

University of Florida
Department of Electrical and Computer Engineering

EEL 5666
Intelligent Machines Design Laboratory

Final Report

SPARtan

Bryan Arkins

TA: Louis Brandy
Max Koessick
William Dubel

Instructor: A. A. Arroyo

Table of Contents

 Abstract……………………………………………………………3

 Executive Summary……………………………………………….4

 Introduction………………………………………………………..5

 Integrated System………………………………………………….6

 Mobile Platform……………………………………………………8

 Actuation…………………………………………………………...10

 Sensors……………………………………………………………..11

 Behaviors…………………………………………………………..19

 Conclusion………………………………………………………....20

 Documentation…………………………………………………......21

 Appendices

 Appendix A: Vendor Information…………………………22

 Appendix B: Assorted Code……………………………….23

 2

Abstract

SPARtan is a Sonar Positioning Autonomous Robot. I chose this concept because it
really hadn’t been done before and requires a lot of mathematical concepts. I like a
challenge and enjoy mathematical applications thoroughly. It is my goal to build an
interesting and original robot and see how feasible this sonar technique will really be. I
think working with sonar is interesting and attempting a unique concept is enjoyable.
Because this type of sonar system is not readily available to purchase, the sonar would be
built by me. Building such a sensor proves to be a huge challenge and gathering the right
information is crucial.

 3

Executive Summary

SPARtan attempts to follow a sonar transmitter providing a 40 kHz pulse every 1.5 ms.

This transmitter is placed a fair distance across the room from SPARtan. Between the

two are some obstacles in which it must try to avoid. Once the transmitter and SPARtan

are set up in the room far from each other with obstacles in between, both the transmitter

and SPARtan are turned on. At this point, SPARtan goes through its initialization

process and waits for the appropriate switch to be pressed. Now SPARtan goes through

his behaviors. The first is sonar position where it attempts to line up with the transmitter.

The second behavior is to avoid obstacles. SPARtan uses IR sensors to detect where

obstacles lie. The final behavior is to display the current status of SPARtan on the LCD.

As a last resort, SPARtan has a bump switch panel on the front to allow him to stop when

it has been hit. Once this occurs, SPARtan is then done.

 4

Introduction

The concept of my robot is one that deals with positioning. I wanted to choose a unique

way of finding one’s way to some place. Sonar has always seemed to intrigue me so this

is what I have chosen. I plan to use 3 sonar receivers and 1 sonar transmitter which will

allow the robot to triangulate its position according to a beacon (sonar transmitter). I find

this interesting because I like the mission that my robot must perform. Its concept is it

starts out lost and tries to find home while avoiding the obstacles that remain in its way.

Throughout this paper, I will discuss SPARtan thought process and what things make him

work the way he does.

 5

Integrated System

SPARtan’s logical process is one which is not very difficult to comprehend.

Initialization Process:
 Ports and Stack
 LCD Setup and Write SPARtan
 Servo Control
 A/D Converter

Alignment with Transmitter
 Measure front two receivers for
 receiving nearly the same time

Check bump panel Go Straight to Beacon

0
1

0
Obstacle in Way Stop

1

Turn and Get Side aligned
with wall

0

1 0 Determine if obstacle Check bump panel
has been passed

1

Stop

Currently SPARtan cannot receive a sonar pulse and therefore align itself towards the

sonar beacon. SPARtan’s functions as of now are Obstacle Avoidance and displaying the

current status on the LCD display.

 6

SPARtan uses an Atmel STK 500 processor board with an ATmega32 microprocessor.

 7

Mobile Platform

The most logical arrangement of the sonar receivers is to line them up in the shape of a

triangle. This will allow all directions in the horizontal plane to be covered. Also, the

receivers must be spread out so that accurate reading can be read making the robot more

efficient at finding its target. So a triangular shaped platform would be the best decision.

Receiver

To cut down on wood consumption, I decided to go with a T-shaped design allowing me

to save wood while maintaining a sleek design.

