop nop	Del2,DReg2	
loopLCD	mov mov : nop nop nop	Del2,DReg2	

; Switching back and forth the

; Delay until turn is finished

	nop		D 11		
	dec	1 1 CD	Dell		
	brne	loopLCD	Dall DBa	~1	
	dec		Dell,DReg	31	
	hrne	loonLCD	DUIZ		
	dec	loopLeD	DReg2		
	brne	loopLCD	510652		
	ret	1			
LatchLCD): 	DODTC 4		ι act Γ=1	
	sbi	PORTC 4		, Set $E=1$	
	ret	10110,4		, SCI L-0	
ClearHom	eLCD:				
	cbi		PORTC,5		
	ldı		Temp2,0	2	
	rcall	LatchI CD	PORIC, IC	emp2	
	ldi	LatenLCD	Temp2.1		
	out		PORTC,Te	emp2	
	rcall	LatchLCD		•	
	ldi		DReg1,164	4	; Delay 1 number
	ldi	DINC	DReg2,4		· · · · · · · · · · · · · · · · · · ·
	rcall	DelayLCL	DODTO 5		; $164 * 10 * 1us = 1.64ms$
	ldi		DReg1 10		· Delay 1 number
	ldi		DReg2 2		· Delay 2 number
	ret		510082,2		, 2014) 2 hantoor
ObstacleL	CD:	a 1 x	1.05		
	rcall	ClearHom	eLCD		
	rcall	4,15 letterI CD	; load 'O		
	letter	6.2		: load "b"	
	rcall	letterLCD		, iouu o	
	letter	7,3		; load "s"	
	rcall	letterLCD			
	letter	7,4		; load "t"	
	rcall	letterLCD		. lood "o"	
	reall	letterI CD		, 10au a	
	letter	6.3		: load "c"	
	rcall	letterLCD		,	
	letter	6,12	; load "l"		
	rcall	letterLCD			
	letter	6,5		; load "e"	
	letter	2 1		· load "!"	
	rcall	letterLCD		, 1044 :	
	ret				
RetreatLC	D:		LOD		
	rcall	ClearHom	eLCD	i load "D"	
	reall	3,2 letterI CD		, load K	
	letter	6.5		: load "e"	
	rcall	letterLCD		,	
	letter	7,4		; load "t"	
	rcall	letterLCD			
	letter	7,2		; load "r"	
	rcall	ietterLCD		· load "a"	
	rcall	0,5 letterI CD		, load "e"	
	letter	6,1		; load "a"	
	rcall	letterLCD		, 	
	letter	7,4		; load "t"	
	rcall	letterLCD			
	letter	2,1		; load "!"	

rcall	letterLCD
ret	

OnwardLCD:

rcall	ClearHomeLCD	
letter	4,15	; load "O"
rcall	letterLCD	
letter	6,14	; load "n"
rcall	letterLCD	
letter	7,7	; load "w"
rcall	letterLCD	
letter	6,1	; load "a"
rcall	letterLCD	
letter	7,2	; load "r"
rcall	letterLCD	
letter	6,4	; load "d"
rcall	letterLCD	
letter	2,14	; load "."
rcall	letterLCD	
letter	2,14	; load "."
rcall	letterLCD	
letter	2,14	; load "."
rcall	letterLCD	
ret		

RIPLCD:

rcall	ClearHomeLCD	
letter	5,2	; load "R"
rcall	letterLCD	
letter	2,14	; load "."
rcall	letterLCD	
letter	4,9	; load "I"
rcall	letterLCD	
letter	2,14	; load "."
rcall	letterLCD	
letter	5,0	; load "."
rcall	letterLCD	
ret		

letterLCD:

out	PORTC, Temp1	
sbi	PORTC,5	
rcall	LatchLCD	
out	PORTC,Temp2	
sbi	PORTC,5	
rcall	LatchLCD	
ldi	DReg1,10	; Delay 1 number
ldi	DReg2,2	;
rcall	DelayLCD	; 80 * 1 * 0.5us = 40us
ret		