Receiver

 8

Here is a top view of the final design:

I designed the platform in AutoCAD. I made all the appropriate pieces fit into place the

first time which really surprised me. Although the platform isn’t that complex, I was

very happy with the way it turned out. One tricky part was making the platform level.

With the servos in the front and a ball castor in the back, the correct heights had to be

accounted for.

 9

Actuation

Actuation is provided by two servos on the front two corners of SPARtan.

Each of these servos is hacked allowing continuous

nonstop movement for turning wheels. I would

highly recommend these servos. They work

properly every time and are easy control through a

PWM signal. The PWM signal required does not

have to be exactly what is suggested which is nice.

Hacking this servo is very easy. Performing this action requires the use of a Dremel tool

on one tab and then the removal of another tab which slides off the potentiometer.

For back support, SPARtan rested on a ball castor. This ball castor was definitely heavy

duty and was a little large for most applications. In my case, it fit perfectly into the back.

I used this because I needed multi-directional movement in the back.

 10

Sensor Selection:

Basic Sensors:

Bump Switches – Used in obstacle avoidance, these bump switches are a last

resort in case my IR sensors fail. These bump switches should really not be used

unless I’m trying to avoid a skinny object and my IR sensors fail to see anything

in front of me.

Sharp GP2D12 Detector Package – Used in obstacle avoidance, these sensors

detect large objects such as walls in front. This sensor uses infrared to detect

objects and returns distance information to the microprocessor.

Special Sensors:

Sonar Transmitter – Built by hand, this sensor will be separate from the robot and

will act as a beacon emanated a 40 kHz pulse.

Sonar Receiver – Also built by hand, this sensor will receive the pulse given from

the transmitter and will relay this to the microprocessor. These will be used to

give my position depending on where the transmitter is located.

 11

Bump Switches:

Schematic:

Experimental Setup:

Once the schematic was built, I connect the

Vin to one of my port pins on my

microprocessor board. I’ve chosen not to

hook it up to one of my A/D channel because

I don’t really find it necessary and

programming is much easier when it’s

digitally connected to a port pin.

Here’s the code I used to test my bump switches:

start:
 sbic PINA, 0x07 ; Don't Start until Switch is pressed
 rjmp start
.
.
. It would then let me skip out of this loop and proceed to the rest of the program.

Data:

The data received was either a logical 0 or 1. Using the port pins makes this

much easier to do.

Conclusion:

The bump switches are very reliable and simple to use. Every time they are hit,

there’s always a change in value that the microprocessor can pick up.

 12

Sharp GP2D12 Detector Package:

Schematic:

Experimental Setup:

To test this sensor, I connected it to one of my A/D converter channels on my

microprocessor. I then laid out a measurement system in front of the sensor

ranging from 0 cm to 80 cm. I then tested the analog voltage and binary value

given by the analog output Vo from the sensor. I obtained the analog voltage

from a voltmeter. I obtained the binary value of the analog output by the LEDs

on my microprocessor board. As an obstacle, I used a thin, 8.5” x 11”, piece of

metal with a piece of white computer paper covering it. I then took measurements

starting at 10 cm with a step size of 5 cm.

 13

Data:

Distance (cm) Analog Voltage Binary Value
10 2.56 10000000
15 1.82 10100000
20 1.40 10111000
25 1.12 11000100
30 0.96 11001111
35 0.83 11010100
40 0.73 11011010
45 0.66 11011110
50 0.60 11100001
55 0.56 11100011
60 0.50 11100110
65 0.47 11101001
70 0.44 11101001
75 0.42 11101011
80 0.39 11101100

>> 80 0.23 11110000

Note: The binary values shown are from the LED display on the board, therefore

these values are active low. Complement these values to get real actual values.

 14

Graphs:

Predicted Detector Values

Actual Detector Values

2.
56

1.
82

1.
40

1.
12

0.
96

0.
83

0.
73

0.
66

0.
60

0.
56

0.
50

0.
47

0.
44

0.
42

0.
39

0.00

0.50

1.00

1.50

2.00

2.50

3.00

0 20 40 60 80 100

Distance (cm)

A
na

lo
g

V
ol

ta
ge

 15

Conclusion on Sharp GP2D12 Detector Package:

The actual values received from the analog voltage out pin were pretty close to

the predicted values given. The range was surprisingly further than I expected.

Sharp gave a range of up to 80 cm but one could use this sensor for probably up to

120 cm and still have somewhat accurate readings.

The obstacle’s position according to the direction in which the sensor faced is

very important. The obstacle had to almost be in a straight line for the sensor to

detect that something was in front of it.

 16

Sonar Transmitter:

Schematic:

 17

Sonar Receiver:

Schematic:

Experimental Setup:

I used an oscilloscope to measure the filter pulse that this receiver would obtain.

The values obtain were not correct. I don’t think the schematic was setup

properly. With numerous attempts at trying to get this to work, I did try an RCK

filter to try and get a signal. This actually did work but both transducers had to be

about an inch away from each other. Therefore the transmitter did work but the

receivers were faulty.

 18

Behaviors

Acquiring Direction:

This behavior determines in which direction the sonar beacon is. SPARtan continues to

receive the pulse in each of its three sonar receivers. Based on when the pulse get to each

receiver, I can then determine which direction SPARtan must turn in order to be aligned

with the target.

For example:
Back Receiver much sooner than Front 1 and Front 2 => Facing opposite
Front 1 sooner than Front 2 and back => Turn left slightly until Front 1 = Front 2
Front 2 sooner than Front 1 and back => Turn right slightly until Front 1 = Front 2

Once this is achieved, this behavior is done.

Obstacle Avoidance:

Bump Switch Panel: Anytime the panel is hit, SPARtan stops and is done.

IR detection: When the IR reaches tolerance because of an obstacle, SPARtan stops,

backs one wheel and then presses onward.

LCD Display:

This behavior shows the current status of SPARtan when it is either going forward or

reaching an obstacle and avoiding.

 19

Conclusion

In summary, I was able to get obstacle avoidance to work well. SPARtan reacts very fast

to obstacles at a close distance and moves out of the way. During all of his actions, the

LCD displays describes his current actions as he moves.

My work is limited because the sonar system didn’t perform. Building these schematics

proves to be time consuming and the equipment always isn’t the best when assembling

these on a board. Because of this problem, I wasn’t able to perform the main functions of

my program.

If I were to do this all over, I would not have chosen sonar in this manner. Companies

don’t make sonar for this type of case and the resources to build your own are not very

accurate.

 20

Documentation

Sonar Transmitter and Receiver Schematics and Information:
 Megan Grimm
 Alph and Ralph
 Fall 1998

 21

Appendix A: Vendor Information

Item Qty Price

ATMEL ATSTK500 Board Starter Kit $79.00 plus $10.00 shipping

• www.digikey.com

ATMEL ATmega32-16PC-ND MCU $9.89 plus $5.00 shipping

• www.digikey.com

LCD Display Free

• EEL 4744: Microprocessor Applications

Sharp GP2D12 Detector Package (4) $11.50/each plus $12.00 shipping

• www.acroname.com

HS-425BB Hitec Servo (2) $14.99/each plus $7.00 shipping

• www.servocity.com

5730 Treaded Lite Wheel 3” (2) $5.49 together plus $7.00 shipping

• www.towerhobbies.com

MAX266 Filter Chip (2) Free samples

(1) $19.50/each plus $10.00 shipping
• www.maxim-ic.com

LM339 Analog Comparator (3) $0.21/each
40 kHz Transducer Pair (5) $6.95/each plus $7.00 shipping

• www.jameco.com

Resistors, Capacitors, Transistors, $18.00
Potentiometers, etc.
Anti-Static Kit (1) $24.99
1kct/8Ohm Audio-transformer (1) $2.99
PC board mount (1) $2.99

• RadioShack

Flange-mount Ball Castor (1) $3.13 plus $3.75 shipping

• www.mcmaster.com

30 Minute AA Battery Charger (includes 4 batts) (1) $41.99
Rechargable NiMH Batteries (4 pack) (1) $13.99
AA Batteries (8 pack) (1) $3.99

• Best Buy

Total: $404.55

 22

http://www.acroname.com/
http://www.servocity.com/
http://www.towerhobbies.com/
http://www.maxim-ic.com/
http://www.jameco.com/
http://www.mcmaster.com/

Appendix B: Assorted Code

;***** LCD Interface *****
;** Port A is our access to the LCD:
;** PC0 = DB0 (pn7)
;** PC1 = DB1 (pn8)
;** PC2 = DB2 (pn9)
;** PC3 = DB3 (pn10)
;** PC4 = E (pn6)
;** PC5 = RS (pn4)
;** PC6 = Nothing
;** PC7 = Nothing
;** GND = VSS (pn1)
;** GND = R/W (pn5)
;** VTG = VDD (pn2)
.include "m32def.inc"

.def del1 =r16 ; X Reg
.def del2 =r17 ; Y Reg
.def a =r18 ; A Reg
.def b =r19 ; B Reg
.def Temp =r20 ; Temp Reg
.def DReg1 =r21 ; Delay Reg 1
.def DReg2 =r22 ; Delay Reg 2

;**** Macros

.macro letter
 ldi a,@0
 out PORTC,a
 sbi PORTC,5
 rcall Latch
 ldi a,@1
 out PORTC,a
 sbi PORTC,5
 rcall Latch
 rcall Delay ; 80 * 1 * 0.5us = 40us
.endmacro

;** Initialize Port

 ser Temp
 out DDRC,Temp ; Set PortC to output only (LCD)

 ldi Temp,low(RAMEND) ; Set stackptr to ram end
 out SPL,Temp
 ldi Temp, high(RAMEND)
 out SPH, Temp

;** Command Mode

 clr Temp
 out PORTC,Temp
;** Initialize 4-bit mode

 ldi DReg1,150 ; Delay 1 number (
 ldi DReg2,100 ; Delay 2 number (multiple)
 rcall Delay ; 150 * 100 * 1us = 15ms

 ldi a,3
 out PORTC,a
 rcall Latch

 23

 ldi DReg1,41 ; Delay 1 number
 ldi DReg2,100 ;
 rcall Delay ; 41 * 100 * 1us = 4.1ms

 rcall Latch
 ldi DReg1,100 ; Delay 1 number
 ldi DReg2,1 ;
 rcall Delay ; 100 * 1 * 1us = 100us

 rcall Latch
 ldi DReg1,41 ; Delay 1 number
 ldi DReg2,100 ;
 rcall Delay ; 41 * 100 * 1us = 4.1ms

 ldi a,2
 out PORTC,a
 rcall Latch

;** Enable 2-line Mode

 ldi DReg1,40 ; Delay 1 number
 ldi DReg2,1 ;
 rcall Delay ; 40 * 1 * 1us = 40us

 rcall Latch
 ldi a,12
 out PORTC,a
 rcall Latch

;** Display, Cursor, Blink

 ldi DReg1,40 ; Delay 1 number
 ldi DReg2,1 ;
 rcall Delay ; 40 * 1 * 1us = 40us

 ldi a,0
 out PORTC,a
 rcall Latch
 ldi a,15
 out PORTC,a
 rcall Latch
 ldi DReg1,40 ; Delay 1 number
 ldi DReg2,1 ;
 rcall Delay ; 40 * 1 * 1us = 40us

;** Clear Home

 ldi a,0
 out PORTC,a
 rcall Latch
 ldi a,1
 out PORTC,a
 rcall Latch
 ldi DReg1,164 ; Delay 1 number
 ldi DReg2,10 ;
 rcall Delay ; 164 * 10 * 1us = 1.64ms

;** Initialization Complete

;*** Write Name
;** Set RS High for Data Mode

 24

 sbi PORTC,5
 ldi DReg1,40 ; Delay 1 number
 ldi DReg2,1 ;

;** My name

 letter 4,2 ; load "B"
 letter 7,2 ; load "r"
 letter 7,9 ; load "y"
 letter 6,1 ; load "a"
 letter 6,14 ; load "n"
 letter 2,0 ; load " "
 letter 4,1 ; load "A"
 letter 7,2 ; load "r"
 letter 6,11 ; load "k"
 letter 6,9 ; load "i"
 letter 6,14 ; load "n"
 letter 7,3 ; load "s"
done:
 rjmp done

;**** Subroutines

Latch:
 sbi PORTC,4 ; set E=1
 cbi PORTC,4 ; set E=0
 ret

Delay: ; 0.5us delay
 mov del1,DReg1
 mov del2,DReg2
loop:
 nop
 nop
 nop
 nop
 nop
 nop
 dec del1
 brne loop
 mov del1,DReg1
 dec del2
 brne loop
 ret

 25

;**** Servo Control ****
; ** Straight Line Forward **
; Our clock is running at 8MHz, therefore we divide
; the clock by the 256 prescalar and let our top be $FF.
;
; 1/8MHz = .125us * 256 * 256 = 8.2ms from bottom to top
;
; So it's 16.4ms for one period and that's as close to 20ms
; as we get.
; /\ /\ / <-- $FF
; / \ / \ /
; / \/ \/ <-- $00
;
; 31 ---> Full Forward
; 27 ---> Half Forward
; 23 ---> Neutral
; 19 ---> Half Backward
; 15 ---> Full Backward

.include "m32def.inc"

.def temp =r16 ; Temporary Reg 1
.def Lservo =r17 ; Left Servo Reg
.def Rservo =r18 ; Right Servo Reg

 ldi Temp, 0b00001000
 out DDRB,Temp ; Set OC0 (PB3) to output

 ldi Temp, 0b10000000
 out DDRD,Temp ; Set OC2 (PD7) to output

 ldi Temp,low(RAMEND) ; Set stackptr to ram end
 out SPL,Temp
 ldi Temp, high(RAMEND)
 out SPH, Temp

 ldi Temp, 0b11100100 ; Output compare setup regs
 out TCCR0, Temp ; 6(WGM 00) = 1, 3(WGM 01) = 0
 ldi Temp, 0b11100110 ; 5(COM 01) = 1, 4(COM 00) = 0
 out TCCR2, Temp ; for TCCR0: 2:0(CS2:0) = 100
 ; for TCCR2: 2:0(CS2:0) = 110

 ldi Temp, $00 ; Start TCNT's at $00
 out TCNT0, Temp
 out TCNT2, Temp

 ldi Lservo, 31
 ldi Rservo, 15
 out OCR0, Lservo
 out OCR2, Rservo

loop:
 rjmp loop

 26

;**** AD Program ****
.include "m32def.inc"

.def Temp1 =r16
.def Temp2 =r17
.def Del1 =r18
.def Del2 =r19
.def Del3 =r20

 clr Temp1
 out DDRA, Temp1

 ser Temp1
 out DDRB, Temp1

 ldi Temp1, 0b11100000
 out ADMUX, Temp1

 ldi Temp1, 0b11100110
 out ADCSR, Temp1

 clr ZH
 ldi ZL, SFIOR

 ld Temp1, Z
 sbr Temp1, 0b11110000
 st Z, Temp1

loop:
 in Temp1, ADCH
 out PortB, Temp1

 ldi Del1, 100
 ldi Del2, 100
 ldi Del3, 50
again: nop
 nop
 nop
 nop
 nop
 nop
 dec Del1
 brne again
 ldi Del1, 100
 dec Del2
 brne again
 ldi Del2, 100
 dec Del3
 brne again
 rjmp loop

 27

;**** Obstacle Avoidance Program ****

;** Bryan Arkins
;** EEL 5666
;** Spring 2004

; ** Straight Line Forward **
; Our clock is running at 8MHz, therefore we divide
; the clock by the 256 prescalar and let our top be $FF.
;
; 1/8MHz = .125us * 256 * 256 = 8.2ms from bottom to top
;
; So it's 16.4ms for one period and that's as close to 20ms
; as we get.
; /\ /\ / <-- $FF
; / \ / \ /
; / \/ \/ <-- $00
;
; 31 ---> Full Forward
; 27 ---> Half Forward
; 23 ---> Neutral
; 19 ---> Half Backward
; 15 ---> Full Backward

.include "m32def.inc"

.def Temp1 =r16
.def Del1 =r17
.def Del2 =r18
.def DReg1 =r19
.def DReg2 =r20
.def Lservo =r21 ; Left Servo Reg
.def Rservo =r22 ; Right Servo Reg
.def Temp2 =r23
.def ADval =r24
.def Tol =r25

;**** Macros
.macro letter
 ldi Temp1,@0
 ldi Temp2,@1
.endmacro

 .org ADCCaddr
 rjmp AD_ISR

 .org $0050
 rjmp reset

reset:
;*** Setup of Ports and Stack Pointer ***

 clr Temp1
 out DDRA, Temp1 ; Set A/D and Initial Switch Bit7

 ldi Temp1, 0b00001000
 out DDRB, Temp1 ; Set OC0 (PB3) to output

 ser Temp1

 28

 out DDRC, Temp1 ; Set PortC to output only (LCD)

 ldi Temp1, 0b10000000
 out DDRD, Temp1 ; Set OC2 (PD7) to output

 ldi Temp1,low(RAMEND) ; Set stackptr to ram end
 out SPL,Temp1
 ldi Temp1, high(RAMEND)
 out SPH, Temp1

 ldi Tol, $0b01000000

;*** Initialization of LCD ***

;** Command Mode

 clr Temp1
 out PORTC,Temp1
;** Initialize 4-bit mode

 ldi DReg1,150 ; Delay 1 number
 ldi DReg2,10 ; Delay 2 number (multiple)
 rcall DelayLCD ; 150 * 100 * 1us = 15ms

 ldi Temp2,3
 out PORTC,Temp2
 rcall LatchLCD

 ldi DReg1,41 ; Delay 1 number
 ldi DReg2,10
 rcall DelayLCD ; 41 * 100 * 1us = 4.1ms

 rcall LatchLCD
 ldi DReg1,1 ; Delay 1 number
 ldi DReg2,10
 rcall DelayLCD ; 100 * 1 * 1us = 100us

 rcall LatchLCD
 ldi DReg1,41 ; Delay 1 number
 ldi DReg2,10
 rcall DelayLCD ; 41 * 100 * 1us = 4.1ms

 ldi Temp2,2
 out PORTC,Temp2
 rcall LatchLCD

;** Enable 2-line Mode

 ldi DReg1,10 ; Delay 1 number
 ldi DReg2,2
 rcall DelayLCD ; 40 * 1 * 1us = 40us

 rcall LatchLCD
 ldi Temp2,12
 out PORTC,Temp2
 rcall LatchLCD

;** Display, Cursor, Blink

 ldi DReg1,10 ; Delay 1 number
 ldi DReg2,2
 rcall DelayLCD ; 40 * 1 * 1us = 40us

 29

 ldi Temp2,0
 out PORTC,Temp2
 rcall LatchLCD
 ldi Temp2,15
 out PORTC,Temp2
 rcall LatchLCD
 ldi DReg1,10 ; Delay 1 number
 ldi DReg2,2
 rcall DelayLCD ; 40 * 1 * 1us = 40us

;** Clear Home

 rcall ClearHomeLCD

;** Initialization Complete

;** Feel free to write
;** To clear and go again, call subroutine "ClearHomeLCD"

;** SPARtan's Name

 letter 5,3 ; load "S"
 rcall letterLCD
 letter 5,0 ; load "P"
 rcall letterLCD
 letter 4,1 ; load "A"
 rcall letterLCD
 letter 5,2 ; load "R"
 rcall letterLCD
 letter 7,4 ; load "t"
 rcall letterLCD
 letter 6,1 ; load "a"
 rcall letterLCD
 letter 6,14 ; load "n"
 rcall letterLCD

;*** End of LCD ***

;*** Setup of A/D Conversion ***
 ldi Temp1, 0b01100000
 out ADMUX, Temp1 ; Set up for A/D0

 ldi Temp1, 0b10001110
 out ADCSR, Temp1

 clr ZH
 ldi ZL, SFIOR

 ld Temp1, Z
 sbr Temp1, 0b00010000
 cbr Temp1, 0b11100000
 st Z, Temp1

;*** Setup of Servo Control ***
 ldi Temp1, 0b11100100 ; Output compare setup regs
 out TCCR0, Temp1 ; 6(WGM 00) = 1, 3(WGM 01) = 0
 ldi Temp1, 0b11100110 ; 5(COM 01) = 1, 4(COM 00) = 0
 out TCCR2, Temp1 ; for TCCR0: 2:0(CS2:0) = 100
 ; for TCCR2:
2:0(CS2:0) = 110

 ldi Temp1, $00 ; Start TCNT's at $00

 30

 out TCNT0, Temp1
 out TCNT2, Temp1

 rcall Stop

;*** Start of Main ***
 sei

start:
 sbic PINA, 0x07 ; Don't Start until Switch 7 is pressed
 rjmp start

 rcall Go
 rcall OnwardLCD

loopMain:

IRleft:
 sbic PINA, 0x06
 rjmp EndProg

 sbi ADCSR, 7 ; disable ADEN
 cbi ADMUX, 0 ; set A/D0
 sbi ADCSR, 5 ; enable ADEN
 cbi ADCSR, 4 ; Clear Flag
 sbi ADCSR, 6 ; Start Conversion

wait1:
 sbis ADCSR, 4
 rjmp wait1
 in ADval, ADCH
 cbi ADCSR, 4
 cbi ADCSR, 7
 cbi ADCSR, 5

 cp ADval, Tol
 brmi IRleft2
 rcall Go
 rjmp IRright
IRleft2:
 rcall Stop
 rcall ObstacleLCD
 ldi DReg1, 50
 ldi DReg2, 150
 rcall DelayLCD
 rcall RetreatLCD
 ldi Rservo, 25
 out OCR2, Rservo
 ldi DReg1, 50
 ldi DReg2, 150
 rcall DelayLCD
 rcall OnwardLCD
 rcall Go
 rjmp IRleft

IRright:
 sbic PINA, 0x06
 rjmp EndProg

 sbi ADCSR, 7 ; disable ADEN
 sbi ADMUX, 0 ; set A/D1
 sbi ADCSR, 5 ; enable ADEN
 cbi ADCSR, 4 ; Clear Flag
 sbi ADCSR, 6 ; Start Conversion

wait2:
 sbis ADCSR, 4
 rjmp wait2
 in ADval, ADCH

 31

 cbi ADCSR, 4
 cbi ADCSR, 7
 cbi ADCSR, 5

 cp ADval, Tol
 brmi IRright2
 rcall Go
 rjmp IRleft
IRright2:
 rcall Stop
 rcall ObstacleLCD
 ldi DReg1, 50
 ldi DReg2, 150
 rcall DelayLCD
 rcall RetreatLCD
 ldi Lservo, 21
 out OCR0, Lservo
 ldi DReg1, 50
 ldi DReg2, 150
 rcall DelayLCD
 rcall OnwardLCD
 rcall Go
 rjmp IRright

EndProg:
 rcall Stop
 rcall RIPLCD
EndProg1:
 rjmp EndProg1

;*** Interupt Service Routines ***
AD_ISR: ; Switching back and forth the
front two AD convs
 reti

;*** Subroutines ***
Go:
 ldi Lservo, 28
 ldi Rservo, 18
 out OCR0, Lservo
 out OCR2, Rservo
 ret

Stop:
 ldi Lservo, 23
 ldi Rservo, 23
 out OCR0, Lservo
 out OCR2, Rservo
 ret

FinishTurn: ; Delay until turn is finished
 andi ADval, 0b01111111
 cp ADval, Tol
 brge FinishTurn
 ret

DelayLCD: ; 0.5us delay
 mov Del1,DReg1
 mov Del2,DReg2
loopLCD:
 nop
 nop
 nop
 nop
 nop

 32

 nop
 dec Del1
 brne loopLCD
 mov Del1,DReg1
 dec Del2
 brne loopLCD
 dec DReg2
 brne loopLCD
 ret

LatchLCD:
 sbi PORTC,4 ; set E=1
 cbi PORTC,4 ; set E=0
 ret

ClearHomeLCD:
 cbi PORTC,5
 ldi Temp2,0
 out PORTC,Temp2
 rcall LatchLCD
 ldi Temp2,1
 out PORTC,Temp2
 rcall LatchLCD
 ldi DReg1,164 ; Delay 1 number
 ldi DReg2,4 ;
 rcall DelayLCD ; 164 * 10 * 1us = 1.64ms
 sbi PORTC,5
 ldi DReg1,10 ; Delay 1 number
 ldi DReg2,2 ; Delay 2 number
 ret

ObstacleLCD:
 rcall ClearHomeLCD
 letter 4,15 ; load "O"
 rcall letterLCD
 letter 6,2 ; load "b"
 rcall letterLCD
 letter 7,3 ; load "s"
 rcall letterLCD
 letter 7,4 ; load "t"
 rcall letterLCD
 letter 6,1 ; load "a"
 rcall letterLCD
 letter 6,3 ; load "c"
 rcall letterLCD
 letter 6,12 ; load "l"
 rcall letterLCD
 letter 6,5 ; load "e"
 rcall letterLCD
 letter 2,1 ; load "!"
 rcall letterLCD
 ret

RetreatLCD:
 rcall ClearHomeLCD
 letter 5,2 ; load "R"
 rcall letterLCD
 letter 6,5 ; load "e"
 rcall letterLCD
 letter 7,4 ; load "t"
 rcall letterLCD
 letter 7,2 ; load "r"
 rcall letterLCD
 letter 6,5 ; load "e"
 rcall letterLCD
 letter 6,1 ; load "a"
 rcall letterLCD
 letter 7,4 ; load "t"
 rcall letterLCD
 letter 2,1 ; load "!"

 33

 34

 rcall letterLCD
 ret

OnwardLCD:
 rcall ClearHomeLCD
 letter 4,15 ; load "O"
 rcall letterLCD
 letter 6,14 ; load "n"
 rcall letterLCD
 letter 7,7 ; load "w"
 rcall letterLCD
 letter 6,1 ; load "a"
 rcall letterLCD
 letter 7,2 ; load "r"
 rcall letterLCD
 letter 6,4 ; load "d"
 rcall letterLCD
 letter 2,14 ; load "."
 rcall letterLCD
 letter 2,14 ; load "."
 rcall letterLCD
 letter 2,14 ; load "."
 rcall letterLCD
 ret

RIPLCD:
 rcall ClearHomeLCD
 letter 5,2 ; load "R"
 rcall letterLCD
 letter 2,14 ; load "."
 rcall letterLCD
 letter 4,9 ; load "I"
 rcall letterLCD
 letter 2,14 ; load "."
 rcall letterLCD
 letter 5,0 ; load "."
 rcall letterLCD
 ret

letterLCD:
 out PORTC,Temp1
 sbi PORTC,5
 rcall LatchLCD
 out PORTC,Temp2
 sbi PORTC,5
 rcall LatchLCD
 ldi DReg1,10 ; Delay 1 number
 ldi DReg2,2 ;
 rcall DelayLCD ; 80 * 1 * 0.5us = 40us
 ret

